Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 17,097 papers

Clinical application of noninvasive prenatal testing in the detection of fetal chromosomal diseases.

  • Yu Pang‎ et al.
  • Molecular cytogenetics‎
  • 2021‎

To assess the detection efficiency of noninvasive prenatal testing (NIPT) for fetal autosomal aneuploidy, sex chromosome aneuploidy (SCA), other chromosome aneuploidy, copy number variation (CNV), and to provide further data for clinical application of NIPT.


In vitro models of fetal lung development to enhance research into congenital lung diseases.

  • Soichi Shibuya‎ et al.
  • Pediatric surgery international‎
  • 2021‎

This paper aims to build upon previous work to definitively establish in vitro models of murine pseudoglandular stage lung development. These can be easily translated to human fetal lung samples to allow the investigation of lung development in physiologic and pathologic conditions.


Mechanisms Underlying Rare Inherited Pediatric Retinal Vascular Diseases: FEVR, Norrie Disease, Persistent Fetal Vascular Syndrome.

  • Vincent Le‎ et al.
  • Cells‎
  • 2023‎

Familial Exudative Vitreoretinopathy (FEVR), Norrie disease, and persistent fetal vascular syndrome (PFVS) are extremely rare retinopathies that are clinically distinct but are unified by abnormal retinal endothelial cell function, and subsequent irregular retinal vascular development and/or aberrant inner blood-retinal-barrier (iBRB) function. The early angiogenesis of the retina and its iBRB is a delicate process that is mediated by the canonical Norrin Wnt-signaling pathway in retinal endothelial cells. Pathogenic variants in genes that play key roles within this pathway, such as NDP, FZD4, TSPAN12, and LRP5, have been associated with the incidence of these retinal diseases. Recent efforts to further elucidate the etiology of these conditions have not only highlighted their multigenic nature but have also resulted in the discovery of pathological variants in additional genes such as CTNNB1, KIF11, and ZNF408, some of which operate outside of the Norrin Wnt-signaling pathway. Recent discoveries of FEVR-linked variants in two other Catenin genes (CTNND1, CTNNA1) and the Endoplasmic Reticulum Membrane Complex Subunit-1 gene (EMC1) suggest that we will continue to find additional genes that impact the neural retinal vasculature, especially in multi-syndromic conditions. The goal of this review is to briefly highlight the current understanding of the roles of their encoded proteins in retinal endothelial cells to understand the essential functional mechanisms that can be altered to cause these very rare pediatric retinal vascular diseases.


Maternal Viral Infection and Risk of Fetal Congenital Heart Diseases: A Meta-Analysis of Observational Studies.

  • Ziwei Ye‎ et al.
  • Journal of the American Heart Association‎
  • 2019‎

Background At present, the association between maternal viral infection and risk of congenital heart diseases ( CHD ) in offspring is uncertain; additionally, a complete overview is missing. A meta-analysis of observational studies was performed to address the question of whether women who had a history of viral infection in early pregnancy were at an increased risk of CHD in offspring, compared with mothers without viral infection. Methods and Results Unrestricted searches were conducted, with an end date parameter of July 15, 2018, of PubMed, Embase, Google Scholar, Cochrane Libraries, and Chinese databases, to identify studies that met prestated inclusion criteria. Seventeen case-control studies involving 67 233 women were included for analysis. Both fixed-effects models (odds ratio [OR], 1.83; 95% CI , 1.58-2.12; P<0.0001) and random-effects models ( OR , 2.28; 95% CI , 1.54-3.36; P<0.0001) suggested that mothers who had a history of viral infection in early pregnancy experienced a significantly increased risk of developing CHD in offspring. For specific viral infections, the risk of developing CHD in offspring was significantly increased among mothers with rubella virus (OR, 3.49, 95% CI, 2.39-5.11 in fixed-effects models; and OR, 3.54; 95% CI, 1.75-7.15 in random-effects models) and cytomegalovirus (OR, 3.95; 95% CI, 1.87-8.36 in fixed-effects models) in early pregnancy; however, other maternal viral infections in early pregnancy were not significantly associated with risk of CHD in offspring. Sensitivity analysis yielded consistent results. No evidence of publication bias was observed. Conclusions Although the role of potential bias and evidence of heterogeneity should be carefully evaluated, the present study suggests that maternal viral infection is significantly associated with risk of CHD in offspring.


Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases.

  • Guan Ning Lin‎ et al.
  • Neuron‎
  • 2015‎

The psychiatric disorders autism and schizophrenia have a strong genetic component, and copy number variants (CNVs) are firmly implicated. Recurrent deletions and duplications of chromosome 16p11.2 confer a high risk for both diseases, but the pathways disrupted by this CNV are poorly defined. Here we investigate the dynamics of the 16p11.2 network by integrating physical interactions of 16p11.2 proteins with spatiotemporal gene expression from the developing human brain. We observe profound changes in protein interaction networks throughout different stages of brain development and/or in different brain regions. We identify the late mid-fetal period of cortical development as most critical for establishing the connectivity of 16p11.2 proteins with their co-expressed partners. Furthermore, our results suggest that the regulation of the KCTD13-Cul3-RhoA pathway in layer 4 of the inner cortical plate is crucial for controlling brain size and connectivity and that its dysregulation by de novo mutations may be a potential determinant of 16p11.2 CNV deletion and duplication phenotypes.


Techniques used in studies of epigenome dysregulation due to aberrant DNA methylation: an emphasis on fetal-based adult diseases.

  • Shuk-mei Ho‎ et al.
  • Reproductive toxicology (Elmsford, N.Y.)‎
  • 2007‎

Epigenetic changes are heritable modifications that do not involve alterations in the primary DNA sequence. They regulate crucial cellular functions such as genome stability, X-chromosome inactivation, and gene imprinting. Epidemiological and experimental observations now suggest that such changes may also explain the fetal basis of adult diseases such as cancer, obesity, diabetes, cardiovascular disorders, neurological diseases, and behavioral modifications. The main molecular events known to initiate and sustain epigenetic modifications are histone modification and DNA methylation. This review specifically focuses on existing and emerging technologies used in studying DNA methylation, which occurs primarily at CpG dinucleotides in the genome. These include standard exploratory tools used for global profiling of DNA methylation and targeted gene investigation: methylation sensitive restriction fingerprinting (MSRF), restriction landmark genomic scanning (RLGS), methylation CpG island amplification-representational difference analysis (MCA-RDA), differential methylation hybridization (DMH), and cDNA microarrays combined with treatment with demethylating agents and inhibitors of histone deacetylase. The basic operating principals, resource requirements, applications, and benefits and limitations of each methodology are discussed. Validation methodologies and functional assays needed to establish the role of a CpG-rich sequence in regulating the expression of a target or candidate gene are outlined. These include in silico database searches, methylation status studies (bisulfite genomic sequencing, COBRA, MS-PCR, MS-SSCP), gene expression studies, and promoter activity analyses. Our intention is to give readers a starting point for choosing methodologies and to suggest a workflow to follow during their investigations. We believe studies of epigenetic changes such as DNA methylation hold great promise in understanding the early origins of adult diseases and in advancing their diagnosis, prevention, and treatment.


Spatiotemporal 22q11.21 Protein Network Implicates DGCR8-Dependent MicroRNA Biogenesis as a Risk for Late-Fetal Cortical Development in Psychiatric Diseases.

  • Liang Chen‎ et al.
  • Life (Basel, Switzerland)‎
  • 2021‎

Chromosome 22q11.21 copy number variant (CNV) is a vital risk factor that can be a genetic predisposition to neurodevelopmental disorders (NDD). As 22q11.21 CNV affects multiple genes, causal disease genes and mechanisms affected are still poorly understood. Thus, we aimed to identify the most impactful 22q11.21 CNV genes and the potential impacted human brain regions, developmental stages, and signaling pathways. We constructed the spatiotemporal dynamic networks of 22q11.21 CNV genes using the brain developmental transcriptome and physical protein-protein interactions. The affected brain regions, developmental stages, driver genes, and pathways were subsequently investigated via integrated bioinformatics analysis. As a result, we first identified that 22q11.21 CNV genes affect cortical area mainly during late-fetal periods. Interestingly, we observed that connections between a driver gene DGCR8 and its interacting partners, MECP2 and CUL3, also network hubs, only existed in the network of late-fetal period within cortical region, suggesting their functional specificity during brain development. We also confirmed the physical interaction result between DGCR8 and CUL3 by liquid chromatography-tandem mass spectrometry. As a whole, our results could suggest that the disruption of DGCR8-dependent microRNA biogenesis plays a vital role in NDD for late-fetal cortical development.


Cell-Free Fetal DNA and Non-Invasive Prenatal Diagnosis of Chromosomopathies and Pediatric Monogenic Diseases: A Critical Appraisal and Medicolegal Remarks.

  • Giuseppe Gullo‎ et al.
  • Journal of personalized medicine‎
  • 2022‎

Cell-free fetal DNA (cffDNA) analysis is a non-invasive prenatal diagnostic test with a fundamental role for the screening of chromosomic or monogenic pathologies of the fetus. Its administration is performed by fetal DNA detection in the mother's blood from the fourth week of gestation. Given the great interest regarding its validation as a diagnostic tool, the authors have set out to undertake a critical appraisal based on a wide-ranging narrative review of 45 total studies centered around such techniques. Both chromosomopathies and monogenic diseases were taken into account and systematically discussed and elucidated. Not surprisingly, cell-free fetal DNA analysis for screening purposes is already rather well-established. At the same time, considerable interest in its diagnostic value has emerged from this literature review, which recommends the elaboration of appropriate validation studies, as well as a broad discourse, involving all stakeholders, to address the legal and ethical complexities that such techniques entail.


Detecting abnormal placental microvascular flow in maternal and fetal diseases based on flow-compensated and non-compensated intravoxel incoherent motion imaging.

  • Yuhao Liao‎ et al.
  • Placenta‎
  • 2022‎

Intravoxel Incoherent Motion (IVIM) imaging has been used to assess placental microcirculatory flows. We proposed a joint analysis of flow-compensated (FC) and non-compensated (NC) diffusion MRI to estimate the fraction and velocity of ballistic microcirculatory flow (fb and vb), and evaluated the diagnostic performance of the new markers in maternal and fetal disorders.


Diseases and their clinical heterogeneity - Are we ignoring the SNiPers and micRomaNAgers? An illustration using Beta-thalassemia clinical spectrum and fetal hemoglobin levels.

  • Sankha Subhra Das‎ et al.
  • Genomics‎
  • 2019‎

Diseases and pathological ailments are known to perplex clinicians and researchers with their varied clinical manifestations. Such variations are mostly attributed to the complex interplays between numerous molecular players and their modifiers. This complexity in turn baffles scientists further to tweak multiple players together when attempting to identify definitive therapeutic interventions. In this pursuit, researchers often tend to ignore one of the commonest known genetic variations - single nucleotide polymorphisms (SNPs) in non-coding genetic regions. In this study, we demonstrate how SNPs in critical genes and their miRNA regulators may play a crucial role in varied clinical manifestations using the beta-thalassemia clinical spectrum and fetal hemoglobin levels (HbF) as an illustration. A methodological approach using freely available bioinformatics tools was able to identify SNPs in pre-miRNA regions, pre-miRNA flanking regions and miRNA binding sites which in turn are expected to alter the translation process and thereby the expression of HbF.


Maternal-fetal outcomes in patients with immune mediated inflammatory diseases, with consideration of comorbidities: a retrospective cohort study in a large U.S. healthcare system.

  • Yeon Mi Hwang‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Immune-mediated inflammatory diseases (IMIDs) are likely to complicate maternal health. However, literature data on patients with IMIDs undergoing pregnancy is scarce and often overlooks the impact of comorbidities.


Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2.

  • Heli Tiensuu‎ et al.
  • PLoS genetics‎
  • 2019‎

Spontaneous preterm birth (SPTB) is the leading cause of neonatal death and morbidity worldwide. Both maternal and fetal genetic factors likely contribute to SPTB. We performed a genome-wide association study (GWAS) on a population of Finnish origin that included 247 infants with SPTB (gestational age [GA] < 36 weeks) and 419 term controls (GA 38-41 weeks). The strongest signal came within the gene encoding slit guidance ligand 2 (SLIT2; rs116461311, minor allele frequency 0.05, p = 1.6×10-6). Pathway analysis revealed the top-ranking pathway was axon guidance, which includes SLIT2. In 172 very preterm-born infants (GA <32 weeks), rs116461311 was clearly overrepresented (odds ratio 4.06, p = 1.55×10-7). SLIT2 variants were associated with SPTB in another European population that comprised 260 very preterm infants and 9,630 controls. To gain functional insight, we used immunohistochemistry to visualize SLIT2 and its receptor ROBO1 in placentas from spontaneous preterm and term births. Both SLIT2 and ROBO1 were located in villous and decidual trophoblasts of embryonic origin. Based on qRT-PCR, the mRNA levels of SLIT2 and ROBO1 were higher in the basal plate of SPTB placentas compared to those from term or elective preterm deliveries. In addition, in spontaneous term and preterm births, placental SLIT2 expression was correlated with variations in fetal growth. Knockdown of ROBO1 in trophoblast-derived HTR8/SVneo cells by siRNA indicated that it regulate expression of several pregnancy-specific beta-1-glycoprotein (PSG) genes and genes involved in inflammation. Our results show that the fetal SLIT2 variant and both SLIT2 and ROBO1 expression in placenta and trophoblast cells may be correlated with susceptibility to SPTB. SLIT2-ROBO1 signaling was linked with regulation of genes involved in inflammation, PSG genes, decidualization and fetal growth. We propose that this receptor-ligand couple is a component of the signaling network that promotes SPTB.


Fetal Heart Rate Variability Is Affected by Fetal Movements: A Systematic Review.

  • Anne Rahbek Zizzo‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Introduction: Fetal heart rate variability (FHRV) evaluates the fetal neurological state, which is poorly assessed by conventional prenatal surveillance including cardiotocography (CTG). Accurate FHRV on a beat-to-beat basis, assessed by time domain and spectral domain analyses, has shown promising results in the scope of fetal surveillance. However, accepted standards for these techniques are lacking, and the influence of fetal breathing movements and gross movements may be especially challenging. Thus, current standards for equivalent assessments in adults prescribe rest and controlled respiration. The aim of this review is to clarify the importance of fetal movements on FHRV. Methods: A systematic review in accordance with the PRISMA guidelines based on publications in the EMBASE, the MEDLINE, and the Cochrane Library databases was performed. Studies describing the impact of fetal movements on time domain, spectral domain and entropy analyses in healthy human fetuses were reviewed. Only studies based on fetal electrocardiography or fetal magnetocardiography were included. PROSPERO registration number: CRD42018068806. Results: In total, 14 observational studies were included. Fetal movement detection, signal processing, length, and selection of appropriate time series varied across studies. Despite these divergences, all studies showed an increase in overall FHRV in the moving fetus compared to the resting fetus. Especially short-term, vagal mediated indexes showed an increase during fetal breathing movements including an increase in Root Mean Square of the Successive Differences (RMSSD) and High Frequency power (HF) and a decrease in Low Frequency power/High Frequency power (LF/HF). These findings were present even in analyses restricted to one specific fetal behavioral state defined by Nijhuis. On the other hand, fetal body movements seemed to increase parameters supposed to represent the sympathetic response [LF and Standard Deviation of RR-intervals from normal sinus beats (SDNN)] proportionally more than parameters representing the parasympathetic response (RMSSD, HF). Results regarding entropy analyses were inconclusive. Conclusion: Time domain analyses as well as spectral domain analyses are affected by fetal movements. Fetal movements and especially breathing movements should be considered in these analyses of FHRV.


Effectiveness of ambulatory non-invasive fetal electrocardiography: impact of maternal and fetal characteristics.

  • Becky Liu‎ et al.
  • Acta obstetricia et gynecologica Scandinavica‎
  • 2023‎

Non-invasive fetal electrocardiography (NIFECG) has potential benefits over the computerized cardiotocography (cCTG) that may permit its development in remote fetal heart-rate monitoring. Our study aims to compare signal quality and heart-rate detection from a novel self-applicable NIFECG monitor against the cCTG, and evaluate the impact of maternal and fetal characteristics on both devices.


Fetal auditory evoked responses to onset of amplitude modulated sounds. A fetal magnetoencephalography (fMEG) study.

  • R Draganova‎ et al.
  • Hearing research‎
  • 2018‎

The human fetal auditory system is functional around the 25th week of gestational age when the thalamocortical connections are established. Fetal magnetoencephalography (fMEG) provides evidence for fetal auditory brain responses to pure tones and syllables. Fifty-five pregnant women between 31 and 40 weeks of gestation were included in the study. Fetal MEG was recorded during the presentation of an amplitude modulated tone (AM) with a carrier frequency of 500 Hz to the maternal abdomen modulated by low modulation rates (MRs) - 2/s and 4/s, middle MR - 8/s and high MRs - 27/s, 42/s, 78/s and 91/s. The aim was to determine whether the fetal brain responds differently to envelope slopes and intensity change at the onset of the AM sounds. A significant decrease of the response latencies of transient event-related responses (ERR) to high and middle MRs in comparison to the low MRs was observed. The highest fetal response rate was achieved by modulation rates of 2/s, 4/s and 27/s (70%, 57%, and 86%, respectively). Additionally, a maturation effect of the ERR (response latency vs. gestational age) was observed only for 4/s MR. The significant difference between the response latencies to low, middle, and high MRs suggests that still before birth the fetal brain processes the sound slopes at the onset in different integration time-windows, depending on the time for the intensity increase or stimulus power density at the onset, which is a prerequisite for language acquisition.


Effectiveness of Remote Fetal Monitoring on Maternal-Fetal Outcomes: Systematic Review and Meta-Analysis.

  • Suya Li‎ et al.
  • JMIR mHealth and uHealth‎
  • 2023‎

To solve the disadvantages of traditional fetal monitoring such as time-consuming, cumbersome steps and low coverage, it is paramount to develop remote fetal monitoring. Remote fetal monitoring expands time and space, which is expected to popularize fetal monitoring in remote areas with the low availability of health services. Pregnant women can transmit fetal monitoring data from remote monitoring terminals to the central monitoring station so that doctors can interpret it remotely and detect fetal hypoxia in time. Fetal monitoring involving remote technology has also been carried out, but with some conflicting results.


Diagnostic value of fetal hemoglobin Bart's for evaluation of fetal α-thalassemia syndromes: application to prenatal characterization of fetal anemia caused by undiagnosed α-hemoglobinopathy.

  • Kritsada Singha‎ et al.
  • Orphanet journal of rare diseases‎
  • 2022‎

To evaluate whether the quantification of fetal hemoglobin (Hb) Bart's is useful for differentiation of α-thalassemia syndromes in the fetus and to characterize the fetal anemia associated with fetal α-hemoglobinopathy.


Discordant circulating fetal DNA and subsequent cytogenetics reveal false negative, placental mosaic, and fetal mosaic cfDNA genotypes.

  • Roger V Lebo‎ et al.
  • Journal of translational medicine‎
  • 2015‎

The American College of Obstetrics and Gynecology (ACOG) and Maternal Fetal Medicine (MFM) Societies recommended that abnormal cfDNA fetal results should be confirmed by amniocentesis and karyotyping. Our results demonstrate that normal cfDNA results inconsistent with high-resolution abnormal ultrasounds should be confirmed by karyotyping following a substantial frequency of incorrect cfDNA results.


Decoding human fetal liver haematopoiesis.

  • Dorin-Mirel Popescu‎ et al.
  • Nature‎
  • 2019‎

Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic stem cells and multipotent progenitors (HSC/MPPs) but remains poorly defined in humans. Here, using single-cell transcriptome profiling of approximately 140,000 liver and 74,000 skin, kidney and yolk sac cells, we identify the repertoire of human blood and immune cells during development. We infer differentiation trajectories from HSC/MPPs and evaluate the influence of the tissue microenvironment on blood and immune cell development. We reveal physiological erythropoiesis in fetal skin and the presence of mast cells, natural killer and innate lymphoid cell precursors in the yolk sac. We demonstrate a shift in the haemopoietic composition of fetal liver during gestation away from being predominantly erythroid, accompanied by a parallel change in differentiation potential of HSC/MPPs, which we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the study of paediatric blood and immune disorders, and a reference for harnessing the therapeutic potential of HSC/MPPs.


Maternal Influenza A Virus Infection Restricts Fetal and Placental Growth and Adversely Affects the Fetal Thymic Transcriptome.

  • Hana Van Campen‎ et al.
  • Viruses‎
  • 2020‎

Maternal influenza A viral infections in humans are associated with low birth weight, increased risk of pre-term birth, stillbirth and congenital defects. To examine the effect of maternal influenza virus infection on placental and fetal growth, pregnant C57BL/6 mice were inoculated intranasally with influenza A virus A/CA/07/2009 pandemic H1N1 or phosphate-buffered saline (PBS) at E3.5, E7.5 or E12.5, and the placentae and fetuses collected and weighed at E18.5. Fetal thymuses were pooled from each litter. Placentae were examined histologically, stained by immunohistochemistry (IHC) for CD34 (hematopoietic progenitor cell antigen) and vascular channels quantified. RNA from E7.5 and E12.5 placentae and E7.5 fetal thymuses was subjected to RNA sequencing and pathway analysis. Placental weights were decreased in litters inoculated with influenza at E3.5 and E7.5. Placentae from E7.5 and E12.5 inoculated litters exhibited decreased labyrinth development and the transmembrane protein 150A gene was upregulated in E7.5 placentae. Fetal weights were decreased in litters inoculated at E7.5 and E12.5 compared to controls. RNA sequencing of E7.5 thymuses indicated that 957 genes were downregulated ≥2-fold including Mal, which is associated with Toll-like receptor signaling and T cell differentiation. There were 28 upregulated genes. It is concluded that maternal influenza A virus infection impairs fetal thymic gene expression as well as restricting placental and fetal growth.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: