Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 7,031 papers

Fibroblast growth factor-2/platelet-derived growth factor enhances atherosclerotic plaque stability.

  • Yang Mao‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Increased immature neovessels contribute to plaque growth and instability. Here, we investigated a method to establish functional and stable neovessel networks to increase plaque stability. Rabbits underwent aortic balloon injury and were divided into six groups: sham, vector and lentiviral transfection with vascular endothelial growth factor-A (VEGF)-A, fibroblast growth factor (FGF)-2, platelet-derived growth factor (PDGF)-BB and FGF-2 + PDGF-BB. Lentivirus was percutaneously injected into the media-adventitia of the abdominal aorta by intravascular ultrasound guidance, and plaque-rupture rate, plaque-vulnerability index and plaque neovessel density at the injection site were evaluated. Confocal microscopy, Prussian Blue assay, Evans Blue, immunofluorescence and transmission electron microscopy were used to assess neovessel function and pericyte coverage. To evaluate the effect of FGF-2/PDGF-BB on pericyte migration, we used the mesenchymal progenitor cell line 10T1/2 as an in vitro model. VEGF-A- and FGF-2-overexpression increased the number of immature neovessels, which caused intraplaque haemorrhage and inflammatory cell infiltration, eventually resulting in the plaque vulnerability; however, FGF-2/PDGF-BB induced mature and functional neovessels, through increased neovessel pericyte coverage. Additionally, in vitro analysis of 10T1/2 cells revealed that FGF-2/PDGF-BB induced epsin-2 expression and enhanced the VEGF receptor-2 degradation, which negatively regulated pericyte function consistent with the in vivo data. These results showed that the combination of FGF-2 and PDGF-BB promoted the function and maturation of plaque neovessels, thereby representing a novel potential treatment strategy for vulnerable plaques.


Fibroblast Growth Factor-1 vs. Fibroblast Growth Factor-2 in Ischemic Skin Flap Survival in a Rat Animal Model.

  • Ehsan Fayazzadeh‎ et al.
  • World journal of plastic surgery‎
  • 2016‎

One of the main challenges in skin flap surgery is tissue ischemia and following necrosis. The present study compares the effects of fibroblast growth factors 1 and 2 on increasing cutaneous vasculature, improving ischemia, and preventing distal necrosis in ischemic skin flaps in rat model.


Action of fibroblast growth factor-2 on the intervertebral disc.

  • Xin Li‎ et al.
  • Arthritis research & therapy‎
  • 2008‎

Fibroblast growth factor 2 (FGF2) is a growth factor that is immediately released after cartilage injury and plays a pivotal role in cartilage homeostasis. In human adult articular cartilage, FGF2 mediates anti-anabolic and potentially catabolic effects via the suppression of proteoglycan (PG) production along with the upregulation of matrix-degrading enzyme activity. The aim of the present study was to determine the biological effects of FGF2 in spine disc cells and to elucidate the complex biochemical pathways utilized by FGF2 in bovine intervertebral disc (IVD) cells in an attempt to further understand the pathophysiologic processes involved in disc degeneration.


Circulating fibroblast growth factor-2 precipitates HIV nephropathy in mice.

  • Jharna R Das‎ et al.
  • Disease models & mechanisms‎
  • 2021‎

People of African ancestry living with the human immunodeficiency virus-1 (HIV-1) are at risk of developing HIV-associated nephropathy (HIVAN). Children with HIVAN frequently show high plasma fibroblast growth factor-2 (FGF-2) levels; however, the role of circulating FGF-2 in the pathogenesis of childhood HIVAN is unclear. Here, we explored how circulating FGF-2 affected the outcome of HIVAN in young HIV-Tg26 mice. Briefly, we demonstrated that FGF-2 was preferentially recruited in the kidneys of mice without pre-existing kidney disease, precipitating HIVAN by activating phosphorylated extracellular signal-regulated kinase (pERK) in renal epithelial cells, without inducing the expression of HIV-1 genes. Wild-type mice injected with recombinant adenoviral FGF-2 (rAd-FGF-2) vectors carrying a secreted form of human FGF-2 developed transient and reversible HIVAN-like lesions, including proteinuria and glomerular enlargement. HIV-Tg26 mice injected with rAd-FGF-2 vectors developed more-significant proliferative and pro-fibrotic inflammatory lesions, similar to those seen in childhood HIVAN. These lesions were partially reversed by treating mice with the FGF/VEGF receptor tyrosine kinase inhibitor PD173074. These findings suggest that high plasma FGF-2 levels may be an independent risk factor for precipitating HIVAN in young children.


Glypican-1 drives unconventional secretion of fibroblast growth factor 2.

  • Carola Sparn‎ et al.
  • eLife‎
  • 2022‎

Fibroblast growth factor 2 (FGF2) is a tumor cell survival factor that is transported into the extracellular space by an unconventional secretory mechanism. Cell surface heparan sulfate proteoglycans are known to play an essential role in this process. Unexpectedly, we found that among the diverse subclasses consisting of syndecans, perlecans, glypicans, and others, Glypican-1 (GPC1) is the principle and rate-limiting factor that drives unconventional secretion of FGF2. By contrast, we demonstrate GPC1 to be dispensable for FGF2 signaling into cells. We provide first insights into the structural basis for GPC1-dependent FGF2 secretion, identifying disaccharides with N-linked sulfate groups to be enriched in the heparan sulfate chains of GPC1 to which FGF2 binds with high affinity. Our findings have broad implications for the role of GPC1 as a key molecule in tumor progression.


Fibroblast growth factor 2 acts as an upstream regulator of inhibition of pulmonary fibroblast activation.

  • Xiangqin Tian‎ et al.
  • FEBS open bio‎
  • 2023‎

Fibroblast growth factor (FGF) signaling plays a crucial role in lung development and repair. Fibroblast growth factor 2 (FGF2) can inhibit fibrotic gene expression and suppress the differentiation of pulmonary fibroblasts (PFs) into myofibroblasts in vitro, suggesting that FGF2 is a potential target for inhibiting pulmonary fibrosis. To gain deeper insights into the molecular mechanism underlying FGF2-mediated regulation of PFs, we performed mRNA sequencing analysis to systematically and globally uncover the regulated genes and biological functions of FGF2 in PFs. Gene Ontology analysis revealed that the differentially expressed genes regulated by FGF2 were enriched in multiple cellular functions including extracellular matrix (ECM) organization, cytoskeleton formation, β-catenin-independent Wnt signaling pathway, supramolecular fiber organization, epithelial cell proliferation, and cell adhesion. Gene Set Enrichment Analysis and cellular experiments confirmed that FGF2 can suppress ECM and actin filament organization and increase PFs proliferation. Taken together, these findings indicate that FGF2 acts as an upstream regulator of the inhibition of PFs activation and may play a regulatory role in pulmonary fibrosis.


Association study of fibroblast growth factor 2 and fibroblast growth factor receptors gene polymorphism in korean ossification of the posterior longitudinal ligament patients.

  • Jae-Kyun Jun‎ et al.
  • Journal of Korean Neurosurgical Society‎
  • 2012‎

The aim of this study was to determine whether single nucleotide polymorphisms (SNPs) of fibroblast growth factor (FGF) 2 gene and fibroblast growth factor receptor (FGFR) genes are associated with ossification of the posterior longitudinal ligament (OPLL).


Fibroblast growth factor receptor-4 mediates activation of Nuclear Factor Erythroid 2-Related Factor-2 in gastric tumorigenesis.

  • Mohammed Soutto‎ et al.
  • Redox biology‎
  • 2024‎

Helicobacter pylori (H. pylori) is the leading risk factor for gastric carcinogenesis. Fibroblast growth factor receptor 4 (FGFR4) is a member of transmembrane tyrosine kinase receptors that are activated in cancer. We investigated the role of FGFR4 in regulating the cellular response to H. pylori infection in gastric cancer. High levels of oxidative stress signature and FGFR4 expression were detected in gastric cancer samples. Gene set enrichment analysis (GSEA) demonstrated enrichment of NRF2 signature in samples with high FGFR4 levels. H. pylori infection induced reactive oxygen species (ROS) with a cellular response manifested by an increase in FGFR4 with accumulation and nuclear localization NRF2. Knocking down FGFR4 significantly reduced NRF2 protein and transcription activity levels, leading to higher levels of ROS and DNA damage following H. pylori infection. We confirmed the induction of FGFR4 and NRF2 levels using mouse models following infection with a mouse-adapted H. pyloristrain. Pharmacologic inhibition of FGFR4 using H3B-6527, or its knockdown, remarkably reduced the level of NRF2 with a reduction in the size and number of gastric cancer spheroids. Mechanistically, we detected binding between FGFR4 and P62 proteins, competing with NRF2-KEAP1 interaction, allowing NRF2 to escape KEAP1-dependent degradation with subsequent accumulation and translocation to the nucleus. These findings demonstrate a novel functional role of FGFR4 in cellular homeostasis via regulating the NRF2 levels in response to H. pylori infection in gastric carcinogenesis, calling for testing the therapeutic efficacy of FGFR4 inhibitors in gastric cancer models.


Mimicking the Bioactivity of Fibroblast Growth Factor-2 Using Supramolecular Nanoribbons.

  • Charles M Rubert Pérez‎ et al.
  • ACS biomaterials science & engineering‎
  • 2017‎

Fibroblast growth factor (FGF-2) is a multifunctional growth factor that has pleiotropic effects in different tissues and organs. In particular, FGF-2 has a special role in angiogenesis, an important process in development, wound healing, cell survival, and differentiation. Therefore, incorporating biological agents like FGF-2 within therapeutic biomaterials is a potential strategy to create angiogenic bioactivity for the repair of damaged tissue caused by trauma or complications that arise from age and/or disease. However, the use of growth factors as therapeutic agents can be costly and does not always bring about efficient tissue repair due to rapid clearance from the targeted site. An alternative would be a stable supramolecular nanostructure with the capacity to activate the FGF-2 receptor that can also assemble into a scaffold deliverable to tissue. We report here on peptide amphiphiles that incorporate a peptide known to activate the FGF-2 receptor and peptide domains that drive its self-assembly into supramolecular nanoribbons. These FGF2-PA nanoribbons displayed the ability to increase the proliferation and migration of the human umbilical vein endothelial cells (HUVECs) in vitro to the same extent as the native FGF-2 protein at certain concentrations. We confirmed that this activity was specific to the FGFR1 signaling pathway by tracking the phosphorylation of downstream signaling effectors such ERK1/2 and pH3. These results indicated the specificity of FGF2-PA nanoribbons in activating the FGF-2 signaling pathway and its potential application as a supramolecular scaffold that can be used in vivo as an alternative to the encapsulation and delivery of the native FGF-2 protein.


Release of functional fibroblast growth factor-2 from artificial inclusion bodies.

  • Naroa Serna‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2020‎

Growth factors are required for cell proliferation and differentiation under physiological conditions but especially in the context of regenerative medicine. The time-prolonged administration of those factors has been explored using different sustained drug delivery systems. These platforms include natural materials such as bacterial inclusion bodies (IBs) that contain chaperones and other bacterial components that might favour protein release. Being successful from a functional point of view, IBs pose regulatory concerns to clinical applications because of the mentioned presence of bacterial cell components, including endotoxins. We have here explored the release and activity of the human fibroblast growth factor-2 (hFGF-2) from a novel synthetic material, namely artificial IBs. Being chemically homogenous and compliant with regulatory restrictions, we wondered if these materials would effectively release functional proteins in absence of accompanying bacterial agents. The data provided here fully supports that artificial hFGF-2 IBs act as true and efficient secretory granules and they slowly disintegrate in cell culture to promote wound healing in an in vitro wound healing model. Free from undesired bacterial components, artificial inclusion bodies show promises as delivery agents in regenerative medicine.


Gene targeted ablation of high molecular weight fibroblast growth factor-2.

  • Mohamad Azhar‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2009‎

Fibroblast growth factor-2 (FGF2) is produced as high molecular weight isoforms (HMW) and a low molecular weight isoform (LMW) by means of alternative usage of translation start sites in a single Fgf2 mRNA. Although the physiological function of FGF2 and FGF2 LMW has been investigated in myocardial capillarogenesis during normal cardiac growth, the role of FGF2 HMW has not been determined. Here, we report the generation of FGF2 HMW-deficient mice in which FGF2 HMW isoforms are ablated by the Tag-and-Exchange gene targeting technique. These mice are normal and fertile with normal fecundity, and have a normal life span. Histological, immunohistochemical, and morphometric analyses indicate normal myocardial architecture, blood vessel, and cardiac capillary density in young adult FGF2 HMW-deficient mice. These mice along with the FGF2- and FGF2 LMW-deficient mice that we have generated previously will be very useful for elucidating the differential functions of FGF2 isoforms in pathophysiology of cardiovascular diseases.


Effects of fibroblast growth factor-2 on cell proliferation of cementoblasts.

  • Hui-Chieh Yu‎ et al.
  • Journal of dental sciences‎
  • 2016‎

Fibroblast growth factor (FGF)-2 is known as a signaling molecule that induces tissue regeneration. Little is known about the effect of FGF-2 on cementoblasts for periodontal and periapical regeneration. The aim of this study was to investigate the effects of FGF-2 on murine immortalized cementoblast cell line (OCCM.30).


Fibroblast growth factor 2 regulates adequate nigrostriatal pathway formation in mice.

  • Olga Baron‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

Fibroblast growth factor 2 (FGF-2) is an important neurotrophic factor that promotes survival of adult mesencephalic dopaminergic (mDA) neurons and regulates their adequate development. Since mDA neurons degenerate in Parkinson's disease, a comprehensive understanding of their development and maintenance might contribute to the development of causative therapeutic approaches. The current analysis addressed the role of FGF-2 in mDA axonal outgrowth, pathway formation, and innervation of respective forebrain targets using organotypic explant cocultures of ventral midbrain (VM) and forebrain (FB). An enhanced green fluorescent protein (EGFP) transgenic mouse strain was used for the VM explants, which allowed combining and distinguishing of individual VM and FB tissue from wildtype and FGF-2-deficient embryonic day (E)14.5 embryos, respectively. These cocultures provided a suitable model to study the role of target-derived FB and intrinsic VM-derived FGF-2. In fact, we show that loss of FGF-2 in both FB and VM results in significantly increased mDA fiber outgrowth compared to wildtype cocultures, proving a regulatory role of FGF-2 during nigrostriatal wiring. Further, we found in heterogeneous cocultures deficient for FGF-2 in FB and VM, respectively, similar phenotypes with wider fiber tracts compared to wildtype cocultures and shorter fiber outgrowth distance than cocultures completely deficient for FGF-2. Additionally, the loss of target-derived FGF-2 in FB explants resulted in decreased caudorostral glial migration. Together these findings imply an intricate interplay of target-derived and VM-derived FGF signaling, which assures an adequate nigrostriatal pathway formation and target innervation.


Fibroblast growth factor-2 bound to specific dermal fibroblast-derived extracellular vesicles is protected from degradation.

  • Isabelle Petit‎ et al.
  • Scientific reports‎
  • 2022‎

Fibroblast growth factor-2 (FGF2) has multiple roles in cutaneous wound healing but its natural low stability prevents the development of its use in skin repair therapies. Here we show that FGF2 binds the outer surface of dermal fibroblast (DF)-derived extracellular vesicles (EVs) and this association protects FGF2 from fast degradation. EVs isolated from DF cultured in the presence of FGF2 harbor FGF2 on their surface and FGF2 can bind purified EVs in absence of cells. Remarkably, FGF2 binding to EVs is restricted to a specific subpopulation of EVs, which do not express CD63 and CD81 markers. Treatment of DF with FGF2-EVs activated ERK and STAT signaling pathways and increased cell proliferation and migration. Local injection of FGF2-EVs improved wound healing in mice. We further demonstrated that binding to EVs protects FGF2 from both thermal and proteolytic degradation, thus maintaining FGF2 function. This suggests that EVs protect soluble factors from degradation and increase their stability and half-life. These results reveal a novel aspect of EV function and suggest EVs as a potential tool for delivering FGF2 in skin healing therapies.


Fibroblast growth factor 2 positively regulates expression of activating transcription factor 4 in osteoblasts.

  • Yurong Fei‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

Our previous studies showed that basic fibroblast growth factor 2 (FGF2) null mice display markedly reduced bone mass and bone formation. However, the mechanism by which FGF2 regulates bone mass or bone formation is not fully defined. Activating transcription factor 4 (ATF4), one member of activating transcription factor/cAMP response element binding family, is a transcription factor required for osteoblast terminal differentiation. Here we investigate the ability of FGF2 to increase expression of ATF4 in bone marrow stromal cells (BMSCs) and examine ATF4 expression in Fgf2(-/-) BMSCs. We found that FGF2 stimulated ATF4 mRNA expression as early as 20 min and increased ATF4 protein expression after three hours of treatment. BMSCs from Fgf2(+/+) and Fgf2(-/-) mice were cultured in osteogenesis medium. We observed reduced alkaline phosphatase staining, decreased mineralized nodules and reduced osteocalcin expression, and reduced expression of ATF4 in Fgf2(-/-) BMSC cultures compared to Fgf2(+/+) BMSCs. This study is the first demonstration that ATF4 expression can be stimulated by FGF2 in osteoblasts and that ATF4 expression is significantly reduced in differentiated Fgf2(-/-) BMSCs. These results suggest that impaired bone mass and bone formation in Fgf2 null mice may be due in part to reduced ATF4 expression.


Post-transfer outcomes in cultured bovine embryos supplemented with epidermal growth factor, fibroblast growth factor 2, and insulin-like growth factor 1.

  • McCauley T Vailes‎ et al.
  • Theriogenology‎
  • 2019‎

This work examined the downstream fetal and placental outcomes of introducing a cocktail of uterine-derived growth factors during bovine embryo culture. Abattoir-derived bovine oocytes were matured and fertilized in vitro. On day 4 post-fertilization, ≥ 8-cell embryos were harvested, pooled and exposed to an embryokine mix, termed EFI, which contained recombinant human epidermal growth factor (10 ng/ml), bovine fibroblast growth factor-2 (10 ng/ml) and human insulin-like growth factor 1 (50 ng/ml) or to a carrier-only control treatment (CON). On day 7, individual, transfer-quality embryos were transferred to recipients. Timed ovulation was completed in mature, non-suckled commercial beef cows. Cows either were artificial inseminated (AI) or received an embryo (ET) on day 7 post-estrus (n = 23-31 cows/treatment over 4 replicate studies). The percentage of grade 1 and 2 morulae and blastocysts was greater (P < 0.05) for EFI-treated embryos than CON. The percentage of pregnant cows diagnosed by transrectal ultrasonography did not differ among the AI and ET groups on days 28, 42 and 56 post-estrus. There also were no differences in the ratio of male to female fetuses determined on day 60 post-estrus by transrectal ultrasonography. On day 21 post-estrus, the relative abundance of three interferon-stimulated gene (ISG) transcripts in peripheral leukocytes were not different based on AI/ET group or the sex of the conceptus. Circulating pregnancy-associated glycoprotein (PAG) concentrations differed (P < 0.05) among days. Also, a difference in PAG concentrations (P < 0.05) were detected between male and female pregnancies in the CON-ET group but not in the AI or EFI-ET groups. Crown-rump length was not affected by AI/ET group on day 42 but were less (P < 0.05) in the CON and EFI-ET groups than the AI group on day 56. These findings implicate EFI supplementation as a means for improving transferable embryo production in a bovine IVP system, but it is not clear if this treatment improves embryo competency after ET.


Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons.

  • Alessia Bachis‎ et al.
  • Neuropharmacology‎
  • 2008‎

One of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic connections and plasticity in the hippocampus and cerebral cortex. Fibroblast growth factor 2 (FGF2) is a growth factor essential for the proper formation of synaptic connections in the cerebral cortex, maturation and survival of catecholamine neurons, and neurogenesis. In this report, we attempted to establish a correlation between antidepressant treatments and FGF2 expression in the cerebral cortex and hippocampus, two brain areas relevant for depression. Desipramine (DMI, 10mg/kg) or fluoxetine (FLU, 5mg/kg) was injected acutely (single injection) or chronically (daily injection for two weeks) in adult rats. Chronic, but not acute, antidepressant treatments increase FGF2 immunoreactivity in neurons of the cerebral cortex and in both astrocytes and neurons of the hippocampus. FGF2 immunoreactivity in the cortex was increased mainly in the cytoplasm of neurons of layer V. Western blot analyses of nuclear and cytosolic extracts from the cortex revealed that both antidepressants increase FGF2 isoforms in the cytosolic extracts and decrease accumulation of FGF2 immunoreactivity in the nucleus. To characterize the anatomical and cellular specificity of antidepressants, we examined FGF-binding protein (FBP), a secreted protein that acts as an extracellular chaperone for FGF2 and enhances its activity. DMI and FLU increased FBP immunoreactivity in both cortical and hippocampal neurons. Our data suggest that FGF2 and FBP may participate in the plastic responses underlying the clinical efficacy of antidepressants.


Dynamic changes of podocytes caused by fibroblast growth factor 2 in culture.

  • Eishin Yaoita‎ et al.
  • Cell and tissue research‎
  • 2021‎

Fibroblast growth factor 2 (FGF2) augments podocyte injury, which induces glomerulosclerosis, although the mechanisms remain obscure. In this study, we investigated the effects of FGF2 on cultured podocytes with interdigitating cell processes in rats. After 48 h incubation with FGF2 dynamic changes in the shape of primary processes and cell bodies of podocytes resulted in the loss of interdigitation, which was clearly shown by time-lapse photography. FGF2 reduced the gene expressions of constituents of the slit diaphragm, inflections of intercellular junctions positive for nephrin, and the width of the intercellular space. Immunostaining for the proliferation marker Ki-67 was rarely seen and weakly stained in the control without FGF2, whereas intensely stained cells were frequently found in the presence of FGF2. Binucleation and cell division were also observed, although no significant increase in cell number was shown. An in vitro scratch assay revealed that FGF2 enhanced migration of podocytes. These findings show that FGF2 makes podocytes to transition from the quiescent state into the cell cycle and change their morphology due to enhanced motility, and that the culture system in this study is useful for analyzing the pathological changes of podocytes in vivo.


Upregulation of fibroblast growth factor-2 by visfatin that promotes endothelial angiogenesis.

  • Yun-Hee Bae‎ et al.
  • Biochemical and biophysical research communications‎
  • 2009‎

Adipokines have been known to act as angiogenic regulators in the process of angiogenesis. Recently, we have demonstrated that visfatin, a novel adipokine, has angiogenic activity. However, little has been reported on the underlying mechanism of visfatin-induced angiogenesis. In this study, we report that visfatin-induced angiogenesis is mediated by endothelial fibroblast growth factor-2 (FGF-2). Visfatin increased the levels of FGF-2 mRNA and protein in human endothelial cells. The enhancement in FGF-2 expression was prevented by an inhibitor of the extracellular signal-regulated kinase 1/2 (Erk1/2) pathway. Furthermore, visfatin-induced angiogenesis was reduced by inhibition of FGF-2 receptor kinase or by neutralization of FGF-2 function. Taken together, our results indicate that visfatin-induced endothelial angiogenesis is composed largely of two sequential steps: the induction of Erk1/2-dependent FGF-2 gene expression by visfatin and the subsequent FGF-2-induced angiogenesis. These data further suggest an integral role for visfatin-FGF-2 signaling axis in modulating endothelial angiogenesis.


Down-Regulation of Fibroblast Growth Factor 2 (FGF2) Contributes to the Premature Senescence of Mouse Embryonic Fibroblast.

  • Jie Li‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND Freshly isolated mouse embryonic fibroblasts (MEFs) have great proliferation capacity but quickly enter senescent state after several rounds of cell cycle, a process called premature senescence. Cellular senescence can be induced by various stresses such as telomere erosion, DNA damage, and oncogenic signaling. But the contribution of other molecules, such as growth factors, to cellular senescence is incompletely understood. This study aimed to compare the gene expression difference between non-senescent and senescent MEFs to identify the key molecule(s) involved in the spontaneous senescence of MEFs. MATERIAL AND METHODS Primary MEFs were isolated from E12.5 pregnant C57/BL6 mice. The cells were continuously cultured in Dulbecco's Modified Eagle Medium for 9 passages. SA-ß-Gal staining was used as an indicator of cell senescence. The supernatant from primary MEFs (P1 medium) or Passage 6 MEFs (P6 medium) were used to culture freshly isolated MEFs to observe the effects on cell senescence state. Gene expression profiles of primary and senescent MEFs were investigated by RNA-Seq to find the key genes involved in cell senescence. Adipocyte differentiation assay was used to evaluate the stemness of MEFs cultured in FGF2-stimulated medium. RESULTS The senescence of MEFs cultured in the P1 medium was alleviated when compared to the P6 medium. Downregulation of FGF2 expression was revealed by RNA-Seq and further confirmed by real-time quantitative polymerase chain reaction and western blot. FGF2-stimulated medium also had anti-senescence function and could maintain the differentiation ability of MEFs. CONCLUSIONS The premature senescence of MEFs was at least partially caused by FGF2 deficiency. Exogenous FGF2 could alleviate the senescent phenotype.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: