Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Exclusive labeling of direct and indirect pathway neurons in the mouse neostriatum by an adeno-associated virus vector with Cre/lox system.

  • Shinichiro Okamoto‎ et al.
  • STAR protocols‎
  • 2021‎

We developed an adeno-associated virus (AAV) vector-based technique to label mouse neostriatal neurons comprising direct and indirect pathways with different fluorescent proteins and analyze their axonal projections. The AAV vector expresses GFP or RFP in the presence or absence of Cre recombinase and should be useful for labeling two cell populations exclusively dependent on its expression. Here, we describe the AAV vector design, stereotaxic injection of the AAV vector, and a highly sensitive immunoperoxidase method for axon visualization. For complete details on the use and execution of this protocol, please refer to Okamoto et al. (2020).


Quantitative Determination of Aflatoxin B1 in Maize and Feed by ELISA and Time-Resolved Fluorescent Immunoassay Based on Monoclonal Antibodies.

  • Shiyun Han‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2024‎

In this study, a highly sensitive monoclonal antibody (mAb) was developed for the detection of aflatoxin B1 (AFB1) in maize and feed. Additionally, indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and time-resolved fluorescence immunoassay assay (TRFICA) were established. Firstly, the hapten AFB1-CMO was synthesized and conjugated with carrier proteins to prepare the immunogen for mouse immunization. Subsequently, mAb was generated using the classical hybridoma technique. The lowest half-maximal inhibitory concentration (IC50) of ic-ELISA was 38.6 ng/kg with a linear range of 6.25-100 ng/kg. The limits of detections (LODs) were 6.58 ng/kg and 5.54 ng/kg in maize and feed, respectively, with the recoveries ranging from 72% to 94%. The TRFICA was developed with a significantly reduced detection time of only 21 min, from sample processing to reading. Additionally, the limits of detection (LODs) for maize and feed were determined to be 62.7 ng/kg and 121 ng/kg, respectively. The linear ranges were 100-4000 ng/kg, with the recoveries ranging from 90% to 98%. In conclusion, the development of AFB1 mAb and the establishment of ic-ELISA for high-throughput sample detection, as well as TRFICA for rapid detection presented robust tools for versatile AFB1 detection in different scenarios.


Multiplex Staining by Sequential Immunostaining and Antibody Removal on Routine Tissue Sections.

  • Maddalena Maria Bolognesi‎ et al.
  • The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society‎
  • 2017‎

Multiplexing, labeling for multiple immunostains in the very same cell or tissue section in situ, has raised considerable interest. The methods proposed include the use of labeled primary antibodies, spectral separation of fluorochromes, bleaching of the fluorophores or chromogens, blocking of previous antibody layers, all in various combinations. The major obstacles to the diffusion of this technique are high costs in custom antibodies and instruments, low throughput, and scarcity of specialized skills or facilities. We have validated a method based on common primary and secondary antibodies and diffusely available fluorescent image scanners. It entails rounds of four-color indirect immunofluorescence, image acquisition, and removal (stripping) of the antibodies, before another stain is applied. The images are digitally registered and the autofluorescence is subtracted. Removal of antibodies is accomplished by disulfide cleavage and a detergent or by a chaotropic salt treatment, this latter followed by antigen refolding. More than 30 different antibody stains can be applied to one single section from routinely fixed and embedded tissue. This method requires a modest investment in hardware and materials and uses freeware image analysis software. Multiplexing on routine tissue sections is a high throughput tool for in situ characterization of neoplastic, reactive, inflammatory, and normal cells.


Application of Highly Sensitive Immunosensor Based on Optical Waveguide Light-Mode Spectroscopy (OWLS) Technique for the Detection of the Herbicide Active Ingredient Glyphosate.

  • Krisztina Majer-Baranyi‎ et al.
  • Biosensors‎
  • 2023‎

The herbicide active ingredient glyphosate is the most widely applied herbicidal substance worldwide. Currently it is the market-leading pesticide, and its use is projected to further grow 4.5-fold between 2022 and 2029. Today, glyphosate use exceeds one megaton per year worldwide, which represents a serious environmental burden. A factor in the overall boost in the global use of glyphosate has been the spread of glyphosate-tolerant genetically modified (GM) crops that allow post-emergence applications of the herbicide on these transgenic crops. In turn, cultivation of glyphosate-tolerant GM crops represented 56% of the glyphosate use in 2019. Due to its extremely high application rate, xenobiotic behaviour and a water solubility (11.6 mg/mL at 25 °C) unusually high among pesticide active ingredients, glyphosate has become a ubiquitous water pollutant and a primary drinking water contaminant worldwide, presenting a threat to water quality. The goal of our research was to develop a rapid and sensitive method for detecting this herbicide active ingredient. For this purpose, we applied the novel analytical biosensor technique optical waveguide light-mode spectroscopy (OWLS) to the label-free detection of glyphosate in a competitive immunoassay format using glyphosate-specific polyclonal antibodies. After immobilising the antigen conjugate in the form of a glyphosate conjugated to human serum albumin for indirect measurement, the sensor chip was used in a flow-injection analyser system. For the measurements, an antibody stock solution was diluted to 2.5 µg/mL. During the measurement, standard solutions were mixed with the appropriate concentration of antibodies and incubated for 1 min before injection. The linear detection range and the EC50 value of the competitive detection method were between 0.01 and 100 ng/mL and 0.60 ng/mL, respectively. After investigating the indirect method, we tested the cross-reactivity of the antibody with glyphosate and structurally related compounds.


Prognostic Factors for Chronic Spontaneous Urticaria: A 6-Month Prospective Observational Study.

  • Young Min Ye‎ et al.
  • Allergy, asthma & immunology research‎
  • 2016‎

Chronic urticaria (CU) has a substantial impact on the quality of life. Little clinical data on the prognosis of CU has been reported. This study aimed to investigate the control status and remission rate of CU and to explore potential predictors of good responses to the treatment during a 6-month treatment period.


The expression, localisation and interactome of pigeon CRY2.

  • Spencer D Balay‎ et al.
  • Scientific reports‎
  • 2021‎

Cryptochromes (CRY) are highly conserved signalling molecules that regulate circadian rhythms and are candidate radical pair based magnetoreceptors. Birds have at least four cryptochromes (CRY1a, CRY1b, CRY2, and CRY4), but few studies have interrogated their function. Here we investigate the expression, localisation and interactome of clCRY2 in the pigeon retina. We report that clCRY2 has two distinct transcript variants, clCRY2a, and a previously unreported splice isoform, clCRY2b which is larger in size. We show that clCRY2a mRNA is expressed in all retinal layers and clCRY2b is enriched in the inner and outer nuclear layer. To define the localisation and interaction network of clCRY2 we generated and validated a monoclonal antibody that detects both clCRY2 isoforms. Immunohistochemical studies revealed that clCRY2a/b is present in all retinal layers and is enriched in the outer limiting membrane and outer plexiform layer. Proteomic analysis showed clCRY2a/b interacts with typical circadian molecules (PER2, CLOCK, ARTNL), cell junction proteins (CTNNA1, CTNNA2) and components associated with the microtubule motor dynein (DYNC1LI2, DCTN1, DCTN2, DCTN3) within the retina. Collectively these data show that clCRY2 is a component of the avian circadian clock and unexpectedly associates with the microtubule cytoskeleton.


Suicide HSVtk gene delivery by neurotensin-polyplex nanoparticles via the bloodstream and GCV Treatment specifically inhibit the growth of human MDA-MB-231 triple negative breast cancer tumors xenografted in athymic mice.

  • Rosa A Castillo-Rodríguez‎ et al.
  • PloS one‎
  • 2014‎

The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55-60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier.


Neospora caninum, A potential cause of reproductive failure in dairy cows from Northern Greece.

  • M Lefkaditis‎ et al.
  • Veterinary parasitology, regional studies and reports‎
  • 2020‎

Neospora caninum infection has been reported in a large number of intermediate hosts, such as ruminants, rabbits, mice, etc. but neosporosis has emerged as a serious disease in cattle and dogs worldwide. Abortions and other infertility issues have been reported in the infected cows, leading to great economic losses in farmers. The aim of our study was to assess N. caninum seroprevalence in dairy cattle from Northern Greece (region of Xanthi) by using the indirect fluorescent antibody technique. Blood samples were collected from 875 Holstein - Friesian dairy cows and tested for Neospora caninum antibodies. Among the cows that were studied, 184 (21.03%) were positive for N. caninum antibodies and concurrently their farms had a known previous history of infertility problems, such as abortions, increased number of artificial inseminations needed for conception, increased rate of returning to estrus and retention of fetal membranes.


Development of Primer Pairs from Molecular Typing of Rabies Virus Variants Present in Mexico.

  • Fernando Bastida-González‎ et al.
  • BioMed research international‎
  • 2016‎

Nucleoprotein (N) gene from rabies virus (RABV) is a useful sequence target for variant studies. Several specific RABV variants have been characterized in different mammalian hosts such as skunk, dog, and bats by using anti-nucleocapsid monoclonal antibodies (MAbs) via indirect fluorescent antibody (IFA) test, a technique not available in many laboratories in Mexico. In the present study, a total of 158 sequences of N gene from RABV were used to design eight pairs of primers (four external and four internal primers), for typing four different RABV variants (dog, skunk, vampire bat, and nonhematophagous bat) which are most common in Mexico. The results indicate that the primer and the typing variant from the brain samples, submitted to nested and/or real-time PCR, are in agreement in all four singleplex reactions, and the designed primer pairs are an alternative for use in specific variant RABV typing.


A Novel Optical Quantal Analysis of Miniature Events Reveals Enhanced Frequency Following Amyloid β Exposure.

  • Henry B C Taylor‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2020‎

Non-evoked miniature release of neurotransmitters is increasingly recognized as playing an important role in neural function and is implicated in synaptic plasticity, metaplasticity, and homeostasis. Spontaneous miniature release events (minis) are usually measured electrophysiologically by recording the miniature postsynaptic currents (mEPSCs) that they evoke. However, this indirect technique can be confounded by changes within the postsynaptic neuron. Here, using the fluorescent probe SynaptopHluorin 2×, we have developed an optical method for the measurement of minis that enables direct assessment of release events. We use the technique to reveal that the frequency of minis following incubation of hippocampal neurons with Amyloid β oligomers (Aβo) is increased. Electrophysiological mEPSC recordings obtained under the same conditions report a decrease in frequency, with the discrepancy likely due to Aβo-induced changes in quantal size. Optical quantal analysis of minis may therefore have a role in the study of minis in both normal physiology and disease, as it can circumvent potential confounds caused by postsynaptic changes.


Time course analysis of sensory axon regeneration in vivo by directly tracing regenerating axons.

  • Yan Gao‎ et al.
  • Neural regeneration research‎
  • 2020‎

Most current studies quantify axon regeneration by immunostaining regeneration-associated proteins, representing indirect measurement of axon lengths from both sensory neurons in the dorsal root ganglia and motor neurons in the spinal cord. Our recently developed method of in vivo electroporation of plasmid DNA encoding for enhanced green fluorescent protein into adult sensory neurons in the dorsal root ganglia provides a way to directly and specifically measure regenerating sensory axon lengths in whole-mount nerves. A mouse model of sciatic nerve compression was established by squeezing the sciatic nerve with tweezers. Plasmid DNA carrying enhanced green fluorescent protein was transfected by ipsilateral dorsal root ganglion electroporation 2 or 3 days before injury. Fluorescence distribution of dorsal root or sciatic nerve was observed by confocal microscopy. At 12 and 18 hours, and 1, 2, 3, 4, 5, and 6 days of injury, lengths of regenerated axons after sciatic nerve compression were measured using green fluorescence images. Apoptosis-related protein caspase-3 expression in dorsal root ganglia was determined by western blot assay. We found that in vivo electroporation did not affect caspase-3 expression in dorsal root ganglia. Dorsal root ganglia and sciatic nerves were successfully removed and subjected to a rapid tissue clearing technique. Neuronal soma in dorsal root ganglia expressing enhanced green fluorescent protein or fluorescent dye-labeled microRNAs were imaged after tissue clearing. The results facilitate direct time course analysis of peripheral nerve axon regeneration. This study was approved by the Institutional Animal Care and Use Committee of Guilin Medical University, China (approval No. GLMC201503010) on March 7, 2014.


In vitro inhibitory effects of plant-derived by-products against Cryptosporidium parvum.

  • Klaus Teichmann‎ et al.
  • Parasite (Paris, France)‎
  • 2016‎

Disposal of organic plant wastes and by-products from the food or pharmaceutical industries usually involves high costs. In the present study, 42 samples derived from such by-products were screened in vitro against Cryptosporidium parvum, a protozoan parasite that may contaminate drinking water and cause diarrhoea. The novel bioassay was previously established in the microtitre plate format. Human ileocaecal adenocarcinoma (HCT-8) cell cultures were seeded with C. parvum oocysts and parasite development was monitored by an indirect fluorescent antibody technique (IFAT) and microscopic assessment for clusters of secondary infection (CSI). Minimum inhibitory concentrations (MICs) and potential detrimental effects on the host cells were determined. An ethanolic extract from olive (Olea europaea) pomace, after oil pressing and phenol recovery, reproducibly inhibited C. parvum development (MIC = 250-500 μg mL(-1), IC50 = 361 (279-438) μg mL(-1), IC90 = 467 (398-615) μg mL(-1)). Accordingly, tyrosol, hydroxytyrosol, trans-coniferyl alcohol and oleuropein were selected as reference test compounds, but their contributions to the observed activity of the olive pomace extract were insignificant. The established test system proved to be a fast and efficient assay for identifying anti-cryptosporidial activities in biological waste material and comparison with selected reference compounds.


Quantification of circulating cell-free DNA (cfDNA) in urine using a newborn piglet model of asphyxia.

  • Polona Rajar‎ et al.
  • PloS one‎
  • 2019‎

Cell free DNA (cfDNA) in plasma has been described as a potential diagnostic indicator for a variety of clinical conditions, including neonatal hypoxia. Neonatal hypoxia or perinatal asphyxia is a severe medical condition caused by a temporary interruption in oxygen availability during birth. Previously, we have reported temporal changes of cfDNA detected in blood in a newborn piglet model of perinatal asphyxia. However, cfDNA can also be found in other body liquids, opening for a less invasive diagnostic prospective. The objective of this study was to test and establish a reliable method for the isolation and quantification of cfDNA from urine and to explore changes in the quantities of cfDNA using a newborn piglet model of asphyxia. Animals were exposed to hypoxia-reoxygenation (n = 6), hypoxia-reoxygenation + hypothermia (n = 6) or were part of the sham-operated control group (n = 6) and urine samples (n = 18) were collected at 570 minutes post-intervention. Two alternative applications of cfDNA measurement were tested, an indirect method comprising a centrifugation step together with DNA extraction with magnetic beads versus a direct assessment based on two centrifugation steps. CfDNA concentrations were determined by a fluorescent assay using PicoGreen and by qRT-PCR. Genomic (gDNA) and mitochondrial DNA (mtDNA) cfDNA were determined in parallel, taking into account potential differences in the rates of damages caused by oxidative stress. In contrast to previous publications, our results indicate that the direct method is insufficient. Application of the indirect method obtained with the fluorescence assay revealed mean cfDNA levels (SD) of 1.23 (1.76) ng/ml for the hypoxia samples, 4.47 (6.15) ng/ml for the samples exposed to hypoxia + hypothermia and 2.75 (3.62) ng/ml for the control animals. The mean cfDNA levels in piglets exposed to hypoxia + hypothermia revealed significantly higher cfDNA amounts compared to mean cfDNA levels in the samples purely exposed to hypoxia (p < 0.05); however, no significant difference could be determined when compared to the control group (p = 0.09). Application of the indirect method by qRT-PCR revealed mean cfDNA levels of mtDNA and gDNA at the detection limit of the technique and thus no reliable statistics could be performed between the observed cfDNA levels in the investigated groups. The methodology for detection and monitoring of cfDNA in urine has to be further optimized before it can be applied in a clinical setting in the future.


Immunohistochemical Characterization of Procaspase-3 Overexpression as a Druggable Target With PAC-1, a Procaspase-3 Activator, in Canine and Human Brain Cancers.

  • Lisa J Schlein‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Gliomas and meningiomas are the most common brain neoplasms affecting both humans and canines, and identifying druggable targets conserved across multiple brain cancer histologies and comparative species could broadly improve treatment outcomes. While satisfactory cure rates for low grade, non-invasive brain cancers are achievable with conventional therapies including surgery and radiation, the management of non-resectable or recurrent brain tumors remains problematic and necessitates the discovery of novel therapies that could be accelerated through a comparative approach, such as the inclusion of pet dogs with naturally-occurring brain cancers. Evidence supports procaspase-3 as a druggable brain cancer target with PAC-1, a pro-apoptotic, small molecule activator of procaspase-3 that crosses the blood-brain barrier. Procaspase-3 is frequently overexpressed in malignantly transformed tissues and provides a preferential target for inducing cancer cell apoptosis. While preliminary evidence supports procaspase-3 as a viable target in preclinical models, with PAC-1 demonstrating activity in rodent models and dogs with spontaneous brain tumors, the broader applicability of procaspase-3 as a target in human brain cancers, as well as the comparability of procaspase-3 expressions between differing species, requires further investigation. As such, a large-scale validation of procaspase-3 as a druggable target was undertaken across 651 human and canine brain tumors. Relative to normal brain tissues, procaspase-3 was overexpressed in histologically diverse cancerous brain tissues, supporting procaspase-3 as a broad and conserved therapeutic target. Additionally, procaspase-3 expressing glioma and meningioma cell lines were sensitive to the apoptotic effects of PAC-1 at biologically relevant exposures achievable in cancer patients. Importantly, the clinical relevance of procaspase-3 as a potential prognostic variable was demonstrated in human astrocytomas of variable histologic grades and associated clinical outcomes, whereby tumoral procaspase-3 expression was negatively correlated with survival; findings which suggest that PAC-1 might provide the greatest benefit for patients with the most guarded prognoses.


Evidence for 5-hydroxytryptamine, substance P, and thyrotropin-releasing hormone in neurons innervating the phrenic motor nucleus.

  • J R Holtman‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 1984‎

Retrograde tracing with a fluorescent dye (Fast Blue) combined with immunohistochemistry was used to identify putative neurotransmitter(s) at the phrenic motor nucleus in the cat. Fast Blue was injected bilaterally into the diaphragm of five cats, where each phrenic nerve enters the muscle. Seven days later the animals were perfusion fixed and tissue sections from the fourth, fifth, and sixth cervical spinal cord segments were analyzed using a fluorescence microscope. Retrogradely labeled fluorescent phrenic motor neuron cell bodies appeared in all of the segments but primarily in sections from the fifth segment. The same or adjacent transverse sections were then used for the demonstration of the distribution of the neurotransmitters 5-hydroxytryptamine (5-HT), substance P, and thyrotropin-releasing hormone (TRH) in the area of the phrenic motor nucleus using the indirect immunofluorescence technique. The most conspicuous neurotransmitters found at the phrenic motor nucleus were 5-HT and substance P. We observed dense and diffuse fiber networks throughout the ventral horn which contains the phrenic motor nucleus. These fibers contained varicosities in close proximity to phrenic motor neurons. In addition to 5-HT- and substance P-containing nerve endings, some fibers containing TRH were also found in the area of the phrenic motor nucleus. These results are consistent with earlier physiological data suggesting that 5-HT, substance P, and TRH are important neurotransmitters and/or neuromodulators involved in central control of respiration.


Development, Characterisation and Application of Monoclonal Antibodies for the Detection and Quantification of Infectious Salmon Anaemia Virus in Plasma Samples Using Luminex Bead Array Technology.

  • R Hoare‎ et al.
  • PloS one‎
  • 2016‎

Infectious salmon anaemia virus (ISAV) is an orthomyxovirus that has had a significant economic impact on Atlantic salmon farming in Europe, North America and Chile. Monoclonal antibodies (mAbs) were developed against Segment 3 (encoding the viral nucleoprotein, NP) of the virus. Six of the mAbs were shown to be specific to ISAV and recognised all isolates from Scotland, Norway and Canada. They reacted with ISAV in enzyme-linked immunosorbent assay (ELISA), indirect fluorescent antibody technique (IFAT) and western blotting. They were also used to develop a novel detection method based on Luminex (Bio-Plex) bead-based flow cytometric technology for the detection of ISAV in the plasma of Atlantic salmon (Salmo salar L.) smolts experimentally infected with ISAV. Fish were challenged by intraperitoneal (i.p.) injection of virus at 50% Tissue Culture Infective Dose (TCID50) = 2.8 x106 per animal. Virus present in plasma of infected fish, collected at 0, 4, 8, 12, 16, 21 and 28 days post infection using a non-lethal sampling method (n = 12 at each time point), was quantified using the optimised Bio-Plex assay. The results obtained with this assay were compared with absolute quantification of the virus by RT-qPCR using SYBR Green I and TaqMan chemistries. The Bio-Plex assay developed using the NP mAbs appears to be a rapid, sensitive method for detecting and quantifying ISAV in small volumes of fish plasma and has the potential to be multiplexed for the detection of other fish pathogens (e.g. during co-infections). To our knowledge this is the first report of the use of Luminex (Bio-Plex) technology for the detection of a fish pathogen.


Mps1 Regulates Kinetochore-Microtubule Attachment Stability via the Ska Complex to Ensure Error-Free Chromosome Segregation.

  • John Maciejowski‎ et al.
  • Developmental cell‎
  • 2017‎

The spindle assembly checkpoint kinase Mps1 not only inhibits anaphase but also corrects erroneous attachments that could lead to missegregation and aneuploidy. However, Mps1's error correction-relevant substrates are unknown. Using a chemically tuned kinetochore-targeting assay, we show that Mps1 destabilizes microtubule attachments (K fibers) epistatically to Aurora B, the other major error-correcting kinase. Through quantitative proteomics, we identify multiple sites of Mps1-regulated phosphorylation at the outer kinetochore. Substrate modification was microtubule sensitive and opposed by PP2A-B56 phosphatases that stabilize chromosome-spindle attachment. Consistently, Mps1 inhibition rescued K-fiber stability after depleting PP2A-B56. We also identify the Ska complex as a key effector of Mps1 at the kinetochore-microtubule interface, as mutations that mimic constitutive phosphorylation destabilized K fibers in vivo and reduced the efficiency of the Ska complex's conversion from lattice diffusion to end-coupled microtubule binding in vitro. Our results reveal how Mps1 dynamically modifies kinetochores to correct improper attachments and ensure faithful chromosome segregation.


Distribution of phosphorylated alpha-synuclein in non-diseased brain implicates olfactory bulb mitral cells in synucleinopathy pathogenesis.

  • Bryan A Killinger‎ et al.
  • NPJ Parkinson's disease‎
  • 2023‎

Synucleinopathies are neurodegenerative diseases characterized by pathological inclusions called "Lewy pathology" (LP) that consist of aggregated alpha-synuclein predominantly phosphorylated at serine 129 (PSER129). Despite the importance for understanding disease, little is known about the endogenous function of PSER129 or why it accumulates in the diseased brain. Here we conducted several observational studies using a sensitive tyramide signal amplification (TSA) technique to determine PSER129 distribution and function in the non-diseased mammalian brain. In wild-type non-diseased mice, PSER129 was detected in the olfactory bulb (OB) and several brain regions across the neuroaxis (i.e., OB to brainstem). In contrast, PSER129 immunoreactivity was not observed in any brain region of alpha-synuclein knockout mice. We found evidence of PSER129 positive structures in OB mitral cells of non-diseased mice, rats, non-human primates, and healthy humans. Using TSA multiplex fluorescent labeling, we showed that PSER129 positive punctate structures occur within inactive (i.e., c-fos negative) T-box transcription factor 21 (TBX21) positive mitral cells and PSER129 within these cells was spatially associated with PK-resistant alpha-synuclein. Ubiquitin was found in PSER129 mitral cells but was not closely associated with PSER129. Biotinylation by antibody recognition (BAR) identified 125 PSER129-interacting proteins in the OB of healthy mice, which were significantly enriched for presynaptic vesicle trafficking/recycling, SNARE, fatty acid oxidation, oxidative phosphorylation, and RNA binding. TSA multiplex labeling confirmed the physical association of BAR-identified protein Ywhag with PSER129 in the OB and in other regions across the neuroaxis. We conclude that PSER129 accumulates in the mitral cells of the healthy OB as part of alpha-synuclein normal cellular functions. Incidental LP has been reported in the OB, and therefore we speculate that for synucleinopathies, either the disease processes begin locally in OB mitral cells or a systemic disease process is most apparent in the OB because of the natural tendency to accumulate PSER129.


Evidence for uptake and synthesis of 5-hydroxytryptamine by a subpopulation of intrinsic neurons in the guinea-pig heart.

  • C J Hassall‎ et al.
  • Neuroscience‎
  • 1987‎

Using an indirect immunofluorescence technique, a subpopulation of 5-hydroxytryptamine-like immunoreactive neurons was observed in cell cultures dissociated from the atria and interatrial septum of newborn guinea-pig heart maintained in fetal calf serum-supplemented medium. 5-Hydroxytryptamine has not been demonstrated in intracardiac neurons in situ, and since 5-hydroxytryptamine has been previously shown to be a constituent of fetal calf serum, the 5-hydroxytryptamine-like immunoreactivity seen in culture may have been the result of neuronal uptake of 5-hydroxytryptamine from the growth medium. This was examined by growing the cultures in a serum-free, hormone-supplemented, defined medium. Under these conditions, 5-hydroxytryptamine-like immunoreactive neurons were not present. When cultures were grown in hormone-supplemented, defined medium containing 10(-4) to 10(-6) M 5-hydroxytryptamine, some intracardiac neurons accumulated 5-hydroxytryptamine. This type of neuron also developed 5-hydroxytryptamine-like immunoreactivity after incubation with 5 X 10(-5) M 5-hydroxytryptophan, indicating that the subpopulation of intracardiac neurons which can take up exogenous 5-hydroxytryptamine can also synthesize it from 5-hydroxytryptophan. However, no 5-hydroxytryptamine-like immunoreactive neurons were observed after incubation with L-tryptophan, the other 5-hydroxytryptamine precursor molecule. Under all of the conditions described, some small, 5-hydroxytryptamine-like immunofluorescent cells, very similar to the catecholamine-containing, small intensely fluorescent cells of the heart, were observed in culture. Bright, 5-hydroxytryptamine-like immunoreactive endothelial cells were seen only in cultures maintained in defined medium and loaded with 5-hydroxytryptamine. The present study shows that some intracardiac neurons are amine-handling, and also raises the possibility that 5-hydroxytryptamine is utilized as a neurotransmitter or neuromodulator by these neurons in the mammalian heart. Further, there is evidence to suggest that two populations of small intensely fluorescent cells, one containing 5-hydroxytryptamine, the other a catecholamine, are present in the heart; and to indicate that atrial endothelial cells can take up 5-hydroxytryptamine.


Cell-specific non-canonical amino acid labelling identifies changes in the de novo proteome during memory formation.

  • Harrison Tudor Evans‎ et al.
  • eLife‎
  • 2020‎

The formation of spatial long-term memory (LTM) requires the de novo synthesis of distinct sets of proteins; however, a non-biased examination of the de novo proteome in this process is lacking. Here, we generated a novel mouse strain, which enables cell-type-specific labelling of newly synthesised proteins with non-canonical amino acids (NCAAs) by genetically restricting the expression of the mutant tRNA synthetase, NLL-MetRS, to hippocampal neurons. By combining this labelling technique with an accelerated version of the active place avoidance task and bio-orthogonal non-canonical amino acid tagging (BONCAT) followed by SWATH quantitative mass spectrometry, we identified 156 proteins that were altered in synthesis in hippocampal neurons during spatial memory formation. In addition to observing increased synthesis of known proteins important in memory-related processes, such as glutamate receptor recycling, we also identified altered synthesis of proteins associated with mRNA splicing as a potential mechanism involved in spatial LTM formation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: