Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 397 papers

Vocal tract articulation in zebra finches.

  • Verena R Ohms‎ et al.
  • PloS one‎
  • 2010‎

Birdsong and human vocal communication are both complex behaviours which show striking similarities mainly thought to be present in the area of development and learning. Recent studies, however, suggest that there are also parallels in vocal production mechanisms. While it has been long thought that vocal tract filtering, as it occurs in human speech, only plays a minor role in birdsong there is an increasing number of studies indicating the presence of sound filtering mechanisms in bird vocalizations as well.


Adaptive radiations: there's something about finches.

  • Trevor D Price‎
  • Current biology : CB‎
  • 2011‎

A phylogenetic tree for the extant Hawaiian honeycreepers charts their diversification over the past 6 million years.


Balanced imitation sustains song culture in zebra finches.

  • Ofer Tchernichovski‎ et al.
  • Nature communications‎
  • 2021‎

Songbirds acquire songs by imitation, as humans do speech. Although imitation should drive convergence within a group and divergence through drift between groups, zebra finch songs sustain high diversity within a colony, but mild variation across colonies. We investigated this phenomenon by analyzing vocal learning statistics in 160 tutor-pupil pairs from a large breeding colony. Song imitation is persistently accurate in some families, but poor in others. This is not attributed to genetic differences, as fostered pupils copied their tutors' songs as accurately or poorly as biological pupils. Rather, pupils of tutors with low song diversity make more improvisations compared to pupils of tutors with high song diversity. We suggest that a frequency dependent balanced imitation prevents extinction of rare song elements and overabundance of common ones, promoting repertoire diversity within groups, while constraining drift across groups, which together prevents the collapse of vocal culture into either complete uniformity or chaos.


Behavioral relevance of species-specific vasotocin anatomy in gregarious finches.

  • Aubrey M Kelly‎ et al.
  • Frontiers in neuroscience‎
  • 2013‎

Despite substantial species differences in the vasotocin/vasopressin (VT/VP) circuitry of the medial bed nucleus of the stria terminalis (BSTm) and lateral septum (LS; a primary projection target of BSTm VT/VP cells), functional consequences of this variation are poorly known. Previous experiments in the highly gregarious zebra finch (Estrildidae: Taeniopygia guttata) demonstrate that BSTm VT neurons promote gregariousness in a male-specific manner and reduce anxiety in both sexes. However, in contrast to the zebra finch, the less gregarious Angolan blue waxbill (Estrildidae: Uraeginthus angolensis) exhibits fewer VT-immunoreactive cells in the BSTm as well as differences in receptor distribution across the LS subnuclei, suggesting that knockdown of VT production in the BSTm would produce behavioral effects in Angolan blue waxbills that are distinct from zebra finches. Thus, we here quantified social contact, gregariousness (i.e., preference for the larger of two groups), and anxiety-like behavior following bilateral antisense knockdown of VT production in the BSTm of male and female Angolan blue waxbills. We find that BSTm VT neurons promote social contact, but not gregariousness (as in male zebra finches), and that antisense effects on social contact are significantly stronger in male waxbills than in females. Knockdown of BSTm VT production has no effect on anxiety-like behavior. These data provide novel evidence that species differences in the VT/VP circuitry arising in the BSTm are accompanied by species-specific effects on affiliation behaviors.


Ancestrality and evolution of trait syndromes in finches (Fringillidae).

  • Jean-François Ponge‎ et al.
  • Ecology and evolution‎
  • 2017‎

Species traits have been hypothesized by one of us (Ponge, 2013) to evolve in a correlated manner as species colonize stable, undisturbed habitats, shifting from "ancestral" to "derived" strategies. We predicted that generalism, r-selection, sexual monomorphism, and migration/gregariousness are the ancestral states (collectively called strategy A) and evolved correlatively toward specialism, K-selection, sexual dimorphism, and residence/territoriality as habitat stabilized (collectively called B strategy). We analyzed the correlated evolution of four syndromes, summarizing the covariation between 53 traits, respectively, involved in ecological specialization, r-K gradient, sexual selection, and dispersal/social behaviors in 81 species representative of Fringillidae, a bird family with available natural history information and that shows variability for all these traits. The ancestrality of strategy A was supported for three of the four syndromes, the ancestrality of generalism having a weaker support, except for the core group Carduelinae (69 species). It appeared that two different B-strategies evolved from the ancestral state A, both associated with highly predictable environments: one in poorly seasonal environments, called B1, with species living permanently in lowland tropics, with "slow pace of life" and weak sexual dimorphism, and one in highly seasonal environments, called B2, with species breeding out-of-the-tropics, migratory, with a "fast pace of life" and high sexual dimorphism.


Sex identification in embryos and adults of Darwin's finches.

  • Mariya P Dobreva‎ et al.
  • PloS one‎
  • 2021‎

Darwin's finches are an iconic example of adaptive radiation and evolution under natural selection. Comparative genetic studies using embryos of Darwin's finches have shed light on the possible evolutionary processes underlying the speciation of this clade. Molecular identification of the sex of embryonic samples is important for such studies, where this information often cannot be inferred otherwise. We tested a fast and simple chicken embryo protocol to extract DNA from Darwin's finch embryos. In addition, we applied minor modifications to two of the previously reported PCR primer sets for CHD1, a gene used for sexing adult passerine birds. The sex of all 29 tested embryos of six species of Darwin's finches was determined successfully by PCR, using both primer sets. Next to embryos, hatchlings and fledglings are also impossible to distinguish visually. This extends to juveniles of sexually dimorphic species which are yet to moult in adult-like plumage and beak colouration. Furthermore, four species of Darwin's finches are monomorphic, males and females looking alike. Therefore, sex assessment in the field can be a source of error, especially with respect to juveniles and mature monomorphic birds outside of the mating season. We caught 567 juveniles and adults belonging to six species of Darwin's finches and only 44% had unambiguous sex-specific morphology. We sexed 363 birds by PCR: individuals sexed based on marginal sex specific morphological traits; and birds which were impossible to classify in the field. PCR revealed that for birds with marginal sex specific traits, sexing in the field produced a 13% error rate. This demonstrates that PCR based sexing can improve field studies on Darwin's finches, especially when individuals with unclear sex-related morphology are involved. The protocols used here provide an easy and reliable way to sex Darwin's finches throughout ontogeny, from embryos to adults.


Female finches prefer courtship signals indicating male vigor and neuromuscular ability.

  • Jeffery L Dunning‎ et al.
  • PloS one‎
  • 2020‎

Female songbirds use male song to discriminate among individuals and evaluate their quality as potential mates. Previous behavioral experiments in many species, including the species studied here, have shown that females will solicit copulation in response to song even if no male is present. Those data demonstrate that female mate choice is closely tied to song features, but they leave open the question of which song parameters are most influential in female mate selection. We sought to identify features of male song that are salient for mate choice in female Bengalese finches. Using a novel experimental approach, we simultaneously tested the possible influence of specific notes or note transitions, the number of different note types in the male's repertoire, the complexity of note content and note sequence, and the stereotypy of note content and note sequence. In additional experiments, we also tested the influence of the pitch and tempo of note production. Our results demonstrate that females generally preferred songs containing increased tempo in the context of species-typical frequency bandwidth, consistent with the idea that females prefer songs that are especially challenging to produce. Female preference for song features that pose a neuromuscular challenge has also been reported in other species. Our data extend those observations into a species that thrives in a laboratory setting and is commonly used in studies of the neural basis of behavior. These results provide an excellent new model system in which to study female preference and the neural mechanisms that underlie signal evaluation and mate choice.


Adult zebra finches rehearse highly variable song patterns during sleep.

  • Brent K Young‎ et al.
  • PeerJ‎
  • 2017‎

Brain activity during sleep is fairly ubiquitous and the best studied possible function is a role in memory consolidation, including motor memory. One suggested mechanism of how neural activity effects these benefits is through reactivation of neurons in patterns resembling those of the preceding experience. The specific patterns of motor activation replayed during sleep are largely unknown for any system. Brain areas devoted to song production in the songbird brain exhibit spontaneous song-like activity during sleep, but single cell neural recordings did not permit detection of the specific song patterns. We have now discovered that this sleep activation can be detected in the muscles of the vocal organ, thus providing a unique window into song-related brain activity at night. We show that male zebra finches (Taeniopygia guttata) frequently exhibit spontaneous song-like activity during the night, but that the fictive song patterns are highly variable and uncoordinated compared to the highly stereotyped day-time song production. This substantial variability is not consistent with the idea that night-time activity replays day-time experiences for consolidation. Although the function of this frequent activation is unknown, it may represent a mechanism for exploring motor space or serve to generate internal error signals that help maintain the high stereotypy of day-time song. In any case, the described activity supports the emerging insight that brain activity during sleep may serve a variety of functions.


Is Beak Morphology in Darwin's Finches Tuned to Loading Demands?

  • Joris Soons‎ et al.
  • PloS one‎
  • 2015‎

One of nature's premier illustrations of adaptive evolution concerns the tight correspondence in birds between beak morphology and feeding behavior. In seed-crushing birds, beaks have been suggested to evolve at least in part to avoid fracture. Yet, we know little about mechanical relationships between beak shape, stress dissipation, and fracture avoidance. This study tests these relationships for Darwin's finches, a clade of birds renowned for their diversity in beak form and function. We obtained anatomical data from micro-CT scans and dissections, which in turn informed the construction of finite element models of the bony beak and rhamphotheca. Our models offer two new insights. First, engineering safety factors are found to range between 1 and 2.5 under natural loading conditions, with the lowest safety factors being observed in species with the highest bite forces. Second, size-scaled finite element (FE) models reveal a correspondence between inferred beak loading profiles and observed feeding strategies (e.g. edge-crushing versus tip-biting), with safety factors decreasing for base-crushers biting at the beak tip. Additionally, we identify significant correlations between safety factors, keratin thickness at bite locations, and beak aspect ratio (depth versus length). These lines of evidence together suggest that beak shape indeed evolves to resist feeding forces.


Epigenetic variation between urban and rural populations of Darwin's finches.

  • Sabrina M McNew‎ et al.
  • BMC evolutionary biology‎
  • 2017‎

The molecular basis of evolutionary change is assumed to be genetic variation. However, growing evidence suggests that epigenetic mechanisms, such as DNA methylation, may also be involved in rapid adaptation to new environments. An important first step in evaluating this hypothesis is to test for the presence of epigenetic variation between natural populations living under different environmental conditions.


Sex steroid profiles in zebra finches: Effects of reproductive state and domestication.

  • Nora H Prior‎ et al.
  • General and comparative endocrinology‎
  • 2017‎

The zebra finch is a common model organism in neuroscience, endocrinology, and ethology. Zebra finches are generally considered opportunistic breeders, but the extent of their opportunism depends on the predictability of their habitat. This plasticity in the timing of breeding raises the question of how domestication, a process that increases environmental predictability, has affected their reproductive physiology. Here, we compared circulating steroid levels in various "strains" of zebra finches. In Study 1, using radioimmunoassay, we examined circulating testosterone levels in several strains of zebra finches (males and females). Subjects were wild or captive (Captive Wild-Caught, Wild-Derived, or Domesticated). In Study 2, using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined circulating sex steroid profiles in wild and domesticated zebra finches (males and females). In Study 1, circulating testosterone levels in males differed across strains. In Study 2, six steroids were detectable in plasma from wild zebra finches (pregnenolone, progesterone, dehydroepiandrosterone (DHEA), testosterone, androsterone, and 5α-dihydrotestosterone (5α-DHT)). Only pregnenolone and progesterone levels changed across reproductive states in wild finches. Compared to wild zebra finches, domesticated zebra finches had elevated levels of circulating pregnenolone, progesterone, DHEA, testosterone, androstenedione, and androsterone. These data suggest that domestication has profoundly altered the endocrinology of this common model organism. These results have implications for interpreting studies of domesticated zebra finches, as well as studies of other domesticated species.


Evolution of Darwin's finches and their beaks revealed by genome sequencing.

  • Sangeet Lamichhaney‎ et al.
  • Nature‎
  • 2015‎

Darwin's finches, inhabiting the Galápagos archipelago and Cocos Island, constitute an iconic model for studies of speciation and adaptive evolution. Here we report the results of whole-genome re-sequencing of 120 individuals representing all of the Darwin's finch species and two close relatives. Phylogenetic analysis reveals important discrepancies with the phenotype-based taxonomy. We find extensive evidence for interspecific gene flow throughout the radiation. Hybridization has given rise to species of mixed ancestry. A 240 kilobase haplotype encompassing the ALX1 gene that encodes a transcription factor affecting craniofacial development is strongly associated with beak shape diversity across Darwin's finch species as well as within the medium ground finch (Geospiza fortis), a species that has undergone rapid evolution of beak shape in response to environmental changes. The ALX1 haplotype has contributed to diversification of beak shapes among the Darwin's finches and, thereby, to an expanded utilization of food resources.


A conserved molecular template underlies color pattern diversity in estrildid finches.

  • Magdalena Hidalgo‎ et al.
  • Science advances‎
  • 2022‎

The color patterns that adorn animals' coats not only exhibit extensive diversity linked to various ecological functions but also display recurrences in geometry, orientation, or body location. How processes of pattern formation shape such phenotypic trends remains a mystery. Here, we surveyed plumage color patterns in passerine finches displaying extreme apparent variation and identified a conserved set of color domains. We linked these domains to putative embryonic skin regions instructed by early developmental tissues and outlined by the combinatory expression of few genetic markers. We found that this embryonic prepattern is largely conserved in birds displaying drastic color differences in the adult, interspecies variation resulting from the masking or display of each domain depending on their coloration. This work showed that a simple molecular landscape serves as common spatial template to extensive color pattern variation in finches, revealing that early conserved landmarks and molecular pathways are a major cause of phenotypic trends.


Flavoprotein autofluorescence imaging of visual system activity in zebra finches and mice.

  • Neethu Michael‎ et al.
  • PloS one‎
  • 2014‎

Large-scale brain activity patterns can be visualized by optical imaging of intrinsic signals (OIS) based on activity-dependent changes in the blood oxygenation level. Another method, flavoprotein autofluorescence imaging (AFI), exploits the mitochondrial flavoprotein autofluorescence, which is enhanced during neuronal activity. In birds, topographic mapping of visual space has been shown in the visual wulst, the avian homologue of the mammalian visual cortex by using OIS. We here applied the AFI method to visualize topographic maps in the visual wulst because with OIS, which depends on blood flow changes, blood vessel artifacts often obscure brain activity maps. We then compared both techniques quantitatively in zebra finches and in C57Bl/6J mice using the same setup and stimulation conditions. In addition to experiments with craniotomized animals, we also examined mice with intact skull (in zebra finches, intact skull imaging is not feasible probably due to the skull construction). In craniotomized animals, retinotopic maps were obtained by both methods in both species. Using AFI, artifacts caused by blood vessels were generally reduced, the magnitude of neuronal activity significantly higher and the retinotopic map quality better than that obtained by OIS in both zebra finches and mice. In contrast, our measurements in non-craniotomized mice did not reveal any quantitative differences between the two methods. Our results thus suggest that AFI is the method of choice for investigations of visual processing in zebra finches. In mice, however, if researchers decide to use the advantages of imaging through the intact skull, they will not be able to exploit the higher signals obtainable by the AFI-method.


Song preferences predict the quality of vocal learning in zebra finches.

  • Carlos Antonio Rodríguez-Saltos‎ et al.
  • Scientific reports‎
  • 2023‎

In songbirds, learning to sing is a highly social process that likely involves social reward. Here, we tested the hypothesis that during song learning, the reward value of hearing a particular song predicts the degree to which that song will ultimately be learned. We measured the early song preferences of young male zebra finches (Taeniopygia guttata) in an operant key-pressing assay; each of two keys was associated with a higher likelihood of playing the song of the father or that of another familiar adult ("neighbor"). To minimize the effects of exposure on learning, we implemented a novel reinforcement schedule that allowed us to detect preferences while balancing exposure to each song. On average, the juveniles significantly preferred the father's song early during song learning, before actual singing occurs in this species. When they reached adulthood, all the birds copied the father's song. The accuracy with which the father's song was imitated was positively correlated with the peak strength of the preference for the father's song during the sensitive period of song learning. Our results show that preference for the song of a chosen tutor, in this case the father, predicted vocal learning during development.


TrkB-like immunoreactivity in the song system of developing zebra finches.

  • J Wade‎
  • Journal of chemical neuroanatomy‎
  • 2000‎

The neural song system in zebra finches develops for approximately the first 2 months after hatching. During that time, male-biased sexual dimorphisms emerge in the volume of song control nuclei as well as in the number and size of neurons within them. Brain derived neurotrophic factor (BDNF) has been documented in song control nuclei at various stages of development. Its high affinity receptor (tyrosine kinase B; trkB) is also in the song system, at least at around I month of age. The present study was designed to more completely describe the timing and potential location of BDNF action by investigating trkB expression during sexual differentiation of the song control nuclei. The pattern of immunoreactivity to a trkB antibody was examined in male and female zebra finches at post-hatching days 3-60. Labeling in somata and neuropil appeared to define the telencephalic components of the motor pathway (high vocal center and robust nucleus of the archistriatum) for song production in males from days 30 to 60, and in females on days 45 and 60 (high vocal center). These results are consistent with the hypothesis that the receptor, and its ligand BDNF, play a role in processes related to song learning in both sexes, including perhaps the motor component exhibited by developing males.


A feedforward inhibitory premotor circuit for auditory-vocal interactions in zebra finches.

  • Philipp Norton‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

During vocal exchanges, hearing specific auditory signals can provoke vocal responses or suppress vocalizations to avoid interference. These abilities result in the widespread phenomenon of vocal turn taking, yet little is known about the neural circuitry that regulates the input-dependent timing of vocal replies. Previous work in vocally interacting zebra finches has highlighted the importance of premotor inhibition for precisely timed vocal output. By developing physiologically constrained mathematical models, we derived circuit mechanisms based on feedforward inhibition that enable both the temporal modulation of vocal premotor drive as well as auditory suppression of vocalization during listening. Extracellular recordings in HVC during the listening phase confirmed the presence of auditory-evoked response patterns in putative inhibitory interneurons, along with corresponding signatures of auditory-evoked activity suppression. Further, intracellular recordings of identified neurons projecting to HVC from the upstream sensorimotor nucleus, nucleus interfacialis (NIf), shed light on the timing of auditory inputs to this network. The analysis of incrementally time-lagged interactions between auditory and premotor activity in the model resulted in the prediction of a window of auditory suppression, which could be, in turn, verified in behavioral data. A phasic feedforward inhibition model consistently explained the experimental results. This mechanism highlights a parsimonious and generalizable principle for how different driving inputs (vocal and auditory related) can be integrated in a single sensorimotor circuit to regulate two opposing vocal behavioral outcomes: the controlled timing of vocal output or the suppression of overlapping vocalizations.


Exposure to dietary mercury alters cognition and behavior of zebra finches.

  • John P Swaddle‎ et al.
  • Current zoology‎
  • 2017‎

Environmental stressors can negatively affect avian cognitive abilities, potentially reducing fitness, for example by altering response to predators, display to mates, or memory of locations of food. We expand on current knowledge by investigating the effects of dietary mercury, a ubiquitous environmental pollutant and known neurotoxin, on avian cognition. Zebra finches Taeniopygia guttata were dosed for their entire lives with sub-lethal levels of mercury, at the environmentally relevant dose of 1.2 parts per million. In our first study, we compared the dosed birds with controls of the same age using tests of three cognitive abilities: spatial memory, inhibitory control, and color association. In the spatial memory assay, birds were tested on their ability to learn and remember the location of hidden food in their cage. The inhibitory control assay measured their ability to ignore visible but inaccessible food in favor of a learned behavior that provided the same reward. Finally, the color association task tested each bird's ability to associate a specific color with the presence of hidden food. Dietary mercury negatively affected spatial memory ability but not inhibitory control or color association. Our second study focused on three behavioral assays not tied to a specific skill or problem-solving: activity level, neophobia, and social dominance. Zebra finches exposed to dietary mercury throughout their lives were subordinate to, and more active than, control birds. We found no evidence that mercury exposure influenced our metric of neophobia. Together, these results suggest that sub-lethal exposure to environmental mercury selectively harms neurological pathways that control different cognitive abilities, with complex effects on behavior and fitness.


Norepinephrine inhibition in juvenile male zebra finches modulates adult song quality.

  • Juli Wade‎ et al.
  • Brain research bulletin‎
  • 2013‎

During development, male zebra finches learn a song that they eventually use in courtship and defense of nest sites. Norepinephrine (NE) is important for learning and memory in vertebrates, and this neuromodulator and its receptors are present throughout the brain regions that control song learning and production. The present study used the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4) to reduce brain levels of NE in juvenile males. This manipulation inhibited the development of quality songs, with some birds producing syllables that were unusually long and/or contained frequencies that were predominantly higher than normal. These results suggest that NE is important for the acquisition of typical song.


Zebra finches identify individuals using vocal signatures unique to each call type.

  • Julie E Elie‎ et al.
  • Nature communications‎
  • 2018‎

Individual recognition is critical in social animal communication, but it has not been demonstrated for a complete vocal repertoire. Deciphering the nature of individual signatures across call types is necessary to understand how animals solve the problem of combining, in the same signal, information about identity and behavioral state. We show that distinct signatures differentiate zebra finch individuals for each call type. The distinctiveness of these signatures varies: contact calls bear strong individual signatures while calls used during aggressive encounters are less individualized. We propose that the costly solution of using multiple signatures evolved because of the limitations of the passive filtering properties of the birds' vocal organ for generating sufficiently individualized features. Thus, individual recognition requires the memorization of multiple signatures for the entire repertoire of conspecifics of interests. We show that zebra finches excel at these tasks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: