Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Surgical treatment of femoral deformities in polyostotic fibrous dysplasia and McCune-Albright syndrome: A literature review.

  • Giulio Gorgolini‎ et al.
  • World journal of orthopedics‎
  • 2022‎

Surgical correction of femoral deformities in polyostotic fibrous dysplasia (PFD) or McCune-Albright syndrome (MAS), such as coxa vara or shepherd's crook deformity, is a challenge.


Frequency of GNAS R201H substitution mutation in polyostotic fibrous dysplasia: Pyrosequencing analysis in tissue samples with or without decalcification.

  • Su-Jin Shin‎ et al.
  • Scientific reports‎
  • 2017‎

Guanine nucleotide-binding protein/α-subunit (GNAS) mutations are involved in fibrous dysplasia (FD) pathogenesis. Here, we analyzed GNAS mutations in FD which were performed by pyrosequencing DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissue. The mutation detection rate was determined in FD specimens with and without decalcification. GNAS mutation was identified in 28 cases out of 87 FDs (32.18%) [p.R201C (N = 14) and p.R201H (N = 14)]. GNAS mutation was more likely to occur in polyostotic FD (7/28, 25.0%); FD without GNAS mutation was mostly monostotic form (56/59, 94.9%, P = 0.011). The G > A (R201H) mutation was more frequent in polyostotic FD (6/14 patients, 42.9%) than the C > T (R201C) mutation (1/14, 7.1%) (P = 0.077). We divided the FD cases into two subgroups: tissue specimens that were not decalcified (N = 35, 40.2%), and tissue specimens that were decalcified (N = 52, 59.8%). GNAS mutation was more frequently identified in FD specimens that were not subjected to decalcification (23/35, 65.7%) than in FD specimens that were decalcified (5/52, 9.6%) (P = 0.001). In conclusion, mutation analysis of GNAS by pyrosequencing has diagnostic value in FFPE tissue of patients with FD, especially in specimens that were not decalcified. The R201H substitution mutation of GNAS may be involved in the pathogenesis of polyostotic FD.


Serum periostin levels and severity of fibrous dysplasia of bone.

  • H Guerin Lemaire‎ et al.
  • Bone‎
  • 2019‎

Fibrous dysplasia of bone (FD) is a rare congenital bone disease, characterized by a fibrous component in the bone marrow. Periostin has been extensively researched because of its implication in various fibrotic or inflammatory diseases. Periostin may be associated with the burden or the severity of FD. The case control PERIOSDYS study aimed at assessing serum periostin levels in FD patients. Sixty four patients with monostotic or polyostotic disease were included, in order to evaluate whether the concentrations were greater in patients than in 128 healthy age, BMI and sex-matched controls and if they were more elevated in patients with the more severe phenotypes. We found that periostin levels were greater in patients with FD compared to controls (mean = 1085 vs 958 pmol/l, p = 0.026), especially in those with a history of fracture (mean = 1475 vs 966 pmol/l, p = 0.0005), polyostotic forms (mean = 1214 vs 955 pmol/l, p = 0.004) or McCune-Albright syndrome (mean = 1585 vs 1023 pmol/l, p = 0.0048). In contrast, high pain levels were not associated with periostin levels (mean = 1137 vs 1036 pmol/l, p = 0.445). Furthermore, patients undergoing bisphosphonate therapy had significantly lower levels than treatment naïve patients (mean = 953 vs 1370 pmol/l, p = 0.002). In conclusion, periostin may be a biochemical marker indicative of the most severe forms of FD and could be used to monitor patients treated with bisphosphonates.


Effects of zoledronic acid therapy in fibrous dysplasia of bone: a single-center experience.

  • Luciana Pinto Valadares‎ et al.
  • Archives of endocrinology and metabolism‎
  • 2022‎

Fibrous dysplasia (FD) is a rare bone disorder that can involve any part of the skeleton, leading to bone pain, deformities, and fractures. Treatment with intravenous bisphosphonates has been used with variable results. Therefore, we aimed to evaluate the effects of zoledronic acid (ZA) therapy in patients with monostotic or polyostotic FD.


Peculiarities of Precocious Puberty in Boys and Girls With McCune-Albright Syndrome.

  • Domenico Corica‎ et al.
  • Frontiers in endocrinology‎
  • 2018‎

McCune-Albright Syndrome (MAS; OMIM # 174800) is a rare, sporadic disease caused by a post-zygotic, activating mutation in the guanine-nucleotide binding protein α-subunit (GNAS1) gene. MAS is characterized by the clinical triad of polyostotic fibrous dysplasia of bone, café-au-lait skin pigmentation and peripheral precocious puberty. However, clinical presentation is highly variable depending on mosaic tissue distribution of mutant-bearing cells. Precocious puberty is the most common endocrine manifestation of MAS and is often the presenting, and sometimes the only, clinical sign of MAS. Due to the very low prevalence of MAS, data on course of precocious puberty, effectiveness of treatments and gonadal function during post-pubertal period are lacking. Our knowledge on this issue derives essentially from case reports and small cohorts of patients. The aim of this review is to report all available literature data on clinical aspects, therapeutic management and outcomes of precocious puberty in children with MAS. A systematic research was carried out through MEDLINE via PubMed, EMBASE, Web of Science, Semantic Scholar, Cochrane Library.


Neonatal McCune-Albright Syndrome: A Unique Syndromic Profile With an Unfavorable Outcome.

  • Alessandro Corsi‎ et al.
  • JBMR plus‎
  • 2019‎

Somatic gain-of-function mutations of GNAS cause a spectrum of clinical phenotypes, ranging from McCune-Albright syndrome (MAS) to isolated disease of bone, endocrine glands, and more rarely, other organs. In MAS, a syndrome classically characterized by polyostotic fibrous dysplasia (FD), café-au-lait (CAL) skin spots, and precocious puberty, the heterogenity of organ involvement, age of onset, and clinical severity of the disease are thought to reflect the variable size and the random distribution of the mutated cell clone arising from the postzygotic mutation. We report a case of neonatal MAS with hypercortisolism and cholestatic hepatobiliary dysfunction in which bone changes indirectly emanating from the disease genotype, and distinct from FD, led to a fatal outcome. Pulmonary embolism of marrow and bone fragments secondary to rib fractures was the immediate cause of death. Ribs, and all other skeletal segments, were free of changes of typical FD and fractures appeared to be the result of a mild-to-moderate degree of osteopenia. The mutated allele was abundant in the adrenal glands and liver, but not in skin, muscle, and fractured ribs, where it could only be demonstrated using a much more sensitive PNA hybridization probe-based FRET (Förster resonance energy transfer) technique. Histologically, bilateral adrenal hyperplasia and cholestatic disease matched the abundant disease genotype in the adrenals and liver. Based on this case and other sporadic reports, it appears that gain-of-function mutations of GNAS underlie a unique syndromic profile in neonates characterized by CAL skin spots, hypercortisolism, hyperthyroidism, hepatic and cardiac dysfunction, and an absence (or latency) of FD, often with a lethal outcome. Taken together, our and previous cases highlight the phenotypic severity and the diagnostic and therapeutic challenges of MAS in neonates. Furthermore, our case specifically points out how secondary bone changes, unrelated to the direct impact of the mutation, may contribute to the unfavorable outcome of very early-onset MAS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: