Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,845 papers

Hindbrain insulin controls feeding behavior.

  • Kim Eerola‎ et al.
  • Molecular metabolism‎
  • 2022‎

Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice.


Motor control of Drosophila feeding behavior.

  • Olivia Schwarz‎ et al.
  • eLife‎
  • 2017‎

The precise coordination of body parts is essential for survival and behavior of higher organisms. While progress has been made towards the identification of central mechanisms coordinating limb movement, only limited knowledge exists regarding the generation and execution of sequential motor action patterns at the level of individual motoneurons. Here we use Drosophila proboscis extension as a model system for a reaching-like behavior. We first provide a neuroanatomical description of the motoneurons and muscles contributing to proboscis motion. Using genetic targeting in combination with artificial activation and silencing assays we identify the individual motoneurons controlling the five major sequential steps of proboscis extension and retraction. Activity-manipulations during naturally evoked proboscis extension show that orchestration of serial motoneuron activation does not rely on feed-forward mechanisms. Our data support a model in which central command circuits recruit individual motoneurons to generate task-specific proboscis extension sequences.


A temperature-regulated circuit for feeding behavior.

  • Shaowen Qian‎ et al.
  • Nature communications‎
  • 2022‎

Both rodents and primates have evolved to orchestrate food intake to maintain thermal homeostasis in coping with ambient temperature challenges. However, the mechanisms underlying temperature-coordinated feeding behavior are rarely reported. Here we find that a non-canonical feeding center, the anteroventral and periventricular portions of medial preoptic area (apMPOA) respond to altered dietary states in mice. Two neighboring but distinct neuronal populations in apMPOA mediate feeding behavior by receiving anatomical inputs from external and dorsal subnuclei of lateral parabrachial nucleus. While both populations are glutamatergic, the arcuate nucleus-projecting neurons in apMPOA can sense low temperature and promote food intake. The other type, the paraventricular hypothalamic nucleus (PVH)-projecting neurons in apMPOA are primarily sensitive to high temperature and suppress food intake. Caspase ablation or chemogenetic inhibition of the apMPOA→PVH pathway can eliminate the temperature dependence of feeding. Further projection-specific RNA sequencing and fluorescence in situ hybridization identify that the two neuronal populations are molecularly marked by galanin receptor and apelin receptor. These findings reveal unrecognized cell populations and circuits of apMPOA that orchestrates feeding behavior against thermal challenges.


Feeding Experimentation Device (FED): A flexible open-source device for measuring feeding behavior.

  • Katrina P Nguyen‎ et al.
  • Journal of neuroscience methods‎
  • 2016‎

Measuring food intake in rodents is a conceptually simple yet labor-intensive and temporally-imprecise task. Most commonly, food is weighed manually, with an interval of hours or days between measurements. Commercial feeding monitors are excellent, but are costly and require specialized caging and equipment.


Assessment of feeding behavior in laboratory mice.

  • Kate L J Ellacott‎ et al.
  • Cell metabolism‎
  • 2010‎

The global obesity epidemic has heightened the need for an improved understanding of how body weight is controlled, and research using mouse models is critical to this effort. In this perspective, we provide a conceptual framework for investigation of feeding behavior in this species, with an emphasis on factors that influence study design, data interpretation, and relevance to feeding behavior in humans. Although we focus on the mouse, the principles presented can be applied to most other animal models. This document represents the current consensus view of investigators from the National Institutes of Health (NIH)-funded Mouse Metabolic Phenotyping Centers (MMPCs).


Feeding behavior during sialodacryoadenitis viral infection in rats.

  • T Sato‎ et al.
  • Physiology & behavior‎
  • 2001‎

Sialodacryoadenitis (SDA) is a highly contagious common viral infection in rats, akin to mumps in humans. Anorexia occurs during such viral infection. But the pattern of the decrease in food intake (a decrease in either meal size and meal number or both) during spontaneous viral infection has not been previously characterized. We observed the onset of anorexia and an abnormal feeding pattern during an opportunistic SDA viral infection in our rat colony. We thus studied seven male rats. Before the viral infection there was a positive association between food intake and meal number (P<.05). After infection food intake decreased by 68%. This occurred via a significant decrease in meal size (by 69%) (P<.05); and a nonsignificant decrease in meal number (P=.71). This pattern of decreased food intake is similar to that occurring during indomethacin-induced ulcerative ileitis, where we previously measured an increase in plasma tumor-necrosis factor (TNF)-alpha. Anorexia in response to bacterial lipopolysaccharide administration, which is also linked to plasma TNF-alpha, is however, caused only via a decrease in meal number. The differences in the decrease in the feeding pattern between the SDA viral and a bacterial infection suggest that factors other than TNF-alpha alone play a significant role in the mechanism of anorexia during a viral infection.


Serotonin Drives Predatory Feeding Behavior via Synchronous Feeding Rhythms in the Nematode Pristionchus pacificus.

  • Misako Okumura‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2017‎

Feeding behaviors in a wide range of animals are regulated by the neurotransmitter serotonin, although the exact neural circuits and associated mechanism are often unknown. The nematode Pristionchus pacificus can kill other nematodes by opening prey cuticles with movable teeth. Previous studies showed that exogenous serotonin treatment induces a predatory-like tooth movement and slower pharyngeal pumping in the absence of prey; however, physiological functions of serotonin during predation and other behaviors in P. pacificus remained completely unknown. Here, we investigate the roles of serotonin by generating mutations in Ppa-tph-1 and Ppa-bas-1, two key serotonin biosynthesis enzymes, and by genetic ablation of pharynx-associated serotonergic neurons. Mutations in Ppa-tph-1 reduced the pharyngeal pumping rate during bacterial feeding compared with wild-type. Moreover, the loss of serotonin or a subset of serotonergic neurons decreased the success of predation, but did not abolish the predatory feeding behavior completely. Detailed analysis using a high-speed camera revealed that the elimination of serotonin or the serotonergic neurons disrupted the timing and coordination of predatory tooth movement and pharyngeal pumping. This loss of synchrony significantly reduced the efficiency of successful predation events. These results suggest that serotonin has a conserved role in bacterial feeding and in addition drives the feeding rhythm of predatory behavior in Pristionchus.


REM sleep stabilizes hypothalamic representation of feeding behavior.

  • Lukas T Oesch‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

During rapid eye movement (REM) sleep, behavioral unresponsiveness contrasts strongly with intense brain-wide neural network dynamics. Yet, the physiological functions of this cellular activation remain unclear. Using in vivo calcium imaging in freely behaving mice, we found that inhibitory neurons in the lateral hypothalamus (LHvgat) show unique activity patterns during feeding that are reactivated during REM, but not non-REM, sleep. REM sleep-specific optogenetic silencing of LHvgat cells induced a reorganization of these activity patterns during subsequent feeding behaviors accompanied by decreased food intake. Our findings provide evidence for a role for REM sleep in the maintenance of cellular representations of feeding behavior.


Modulation of feeding behavior and metabolism by dynorphin.

  • Aishwarya Ghule‎ et al.
  • Scientific reports‎
  • 2020‎

The neuronal regulation of metabolic and behavioral responses to different diets and feeding regimens is an important research area. Herein, we investigated if the opioid peptide dynorphin modulates feeding behavior and metabolism. Mice lacking dynorphin peptides (KO) were exposed to either a normal diet (ND) or a high-fat diet (HFD) for a period of 12 weeks. Additionally, mice had either time-restricted (TR) or ad libitum (AL) access to food. Body weight, food intake and blood glucose levels were monitored throughout the 12-week feeding schedule. Brain samples were analyzed by immunohistochemistry to detect changes in the expression levels of hypothalamic peptides. As expected, animals on HFD or having AL access to food gained more weight than mice on ND or having TR access. Unexpectedly, KO females on TR HFD as well as KO males on AL ND or AL HFD demonstrated a significantly increased body weight gain compared to the respective WT groups. The calorie intake differed only marginally between the genotypes: a significant difference was present in the female ND AL group, where dynorphin KO mice ate more than WT mice. Although female KO mice on a TR feeding regimen consumed a similar amount of food as WT controls, they displayed significantly higher levels of blood glucose. We observed significantly reduced levels of hypothalamic orexigenic peptides neuropeptide Y (NPY) and orexin-A in KO mice. This decrease became particularly pronounced in the HFD groups and under AL condition. The kappa opiod receptor (KOR) levels were higher after HFD compared to ND feeding in the ventral pallidum of WT mice. We hypothesize that HFD enhances dynorphin signaling in this hedonic center to maintain energy homeostasis, therefore KO mice have a more pronounced phenotype in the HFD condition due to the lack of it. Our data suggest that dynorphin modulates metabolic changes associated with TR feeding regimen and HFD consumption. We conclude that the lack of dynorphin causes uncoupling between energy intake and body weight gain in mice; KO mice maintained on HFD become overweight despite their normal food intake. Thus, using kappa opioid receptor agonists against obesity could be considered as a potential treatment strategy.


Spexin Regulates Hypothalamic Leptin Action on Feeding Behavior.

  • Bora Jeong‎ et al.
  • Biomolecules‎
  • 2022‎

Spexin (SPX) is a recently identified neuropeptide that is believed to play an important role in the regulation of energy homeostasis. Here, we describe a mediating function of SPX in hypothalamic leptin action. Intracerebroventricular (icv) SPX administration induced a decrease in food intake and body weight gain. SPX was found to be expressed in cells expressing leptin receptor ObRb in the mouse hypothalamus. In line with this finding, icv leptin injection increased SPX mRNA in the ObRb-positive cells of the hypothalamus, which was blocked by treatment with a STAT3 inhibitor. Leptin also increased STAT3 binding to the SPX promoter, as measured by chromatin immunoprecipitation assays. In vivo blockade of hypothalamic SPX biosynthesis with an antisense oligodeoxynucleotide (AS ODN) resulted in a diminished leptin effect on food intake and body weight. AS ODN reversed leptin's effect on the proopiomelanocortin (POMC) mRNA expression and, moreover, decreased leptin-induced STAT3 binding to the POMC promoter sequence. These results suggest that SPX is involved in leptin's action on POMC gene expression in the hypothalamus and impacts the anorexigenic effects of leptin.


Fat body phospholipid state dictates hunger-driven feeding behavior.

  • Kevin P Kelly‎ et al.
  • eLife‎
  • 2022‎

Diet-induced obesity leads to dysfunctional feeding behavior. However, the precise molecular nodes underlying diet-induced feeding motivation dysregulation are poorly understood. The fruit fly is a simple genetic model system yet displays significant evolutionary conservation to mammalian nutrient sensing and energy balance. Using a longitudinal high-sugar regime in Drosophila, we sought to address how diet-induced changes in adipocyte lipid composition regulate feeding behavior. We observed that subjecting adult Drosophila to a prolonged high-sugar diet degrades the hunger-driven feeding response. Lipidomics analysis reveals that longitudinal exposure to high-sugar diets significantly alters whole-body phospholipid profiles. By performing a systematic genetic screen for phospholipid enzymes in adult fly adipocytes, we identify Pect as a critical regulator of hunger-driven feeding. Pect is a rate-limiting enzyme in the phosphatidylethanolamine (PE) biosynthesis pathway and the fly ortholog of human PCYT2. We show that disrupting Pect activity only in the Drosophila fat cells causes insulin resistance, dysregulated lipoprotein delivery to the brain, and a loss of hunger-driven feeding. Previously human studies have noted a correlation between PCYT2/Pect levels and clinical obesity. Now, our unbiased studies in Drosophila provide causative evidence for adipocyte Pect function in metabolic homeostasis. Altogether, we have uncovered that PE phospholipid homeostasis regulates hunger response.


The pharyngeal nervous system orchestrates feeding behavior in planarians.

  • Mai Miyamoto‎ et al.
  • Science advances‎
  • 2020‎

Planarians exhibit traits of cephalization but are unique among bilaterians in that they ingest food by means of goal-directed movements of a trunk-positioned pharynx, following protrusion of the pharynx out of the body, raising the question of how planarians control such a complex set of body movements for achieving robust feeding. Here, we use the freshwater planarian Dugesia japonica to show that an isolated pharynx amputated from the planarian body self-directedly executes its entire sequence of feeding functions: food sensing, approach, decisions about ingestion, and intake. Gene-specific silencing experiments by RNA interference demonstrated that the pharyngeal nervous system (PhNS) is required not only for feeding functions of the pharynx itself but also for food-localization movements of individual animals, presumably via communication with the brain. These findings reveal an unexpected central role of the PhNS in the linkage between unique morphological phenotypes and feeding behavior in planarians.


Feeding Behavior of Mice under Different Food Allocation Regimens.

  • Hiroshi Ueno‎ et al.
  • Behavioural neurology‎
  • 2019‎

Social interaction, a basic survival strategy for many animal species, helps maintain a social environment that has limited conflict. Social dominance has a dramatic effect on motivation. Recent evidence suggests that some primate and nonprimate species display aversive behavior toward food allocation regimens that differ from their peers. Thus, we examined the behaviors displayed by mice under different food allocation regimens. We analyzed changes in food intake using several parameters. In the same food condition, the mice received the same food; in the quality different condition, the mice received different foods; in the quantity different condition, one mouse did not receive food; and in the no food condition, none of the mice received food. To test differences based on food quality, one mouse received normal solid food as a less preferred reward, and the other received chocolate chips as a high-level reward. No behavioral change was observed in comparison to the same food condition. To test differences based on food quantity, one mouse received chocolate chips while the other received nothing. Mice who received nothing spent more time on the other side of the reward throughout the experiment. Interestingly, highly rewarded mice required more time to consume the chocolate chips. Thus, under different food allocation regimens, mice changed their behavior by being more hesitant. Moreover, mice alter food intake behavior according to the social environment. The findings help elucidate potential evolutionary aspects that help maintain social cohesion while providing insights into potential mechanisms underlying socially anxious behavior.


Adenovirus-mediated suppression of hypothalamic glucokinase affects feeding behavior.

  • Romina María Uranga‎ et al.
  • Scientific reports‎
  • 2017‎

Glucokinase (GK), the hexokinase involved in glucosensing in pancreatic β-cells, is also expressed in arcuate nucleus (AN) neurons and hypothalamic tanycytes, the cells that surround the basal third ventricle (3V). Several lines of evidence suggest that tanycytes may be involved in the regulation of energy homeostasis. Tanycytes have extended cell processes that contact the feeding-regulating neurons in the AN, particularly, agouti-related protein (AgRP), neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and proopiomelanocortin (POMC) neurons. In this study, we developed an adenovirus expressing GK shRNA to inhibit GK expression in vivo. When injected into the 3V of rats, this adenovirus preferentially transduced tanycytes. qRT-PCR and Western blot assays confirmed GK mRNA and protein levels were lower in GK knockdown animals compared to the controls. In response to an intracerebroventricular glucose injection, the mRNA levels of anorexigenic POMC and CART and orexigenic AgRP and NPY neuropeptides were altered in GK knockdown animals. Similarly, food intake, meal duration, frequency of eating events and the cumulative eating time were increased, whereas the intervals between meals were decreased in GK knockdown rats, suggesting a decrease in satiety. Thus, GK expression in the ventricular cells appears to play an important role in feeding behavior.


Superb feeding behavior of Aedes albopictus transmitting Zika virus.

  • Young Ran Ha‎ et al.
  • PloS one‎
  • 2017‎

Disease-mediated mosquitoes have been receiving much attention, as the World Health Organization recently declared the Zika virus a global public health emergency. Mosquitoes transmit pathogens that cause various tropical diseases including malaria, dengue fever and yellow fever as well as Zika virus. The vector efficiency of mosquitoes depends on their blood-feeding characteristics and the mechanics of their blood-sucking pump system, but only a few studies have attempted to investigate these key issues. In this study, we demonstrate the rapid and gluttonous liquid-feeding characteristics of Ae. albopictus which transmits Zika virus can be explained by similar proportion of two blood-sucking pumps and accelerated liquid intake driven by fast expanding of pumps. Our results provide insight into the vector efficiency of Ae. albopictus in terms of feeding velocity, pumping frequency, liquid-intake rate, and wall shear stress.


Neural and genetic degeneracy underlies Caenorhabditis elegans feeding behavior.

  • Nicholas F Trojanowski‎ et al.
  • Journal of neurophysiology‎
  • 2014‎

Degenerate networks, in which structurally distinct elements can perform the same function or yield the same output, are ubiquitous in biology. Degeneracy contributes to the robustness and adaptability of networks in varied environmental and evolutionary contexts. However, how degenerate neural networks regulate behavior in vivo is poorly understood, especially at the genetic level. Here, we identify degenerate neural and genetic mechanisms that underlie excitation of the pharynx (feeding organ) in the nematode Caenorhabditis elegans using cell-specific optogenetic excitation and inhibition. We show that the pharyngeal neurons MC, M2, M4, and I1 form multiple direct and indirect excitatory pathways in a robust network for control of pharyngeal pumping. I1 excites pumping via MC and M2 in a state-dependent manner. We identify nicotinic and muscarinic receptors through which the pharyngeal network regulates feeding rate. These results identify two different mechanisms by which degeneracy is manifest in a neural circuit in vivo.


Automatically tracking feeding behavior in populations of foraging C. elegans.

  • Elsa Bonnard‎ et al.
  • eLife‎
  • 2022‎

Caenorhabditis elegans feeds on bacteria and other small microorganisms which it ingests using its pharynx, a neuromuscular pump. Currently, measuring feeding behavior requires tracking a single animal, indirectly estimating food intake from population-level metrics, or using restrained animals. To enable large throughput feeding measurements of unrestrained, crawling worms on agarose plates at a single worm resolution, we developed an imaging protocol and a complementary image analysis tool called PharaGlow. We image up to 50 unrestrained crawling worms simultaneously and extract locomotion and feeding behaviors. We demonstrate the tool's robustness and high-throughput capabilities by measuring feeding in different use-case scenarios, such as through development, with genetic and chemical perturbations that result in faster and slower pumping, and in the presence or absence of food. Finally, we demonstrate that our tool is capable of long-term imaging by showing behavioral dynamics of mating animals and worms with different genetic backgrounds. The low-resolution fluorescence microscopes required are readily available in C. elegans laboratories, and in combination with our python-based analysis workflow makes this methodology easily accessible. PharaGlow therefore enables the observation and analysis of the temporal dynamics of feeding and locomotory behaviors with high-throughput and precision in a user-friendly system.


Feeding behavior of growing and finishing pigs fed different dietary threonine levels in a group-phase feeding and individual precision feeding system.

  • Aline Remus‎ et al.
  • Translational animal science‎
  • 2020‎

Feeding behavior is an important aspect of pig husbandry as it can affect protein deposition (PD) in pigs. A decrease in plasma threonine (Thr) levels may influence feed intake (FI) due to amino acid imbalance. We set out to study whether different Thr inclusion rates of 70%, 85%, 100%, 115%, and 130% of the ideal Thr:lysine (Lys) ratio of 0.65 in two different feeding programs (individual precision feeding and group-phase feeding could affect pig feeding behavior and consequently PD. Two 21-d trials were performed in a 2 × 5 factorial setup (feeding systems × Thr levels) with 110 pigs in the growing phase [25.0 ± 0.8 kg of body weight (BW)] and 110 pigs in the finishing phase (110.0 ± 7.0 kg BW), which correspond to 11 pigs per treatment in each trial. Pigs were housed in the same room and fed using computerized feeding stations. The total lean content was estimated by dual x-ray absorptiometry at the beginning (day 1) and the end (day 21) of the trial. Multivariate exploratory factor analysis was performed to identify related variables. Confirmatory analysis was performed by orthogonal contrasts and Pearson correlation analysis. Graphical analysis showed no difference in feeding patterns between feeding systems during the growing or finishing phase. Pigs exhibited a predominant diurnal feeding, with most meals (73% on average) consumed between 0600 and 1800 h. Exploratory factor analysis indicated that feeding behavior was not related to growth performance or PD in growing or finishing pigs. Changes in feeding behavior were observed during the growing phase, where increasing dietary Thr resulted in a linear increase in the FI rate (P < 0.05). During the finishing phase, the duration of the meal and FI rate increased linearly as dietary Thr increased in the diet (P < 0.05). These changes in feeding behavior are, however, correlated to BW. In conclusion, the exploratory factor analysis indicated that feeding behavior had no correlation with growth performance or protein and lipid deposition in growing or finishing pigs. Dietary Thr levels and feeding systems had no direct effect on FI.


An H2R-dependent medial septum histaminergic circuit mediates feeding behavior.

  • Lingyu Xu‎ et al.
  • Current biology : CB‎
  • 2022‎

Novel targets for treating feeding-related diseases are of great importance, and histamine has long been considered an anorexigenic agent. However, understanding its functions in feeding in a circuit-specific way is still limited. Here, we report a medial septum (MS)-projecting histaminergic circuit mediating feeding behavior. This MS-projecting histaminergic circuit is functionally inhibited during food consumption, and bidirectionally modulates feeding behavior via downstream H2, but not H1, receptors on MS glutamatergic neurons. Further, we observed a pathological decrease of histamine 2 receptors (H2Rs) expression in MS glutamatergic neurons in diet-induced obesity (DIO) mice. Genetically, down-regulation of H2Rs expression in MS glutamatergic neurons accelerates body-weight gain. Importantly, chronic activation of H2Rs in MS glutamatergic neurons (with its clinical agonist amthamine) significantly slowed down the body-weight gain in DIO mice, providing a possible clinical utility to treat obesity. Together, our results demonstrate that this MS-projecting histaminergic circuit is critically involved in feeding, and H2Rs in MS glutamatergic neurons is a promising target for treating body-weight problems.


Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress.

  • Sarah J Spencer‎
  • Frontiers in neuroscience‎
  • 2013‎

Feeding behavior is closely regulated by neuroendocrine mechanisms that can be influenced by stressful life events. However, the feeding response to stress varies among individuals with some increasing and others decreasing food intake after stress. In addition to the impact of acute lifestyle and genetic backgrounds, the early life environment can have a life-long influence on neuroendocrine mechanisms connecting stress to feeding behavior and may partially explain these opposing feeding responses to stress. In this review I will discuss the perinatal programming of adult hypothalamic stress and feeding circuitry. Specifically I will address how early life (prenatal and postnatal) nutrition, early life stress, and the early life hormonal profile can program the hypothalamic-pituitary-adrenal (HPA) axis, the endocrine arm of the body's response to stress long-term and how these changes can, in turn, influence the hypothalamic circuitry responsible for regulating feeding behavior. Thus, over- or under-feeding and/or stressful events during critical windows of early development can alter glucocorticoid (GC) regulation of the HPA axis, leading to changes in the GC influence on energy storage and changes in GC negative feedback on HPA axis-derived satiety signals such as corticotropin-releasing-hormone. Furthermore, peripheral hormones controlling satiety, such as leptin and insulin are altered by early life events, and can be influenced, in early life and adulthood, by stress. Importantly, these neuroendocrine signals act as trophic factors during development to stimulate connectivity throughout the hypothalamus. The interplay between these neuroendocrine signals, the perinatal environment, and activation of the stress circuitry in adulthood thus strongly influences feeding behavior and may explain why individuals have unique feeding responses to similar stressors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: