Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 612 papers

Peroxynitrite may affect fibrinolysis via the reduction of platelet-related fibrinolysis resistance and alteration of clot structure.

  • Tomasz Misztal‎ et al.
  • Free radical biology & medicine‎
  • 2015‎

We tested the hypothesis that in vitro peroxynitrite (ONOO(-), a product of activated inflammatory cells) may affect fibrinolysis in human blood through the reduction of platelet-related fibrinolysis resistance. It was found that ONOO(-) (25-300 µM) accelerated lysis of platelet-fibrin clots (in PRP) dose-dependently, whereas fibrinolysis of platelet-free clots was slightly inhibited by ≥ 1000 µM stressor. Concentrations of ONOO(-) affecting the lysis of platelet-rich clots, inhibited clot retraction (CR) in a dose-dependent manner. Thromboelastometry (ROTEM) measurements performed in PRP showed that treatment with ONOO(-) (threshold conc. 100 µM) prolongs clotting time, and reduces alpha angle, and clot formation velocity parameters indicating for reduced thrombin formation rate. In PRP, ONOO(-) (threshold conc. 100 µM) reduced the collagen-evoked exposure of phosphatidylserine (PS) on platelets' plasma membrane, the shedding of platelet-derived microparticles (PMP), and inhibited platelet-dependent thrombin generation (measured in artificial system), dose-dependently. As judged by confocal microscopy, similar ONOO(-) concentrations altered the architecture of clots formed in collagen-treated PRP. Clots formed in the presence of ONOO(-) were less dense and were composed of thicker fibers, which make them more susceptible to lysis. In platelet-depleted plasma, ONOO(-) (up to milimolar concentration) did not alter clot structure. Blockage of PS exposed on platelets resulted in an alteration of clot architecture toward more prone to lysis. ONOO(-), at lysis-affecting concentrations, inhibited the collagen-evoked secretion of fibrinolytic inhibitors from platelets. We conclude that physiologically relevant ONOO(-) concentrations may accelerate the lysis of platelet-fibrin clots predominantly via downregulation of platelet-related mechanisms including: platelet secretion, clot retraction, platelet procoagulant response, and the alteration in clot architecture associated with it.


Inhibition of Fibrinolysis by Streptococcal Phage LysinSM1.

  • Hyun Jung Ji‎ et al.
  • mBio‎
  • 2021‎

Expression of bacteriophage lysinSM1 by Streptococcus oralis strain SF100 is thought to be important for the pathogenesis of infective endocarditis, due to its ability to mediate bacterial binding to fibrinogen. To better define the lysinSM1 binding site on fibrinogen Aα, and to investigate the impact of binding on fibrinolysis, we examined the interaction of lysinSM1 with a series of recombinant fibrinogen Aα variants. These studies revealed that lysinSM1 binds the C-terminal region of fibrinogen Aα spanned by amino acid residues 534 to 610, with an affinity of equilibrium dissociation constant (KD) of 3.23 × 10-5 M. This binding site overlaps the known binding site for plasminogen, an inactive precursor of plasmin, which is a key protease responsible for degrading fibrin polymers. When tested in vitro, lysinSM1 competitively inhibited plasminogen binding to the αC region of fibrinogen Aα. It also inhibited plasminogen-mediated fibrinolysis, as measured by thromboelastography (TEG). These results indicate that lysinSM1 is a bi-functional virulence factor for streptococci, serving as both an adhesin and a plasminogen inhibitor. Thus, lysinSM1 may facilitate the attachment of bacteria to fibrinogen on the surface of damaged cardiac valves and may also inhibit plasminogen-mediated lysis of infected thrombi (vegetations) on valve surfaces. IMPORTANCE The interaction of streptococci with human fibrinogen and platelets on damaged endocardium is a central event in the pathogenesis of infective endocarditis. Streptococcus oralis can bind platelets via the interaction of bacteriophage lysinSM1 with fibrinogen on the platelet surface, and this process has been associated with increased virulence in an animal model of endocarditis. We now report that lysinSM1 binds to the αC region of the human fibrinogen Aα chain. This interaction blocks plasminogen binding to fibrinogen and inhibits fibrinolysis. In vivo, this inhibition could prevent the lysis of infected vegetations, thereby promoting bacterial persistence and virulence.


Physical determinants of fibrinolysis in single fibrin fibers.

  • Igal Bucay‎ et al.
  • PloS one‎
  • 2015‎

Fibrin fibers form the structural backbone of blood clots; fibrinolysis is the process in which plasmin digests fibrin fibers, effectively regulating the size and duration of a clot. To understand blood clot dissolution, the influence of clot structure and fiber properties must be separated from the effects of enzyme kinetics and perfusion rates into clots. Using an inverted optical microscope and fluorescently-labeled fibers suspended between micropatterned ridges, we have directly measured the lysis of individual fibrin fibers. We found that during lysis 64 ± 6% of fibers were transected at one point, but 29 ± 3% of fibers increase in length rather than dissolving or being transected. Thrombin and plasmin dose-response experiments showed that the elongation behavior was independent of plasmin concentration, but was instead dependent on the concentration of thrombin used during fiber polymerization, which correlated inversely with fiber diameter. Thinner fibers were more likely to lyse, while fibers greater than 200 ± 30 nm in diameter were more likely to elongate. Because lysis rates were greatly reduced in elongated fibers, we hypothesize that plasmin activity depends on fiber strain. Using polymer physics- and continuum mechanics-based mathematical models, we show that fibers polymerize in a strained state and that thicker fibers lose their prestrain more rapidly than thinner fibers during lysis, which may explain why thick fibers elongate and thin fibers lyse. These results highlight how subtle differences in the diameter and prestrain of fibers could lead to dramatically different lytic susceptibilities.


ADAM17 Regulates p75NTR-Mediated Fibrinolysis and Nerve Remyelination.

  • Marta Pellegatta‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2022‎

We previously reported that a-disintegrin and metalloproteinase (ADAM)17 is a key protease regulating myelin formation. We now describe a role for ADAM17 during the Wallerian degeneration (WD) process. Unexpectedly, we observed that glial ADAM17, by regulating p75NTR processing, cell autonomously promotes remyelination, while neuronal ADAM17 is dispensable. Accordingly, p75NTR abnormally accumulates specifically when ADAM17 is maximally expressed leading to a downregulation of tissue plasminogen activator (tPA) expression, excessive fibrin accumulation over time, and delayed remyelination. Mutant mice also present impaired macrophage recruitment and defective nerve conduction velocity (NCV). Thus, ADAM17 expressed in Schwann cells, controls the whole WD process, and its absence hampers effective nerve repair. Collectively, we describe a previously uncharacterized role for glial ADAM17 during nerve regeneration. Based on the results of our study, we posit that, unlike development, glial ADAM17 promotes remyelination through the regulation of p75NTR-mediated fibrinolysis.SIGNIFICANCE STATEMENT The α-secretase a-disintegrin and metalloproteinase (ADAM)17, although relevant for developmental PNS myelination, has never been investigated in Wallerian degeneration (WD). We now unravel a new mechanism of action for this protease and show that ADAM17 cleaves p75NTR, regulates fibrin clearance, and eventually fine-tunes remyelination. The results presented in this study provide important insights into the complex regulation of remyelination following nerve injury, identifying in ADAM17 and p75NTR a new signaling axis implicated in these events. Modulation of this pathway could have important implications in promoting nerve remyelination, an often-inefficient process, with the aim of restoring a functional axo-glial unit.


Internal fibrinolysis of fibrin clots is driven by pore expansion.

  • Rebecca A Risman‎ et al.
  • Scientific reports‎
  • 2024‎

Blood clots, which are composed of blood cells and a stabilizing mesh of fibrin fibers, are critical in cessation of bleeding following injury. However, their action is transient and after performing their physiological function they must be resolved through a process known as fibrinolysis. Internal fibrinolysis is the degradation of fibrin by the endogenous or innate presence of lytic enzymes in the bloodstream; under healthy conditions, this process regulates hemostasis and prevents bleeding or clotting. Fibrin-bound tissue plasminogen activator (tPA) converts nearby plasminogen into active plasmin, which is bound to the fibrin network, breaking it down into fibrin degradation products and releasing the entrapped blood cells. It is poorly understood how changes in the fibrin structure and lytic protein ratios influence the biochemical regulation and behavior of internal fibrinolysis. We used turbidity kinetic tracking and microscopy paired with mathematical modeling to study fibrin structure and lytic protein ratios that restrict internal fibrinolysis. Analysis of simulations and experiments indicate that fibrinolysis is driven by pore expansion of the fibrin network. We show that this effect is strongly influenced by the ratio of fibrin:tPAwhen compared to absolute tPA concentration. Thus, it is essential to consider relative protein concentrations when studying internal fibrinolysis both experimentally and in the clinic. An improved understanding of effective internal lysis can aid in development of better therapeutics for the treatment of bleeding and thrombosis.


Retinoic acid promotes fibrinolysis and may regulate polyp formation.

  • Masafumi Sakashita‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2022‎

Patients with aspirin-exacerbated respiratory disease (AERD) regularly exhibit severe nasal polyposis. Studies suggest that chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by excessive fibrin deposition associated with a profound decrease in epithelial tissue plasminogen activator (tPA). Retinoids, including vitamin A and its active metabolite retinoic acid (RA), are necessary for maintaining epithelial function and well-known inducers of tPA in endothelial cells.


Coagulation and fibrinolysis in hyperparathyroidism secondary to vitamin D deficiency.

  • Laura P B Elbers‎ et al.
  • Endocrine connections‎
  • 2018‎

Abnormal coagulation tests have been observed in patients with primary hyperparathyroidism (HPT) suggesting a prothrombotic effect of parathyroid hormone (PTH). Vitamin D deficiency (VIDD) is the most frequent cause of secondary HPT. Aim of our study was to investigate the influence of HPT secondary to moderate-to-severe VIDD and vitamin D replacement on the coagulation and fibrinolysis system.


The impact of static work on fibrinolysis and platelet function.

  • J Vind‎ et al.
  • Thrombosis research‎
  • 1993‎

Brief stress such as dynamic work protects against thrombosis by enhancing blood fluidity. The effect of isometric work on blood fluidity, however, is not known. The aim of the present study therefore was to test the effect of isometric work on heart rate (HR), blood pressure (BP), platelet function and fibrinolytic activity. Twelve healthy male volunteers were tested before and after isometric work. Isometric work resulted in an increase in HR from 62.4 to 110.0 beats/min and in systolic BP from 118.3 to 134.5 mmHg (p < 0.01). No significant change occurred in platelet release estimated as plasma levels of B-TG and PF-4, or platelet aggregation induced by ADP. Fibrinolytic activity increased, as evidenced by a decrease in ECLT from 136.7 + 10.5 to 72.3 + 9.8 min) (p < 0.01) and an increase in t-PA of 400%. No significant change was observed in PAI. The present data suggest that isometric work increases fibrinolytic activity significantly, but leaves platelet function unchanged.


Thrombin-activatable fibrinolysis inhibitor deficiency attenuates bleomycin-induced lung fibrosis.

  • Hajime Fujimoto‎ et al.
  • The American journal of pathology‎
  • 2006‎

Decreased fibrinolytic function favors the development of pulmonary fibrosis. Thrombin-activatable fibrinolysis inhibitor (TAFI) is a strong suppressor of fibrinolysis, but its role in lung fibrosis is unknown. Therefore, we compared bleomycin-induced lung fibrosis in TAFI-deficient, heterozygous, and wild-type mice. The animals were sacrificed 21 days after bleomycin administration, and markers of lung fibrosis and inflammation were measured. The bronchoalveolar lavage fluid levels of total protein, neutrophil proteases (elastase, myeloperoxidase), cytokines (tumor necrosis factor-alpha, interleukin-13), chemokine (monocyte chemoattractant protein-1), coagulation activation marker (thrombin-antithrombin complex), total soluble collagen, and growth factors (platelet-derived growth factor, transforming growth factor-beta1, granulocytic-macrophage growth factor) were significantly decreased in knockout mice compared to wild-type mice. Further, histological findings of fibrosis, fibrin deposition, and hydroxyproline and collagen content in the lung were significantly decreased in knockout mice compared to wild-type mice. Depletion of fibrinogen by ancrod treatment led to equalization in the amount of fibrosis and collagen deposition in the lungs of knockout and wild-type mice. No difference was detected in body temperature or arterial pressure between the different mouse phenotypes. These results suggest that the anti-fibrinolytic activity of TAFI promotes lung fibrosis by hindering the rate at which fibrin is degraded.


Blood markers of fibrinolysis and endothelial activation in canine babesiosis.

  • Josipa Kuleš‎ et al.
  • BMC veterinary research‎
  • 2017‎

Canine babesiosis is a tick-borne disease caused by hemoprotozoan parasites of the genus Babesia. The disease can be clinically classified into uncomplicated and complicated forms. The aim of this study was to assess the level of endothelial activation and alterations in the fibrinolytic pathway during canine babesiosis.


Catheter ablation for AF improves global thrombotic profile and enhances fibrinolysis.

  • Maria Niespialowska-Steuden‎ et al.
  • Journal of thrombosis and thrombolysis‎
  • 2017‎

Patients with atrial fibrillation (AF) are at increased risk of thrombotic events despite oral anticoagulation (OAC). Radiofrequency catheter ablation (RFCA) can restore and maintain sinus rhythm (SR) in patients with AF. To assess whether RFCA improves thrombotic status. 80 patients (71% male, 64 ± 12y) with recently diagnosed AF, on OAC and scheduled to undergo RFCA or DC cardioversion (DCCV) were recruited. Thrombotic status was assessed using the point-of-care global thrombosis test (GTT), before, and 4-6 weeks after DCCV and 3 months after RFCA. The GTT first measures the time taken for occlusive thrombus formation (occlusion time, OT), while the second phase of the test measures the time taken to spontaneously dissolve this clot through endogenous thrombolysis (lysis time, LT). 3 months after RFCA, there was a significant reduction in LT (1994s [1560; 2475] vs. 1477s [1015; 1878]) in those who maintained SR, but not in those who reverted to AF. At follow-up, LT was longer in those in AF compared to those in SR (AF 2966s [2038; 3879] vs. SR 1477s [1015; 1878]). RFCA resulted in no change in OT value, irrespective of rhythm outcome. Similarly, there was no change in OT or LT in response to DCCV, irrespective of whether SR was restored. Successful restoration and maintenance of SR following RFCA of AF is associated with improved global thrombotic status with enhanced fibrinolysis. Larger studies are required to confirm these early results and investigate whether improved thrombotic status translates into fewer thromboembolic events.


Fibrinolysis Shutdown in COVID-19: Clinical Manifestations, Molecular Mechanisms, and Therapeutic Implications.

  • Jonathan P Meizoso‎ et al.
  • Journal of the American College of Surgeons‎
  • 2021‎

The COVID-19 pandemic has introduced a global public health threat unparalleled in our history. The most severe cases are marked by ARDS attributed to microvascular thrombosis. Hypercoagulability, resulting in a profoundly prothrombotic state, is a distinct feature of COVID-19 and is accentuated by a high incidence of fibrinolysis shutdown. The aims of this review were to describe the manifestations of fibrinolysis shutdown in COVID-19 and its associated outcomes, review the molecular mechanisms of dysregulated fibrinolysis associated with COVID-19, and discuss potential implications and therapeutic targets for patients with severe COVID-19.


The In Vitro Effects of Pentamidine Isethionate on Coagulation and Fibrinolysis.

  • Rami A Al-Horani‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Pentamidine is bis-oxybenzamidine-based antiprotozoal drug. The parenteral use of pentamidine appears to affect the processes of blood coagulation and/or fibrinolysis resulting in rare but potentially life-threatening blood clot formation. Pentamidine was also found to cause disseminated intravascular coagulation syndrome. To investigate the potential underlying molecular mechanism(s) of pentamidine's effects on coagulation and fibrinolysis, we studied its effects on clotting times in normal and deficient human plasmas. Using normal plasma, pentamidine isethionate doubled the activated partial thromboplastin time at 27.5 µM, doubled the prothrombin time at 45.7 µM, and weakly doubled the thrombin time at 158.17 µM. Using plasmas deficient of factors VIIa, IXa, XIa, or XIIa, the concentrations to double the activated partial thromboplastin time were similar to that obtained using normal plasma. Pentamidine also inhibited plasmin-mediated clot lysis with half-maximal inhibitory concentration (IC50) value of ~3.6 μM. Chromogenic substrate hydrolysis assays indicated that pentamidine inhibits factor Xa and plasmin with IC50 values of 10.4 µM and 8.4 µM, respectively. Interestingly, it did not significantly inhibit thrombin, factor XIa, factor XIIIa, neutrophil elastase, or chymotrypsin at the highest concentrations tested. Michaelis-Menten kinetics and molecular modeling studies revealed that pentamidine inhibits factor Xa and plasmin in a competitive fashion. Overall, this study provides quantitative mechanistic insights into the in vitro effects of pentamidine isethionate on coagulation and fibrinolysis via the disruption of the proteolytic activity of factor Xa and plasmin.


Plasminogen controls inflammation and pathogenesis of influenza virus infections via fibrinolysis.

  • Fatma Berri‎ et al.
  • PLoS pathogens‎
  • 2013‎

Detrimental inflammation of the lungs is a hallmark of severe influenza virus infections. Endothelial cells are the source of cytokine amplification, although mechanisms underlying this process are unknown. Here, using combined pharmacological and gene-deletion approaches, we show that plasminogen controls lung inflammation and pathogenesis of infections with influenza A/PR/8/34, highly pathogenic H5N1 and 2009 pandemic H1N1 viruses. Reduction of virus replication was not responsible for the observed effect. However, pharmacological depletion of fibrinogen, the main target of plasminogen reversed disease resistance of plasminogen-deficient mice or mice treated with an inhibitor of plasminogen-mediated fibrinolysis. Therefore, plasminogen contributes to the deleterious inflammation of the lungs and local fibrin clot formation may be implicated in host defense against influenza virus infections. Our studies suggest that the hemostatic system might be explored for novel treatments against influenza.


Biphasic activation of complement and fibrinolysis during the human nasal allergic response.

  • Ryan S Thwaites‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2018‎

No abstract available


Impact of Arterial Procedures on Coagulation and Fibrinolysis - A Pilot Study.

  • Kamil Jurand Polok‎ et al.
  • Brazilian journal of cardiovascular surgery‎
  • 2019‎

The main goal of our study was to assess the impact of vascular procedures on the activity of hemostatic and fibrinolytic pathways.


Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection.

  • Franklin L Wright‎ et al.
  • Journal of the American College of Surgeons‎
  • 2020‎

COVID-19 predisposes patients to a prothrombotic state with demonstrated microvascular involvement. The degree of hypercoagulability appears to correlate with outcomes; however, optimal criteria to assess for the highest-risk patients for thrombotic events remain unclear; we hypothesized that deranged thromboelastography measurements of coagulation would correlate with thromboembolic events.


Increased Fibrinolysis as a Specific Marker of Poor Outcome After Cardiac Arrest.

  • Nina Buchtele‎ et al.
  • Critical care medicine‎
  • 2018‎

Recent data suggest that early increased fibrinolysis may be associated with unfavorable prognosis in cardiac arrest. The current study aimed to assess whether there is an optimal fibrinolysis cutoff value as determined by thrombelastometry at hospital admission to predict poor outcome in a cohort of adult patients with out-of-hospital cardiac arrest.


Fibrinolysis protease receptors promote activation of astrocytes to express pro-inflammatory cytokines.

  • Paola Pontecorvi‎ et al.
  • Journal of neuroinflammation‎
  • 2019‎

Astrocytes contribute to the crosstalk that generates chronic neuro-inflammation in neurological diseases; however, compared with microglia, astrocytes respond to a more limited continuum of innate immune system stimulants. Recent studies suggest that the fibrinolysis system may regulate inflammation. The goal of this study was to test whether fibrinolysis system components activate astrocytes and if so, elucidate the responsible biochemical pathway.


Interplay between acute phase response and coagulation/fibrinolysis in chronic spontaneous urticaria.

  • R Grzanka‎ et al.
  • Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology‎
  • 2018‎

Chronic spontaneous urticaria (CSU) is associated with activation of systemic inflammatory response and coagulation/fibrinolysis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: