Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 237 papers

Block of the helix FMRFamide-gated Na+ channel by FMRFamide and its analogues.

  • K A Green‎ et al.
  • The Journal of physiology‎
  • 1999‎

1. In Helix neurones high doses of Phe-Met-Arg-Phe-NH2 (FMRFamide) often evoke biphasic inward whole-cell currents with brief application, and suppression of the current with prolonged application. With outside-out patches, a transient early suppression of the unitary current amplitude was seen following application of high doses of FMRFamide. 2. Continuous application of a concentration of FMRFamide from 30 microM to 1 mM resulted in a reduction in the amplitude of the unitary currents and an increase in open state noise. There was also an increase in the occurrence of smaller, 'subconductance' currents with the higher concentrations of FMRFamide. Similar effects were seen with FMRFamide on FaNaC expressed in oocytes. The FMRFamide analogues FLRFamide and WnLRFamide were more effective in evoking the lower conductance state. These effects of agonist at high concentrations were voltage dependent suggesting channel block. 3. A similar effect was seen when one of the related peptides FKRFamide, FM(D)RFamide, nLRFamide or N-AcFnLRFamide was co-applied with a low FMRFamide concentration. However, the non-amidated peptides FKRF, FLRF and nLRF and also WMDFamide did not have this effect. 4. The inhibition of unitary currents induced by amiloride was qualitatively different from that produced by FMRFamide analogues with no obvious occurrence of subconductance levels. FMRFamide-gated channels were also blocked by guanidinium, but only at very high concentrations. 5. The results strongly suggest a partial inhibition of current flow through the FMRFamide- gated channel by some part of the agonist or the related antagonist peptide molecules.


The FMRFamide-Like Peptide Family in Nematodes.

  • Katleen Peymen‎ et al.
  • Frontiers in endocrinology‎
  • 2014‎

In the three decades since the FMRFamide peptide was isolated from the mollusk Macrocallista nimbosa, structurally similar peptides sharing a C-terminal RFamide motif have been identified across the animal kingdom. FMRFamide-like peptides (FLPs) represent the largest known family of neuropeptides in invertebrates. In the phylum Nematoda, at least 32 flp-genes are classified, making the FLP system of nematodes unusually complex. The diversity of the nematode FLP complement is most extensively mapped in Caenorhabditis elegans, where over 70 FLPs have been predicted. FLPs have shown to be expressed in the majority of the 302 C. elegans neurons including interneurons, sensory neurons, and motor neurons. The vast expression of FLPs is reflected in the broad functional repertoire of nematode FLP signaling, including neuroendocrine and neuromodulatory effects on locomotory activity, reproduction, feeding, and behavior. In contrast to the many identified nematode FLPs, only few peptides have been assigned a receptor and there is the need to clarify the pathway components and working mechanisms of the FLP signaling network. Here, we review the diversity, distribution, and functions of FLPs in nematodes.


Corrigendum: the FMRFamide-like peptide family in nematodes.

  • Katleen Peymen‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

[This corrects the article on p. 90 in vol. 5, PMID: 24982652.].


FMRFamide-like immunoreactivity in the crayfish nervous system.

  • A J Mercier‎ et al.
  • The Journal of experimental biology‎
  • 1991‎

FMRFamide-like immunoreactivity (FLI) was detected in the nervous system of the crayfish Procambarus clarkii using an antiserum that recognizes extended RFamide peptides. Immunocytochemistry revealed FLI in neuronal somata, axons and varicose processes within the central nervous system. In the periphery, plexuses of immunoreactive varicosities were present in the pericardial organs (POs), in thoracic roots and on the hindgut. The hindgut plexus arose from 3-5 axons leaving the sixth abdominal ganglion (A6) via the intestinal nerve. The presence of FLI in these locations was confirmed by radioimmunoassay. In contrast, no FLI was detected in motor axons innervating exoskeletal muscles of the abdomen. The POs contained by far the largest amount of FLI of all tissues examined. The immunoreactive material was partially characterized by extraction and separation on two consecutive reversed-phase high performance liquid chromatography (RP-HPLC) columns. The largest amount of immunoreactivity on the second column co-eluted with a synthetic peptide, SDRNFLRFamide (F2), previously identified as one of two or more FMRFamide-related peptides contained in lobster POs. The immunoreactive fractions and peptide F2 elicited similar effects on isolated crayfish hearts; all increased the rate and amplitude of spontaneous cardiac contractions. As with the immunoreactivity, the highest level of bioactivity was contained in the fraction that co-eluted with F2. The results suggest that FMRFamide-related peptides act as neurohormones in crayfish and are likely to play roles in controlling circulation and defecation.


FMRFamide-related peptides in Hymenolepis diminuta: immunohistochemistry and radioimmunoassay.

  • S C Sukhdeo‎ et al.
  • Parasitology research‎
  • 1994‎

The localization of FMRFamide-related peptide (FaRP) immunoreactivity was determined during different stages of development of the rat tapeworm Hymenolepis diminuta. In the adult worm (14 days old), FaRP immunostaining was most intense in the scolex and concentrated in the central nervous system (cerebral ganglia and transverse commissures) and around the lips of the suckers. In the strobila, medial and lateral longitudinal nerve cords (LNCs) and ladder-like connecting commissures were the only tissue stained. Immunoreactivity in the medial LNCs of the adult tapeworms extended only to and included proglottides containing developing testis and seminal receptacle but disappeared in proglottides in which primordial ovaries were first detected. Radioimmunoassay confirmed that FaRPs were concentrated in the scolex/neck region of the adult worm (3.9 +/- 1.5 pmol mg protein-1), whereas the lowest concentrations (0.2 +/- 0.19 pmol mg protein-1) were recovered from the regions of the strobila containing shelled eggs. The pattern of FaRP immunoreactivity observed in 5- and 7-day-old worms was similar to that seen in adult worms, but in 2- and 3-day-old worms the pattern of immunoreactivity observed in the cerebral ganglia, transverse commissures, and LNCs differed significantly as compared with that seen in older worms. These results indicate differential utilization and/or roles for FaRPs during development and suggest both central and sensory roles in this tapeworm.


Dietary cysteine drives body fat loss via FMRFamide signaling in Drosophila and mouse.

  • Tingting Song‎ et al.
  • Cell research‎
  • 2023‎

Obesity imposes a global health threat and calls for safe and effective therapeutic options. Here, we found that protein-rich diet significantly reduced body fat storage in fruit flies, which was largely attributed to dietary cysteine intake. Mechanistically, dietary cysteine increased the production of a neuropeptide FMRFamide (FMRFa). Enhanced FMRFa activity simultaneously promoted energy expenditure and suppressed food intake through its cognate receptor (FMRFaR), both contributing to the fat loss effect. In the fat body, FMRFa signaling promoted lipolysis by increasing PKA and lipase activity. In sweet-sensing gustatory neurons, FMRFa signaling suppressed appetitive perception and hence food intake. We also demonstrated that dietary cysteine worked in a similar way in mice via neuropeptide FF (NPFF) signaling, a mammalian RFamide peptide. In addition, dietary cysteine or FMRFa/NPFF administration provided protective effect against metabolic stress in flies and mice without behavioral abnormalities. Therefore, our study reveals a novel target for the development of safe and effective therapies against obesity and related metabolic diseases.


FMRFamide-like FLP-13 neuropeptides promote quiescence following heat stress in Caenorhabditis elegans.

  • Matthew D Nelson‎ et al.
  • Current biology : CB‎
  • 2014‎

Among the most important decisions an animal makes is whether to engage in active movement and feeding behavior or to become quiescent. The molecular signaling mechanisms underlying this decision remain largely unknown. The nematode Caenorhabditis elegans displays sleep-like quiescence following exposures that result in cellular stress. The neurosecretory ALA neuron is required for this stress-induced recovery quiescence, but the mechanisms by which ALA induces quiescence have been unknown. We report here that quiescence induced by heat stress requires ALA depolarization and release of FMRFamide-like neuropeptides encoded by the flp-13 gene. Optogenetic activation of ALA reduces feeding and locomotion in a FLP-13-dependent manner. Overexpression of flp-13 is sufficient to induce quiescent behavior during normally active periods. We have here identified a major biological role for FMRFamide-like neuropeptides in nematodes, and we suggest that they may function in a similar capacity in other organisms.


Extrabulbar olfactory system and nervus terminalis FMRFamide immunoreactive components in Xenopus laevis ontogenesis.

  • Claudia Pinelli‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2004‎

The extrabulbar olfactory system (EBOS) is a collection of nerve fibers which originate from primary olfactory receptor-like neurons and penetrate into the brain bypassing the olfactory bulbs. Our description is based upon the application of two neuronal tracers (biocytin, carbocyanine DiI) in the olfactory sac, at the cut end of the olfactory nerve and in the telencephalon of the developing clawed frog. The extrabulbar olfactory system was observed already at stage 45, which is the first developmental stage compatible with our techniques; at this stage, the extrabulbar olfactory system fibers terminated diffusely in the preoptic area. A little later in development, i.e. at stage 50, the extrabulbar olfactory system was maximally developed, extending as far caudally as the rhombencephalon. In the metamorphosing specimens, the extrabulbar olfactory system appeared reduced in extension; caudally, the fiber terminals did not extend beyond the diencephalon. While a substantial overlapping of biocytin/FMRFamide immunoreactivity was observed along the olfactory pathways as well as in the telencephalon, FMRFamide immunoreactivity was never observed to be colocalized in the same cellular or fiber components visualized by tracer molecules. The question whether the extrabulbar olfactory system and the nervus terminalis (NT) are separate anatomical entities or represent an integrated system is discussed.


FMRFamide-like immunoreactivity in the ventral ganglion of the fly Sarcophaga bullata: metamorphic changes.

  • P Sivasubramanian‎
  • Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology‎
  • 1991‎

1. Localization of FMRFamide-like immunoreactivity was examined in the ventral ganglion of the fly Sarcophaga bullata using the indirect immunofluorescent method. 2. There are six large cells in the thoracic ganglion which are highly immunoreactive at all stages of development. 3. During metamorphosis the thoracic FLI neurons shift their position from ventrolateral to mid-ventral position and their axons terminate and elaborate a highly immunoreactive dorsal neural sheath. 4. It is suggested that the dorsal neural sheath may function as a neurohaemal organ from which FMRFamide-like substances may be released into the haemolymph to act as neurohormones.


Distribution of FMRFamide-like immunoreactivity in the nervous system of Lumbricus terrestris.

  • D Reglödi‎ et al.
  • Cell and tissue research‎
  • 1997‎

The distribution of FMRFamide-like immunoreactive cell bodies and fibers in the nervous system of the earthworm Lumbricus terrestris has been studied by means of immunocytochemistry. The cerebral ganglion contains 150-170 immunoreactive nerve cells that are organized into six major groups in the rostral and five major groups in the caudal part of the ganglion; 160-180 immunoreactive nerve cells are present in the subesophageal ganglion, and 80-90 in the ventral cord ganglia. Immunoreactive neurons of the subesophageal and the ventral cord ganglia show similar distributions, in that FMRFamide-like immunoreactive cells form a ventromedial and a lateral cell group. Neuropil in all parts of the central nervous system shows intensively stained varicose and non-varicose fibers. Each segmental nerve contains FMRFamide-like immunoreactive fibers that can partly be traced to the two muscle layers of the body wall, and a fine immunoreactive network lies among the muscle fibers. A similar network is found in the wall of the alimentary canal. Immunopositive perikarya and fibers have been detected in the prostomial nerves, in the stomatogastric system. Some epithelial cells of the body wall are also immunopositive. The morphological characteristics and localization of FMRFamide immunoreactive neurons suggest that they may be involved in: (1) central integratory processes; (2) neuromuscular regulation in both the body wall and enteric system; (3) sensory processes.


Distribution of FMRFamide-related peptides in the blood-feeding bug, Rhodnius prolixus.

  • P W Tsang‎ et al.
  • The Journal of comparative neurology‎
  • 1991‎

Immunohistochemistry was used to study the distribution of FMRFamide-like material in the central and peripheral nervous systems and visceral tissues of 5th instar Rhodnius prolixus. Over 200 immunoreactive cell bodies and their processes as well as extensive neuropile regions were distributed throughout the nervous system. Immunoreactive processes were seen over the cephalic aorta, corpus cardiacum/corpus allatum complex, and in neurohaemal sites on the abdominal nerves. In visceral tissues, immunoreactive processes were seen innervating the salivary glands, the foregut, and the hindgut. Immunoreactive cells were also found in the anterior midgut (i.e., the crop and the anterior intestine). A radioimmunoassay specific for "RFamide" carboxy-terminal peptides was used to quantify the amount and the distribution of FMRFamide-like material. Reversed-phase high performance liquid chromatography of nervous tissue extracts revealed several peaks of immunoreactive material. The results suggest the existence of a number of FMRFamide-related peptides in Rhodnius which may have roles in both central and peripheral transmission, may be released as neurohormones and may have endocrine functions in the gut.


An FMRFamide Neuropeptide in Cuttlefish Sepia pharaonis: Identification, Characterization, and Potential Function.

  • Yang Zhu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Neuropeptides are released by neurons that are involved in a wide range of brain functions, such as food intake, metabolism, reproduction, and learning and memory. A full-length cDNA sequence of an FMRFamide gene isolated from the cuttlefish Sepia pharaonis (designated as SpFMRFamide) was cloned. The predicted precursor protein contains one putative signal peptide and four FMRFamide-related peptides. Multiple amino acid and nucleotide sequence alignments showed that it shares 97% similarity with the precursor FMRFamides of Sepiella japonica and Sepia officinalis and shares 93% and 92% similarity with the SpFMRFamide gene of the two cuttlefish species, respectively. Moreover, the phylogenetic analysis also suggested that SpFMRFamide and FMRFamides from S. japonica and S. officinalis belong to the same sub-branch. Tissue expression analysis confirmed that SpFMRFamide was widely distributed among tissues and predominantly expressed in the brain at the three development stages. The combined effects of SpFMRFamide+SpGnRH and SpFLRFamide+SpGnRH showed a marked decrease in the level of the total proteins released in the CHO-K1 cells. This is the first report of SpFMRFamide in S. pharaonis and the results may contribute to future studies of neuropeptide evolution or may prove useful for the development of aquaculture methods for this cuttlefish species.


Inhibitory Effect of FMRFamide on NO Production During Immune Defense in Sepiella japonica.

  • Libing Zheng‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide), specifically existing in invertebrates, plays pivotal roles in various physiological processes. The involvement in neuroendocrine-immune regulation was explored in recent years, and it could modulate nitric oxide (NO) production under immune stress. However, detailed knowledge is still little known. In this study, we identified FMRFamide as an inhibitory factor on NO production in the immune reaction of Sepiella japonica. Firstly, Vibrio harveyi incubation caused significantly upregulated expression of FMRFamide precursor and NO synthase (NOS) in just hatched cuttlefish with quantitative Real-time PCR (qRT-PCR), which indicated that both were likely to be involved in the immune defense. The whole-mount in situ hybridization (ISH) detected FMRFamide precursor and NOS-positive signals appeared colocalization, suggesting that at histological and anatomical levels FMRFamide might interact with NOS. Next, NOS mRNA was highly significantly upregulated at 72 h when FMRFamide precursor mRNA was knocked down effectively with the RNA interference (RNAi) method; the results hinted that FMRFamide was likely to regulate NO production. Continuously, the inflammatory model was constructed in RAW 264.7 cells induced by lipopolysaccharide (LPS), FMRFamide administration resulted in a highly significant reduction of the NO level in dose- and time-response manners. Although the addition of the selected inducible NOS (iNOS) inhibitor had inhibited the NO production induced by LPS, the additional FMRFamide could still furtherly sharpen the process. Collectively, it was concluded that neuropeptide FMRFamide could indeed inhibit NO production to serve as feedback regulation at the late stage of immune response to protect hosts from excessive immune cytotoxicity. The inhibitory effect on NO production could not only be mediated by the NOS pathway but also be implemented through other pathways that needed to be furtherly explored. The results will provide data for comparing the structure and immune function of neuroendocrine-immune system (NEIS) between "advanced" cephalopods and other invertebrates and will provide new information for understanding the NEIS of cephalopods.


The head mesodermal cell couples FMRFamide neuropeptide signaling with rhythmic muscle contraction in C. elegans.

  • Ukjin Choi‎ et al.
  • Nature communications‎
  • 2023‎

FMRFamides are evolutionarily conserved neuropeptides that play critical roles in behavior, energy balance, and reproduction. Here, we show that FMRFamide signaling from the nervous system is critical for the rhythmic activation of a single cell of previously unknown function, the head mesodermal cell (hmc) in C. elegans. Behavioral, calcium imaging, and genetic studies reveal that release of the FLP-22 neuropeptide from the AVL neuron in response to pacemaker signaling activates hmc every 50 s through an frpr-17 G protein-coupled receptor (GPCR) and a protein kinase A signaling cascade in hmc. hmc activation results in muscle contraction through coupling by gap junctions composed of UNC-9/Innexin. hmc activation is inhibited by the neuronal release of a second FMRFamide-like neuropeptide, FLP-9, which functions through its GPCR, frpr-21, in hmc. This study reveals a function for two opposing FMRFamide signaling pathways in controlling the rhythmic activation of a target cell through volume transmission.


Development and distribution of FMRFamide-like immunoreactivity in the toad (Bufo bufo) brain.

  • M Fiorentino‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2001‎

By using immunohistochemistry, we studied the development and distribution of the FMRFamide-like immunoreactive (ir) neuronal system in the toad brain during the ontogeny. In addition to this, experimental evidence was provided to show that the rostral forebrain-located FMRFamide neurons originate in the olfactory placode and then migrate into the brain along the olfactory pathway. During early development, within the brain, FMRFamide-ir perikarya first appeared in the periventricular hypothalamus. Later in development, FMRFamide-ir cells were visualized in the rostralmost forebrain simultaneously with similar ir cells in the developing olfactory mucosa. Selective ablation of the olfactory placode(s), prior to the appearance of the first FMRFamide-ir cells in the brain, resulted in the total absence of ir cells in the telencephalon (medial septum and mediobasal telencephalon) of the operated sides(s). The preoptic-suprachiasmatic-infundibular hypothalamus-located FMRFamide-ir neurons were not affected by olfactory placodectomy, arguing that they do not originate in the placode. This result points to the placode as the sole source of such neurons in the rostral forebrain.


Distribution of FMRFamide-like immunoreactivity in the central nervous system of the Formosan monkey (Macaca cyclopsis).

  • S T Chen‎ et al.
  • Peptides‎
  • 1989‎

The distribution of FMRFamide-like immunoreactivity in the central nervous system of the Formosan monkey (Macaca cyclopsis) was investigated employing immunohistochemical techniques. FMRFamide-containing cells were found to be widely distributed throughout the forebrain. Principal densities of FMRFamide neuronal perikarya were observed in the following areas: the amygdaloid complex, the olfactory tubercle, the cerebral cortex, the basal ganglia, the septum, the caudate-putamen and the arcuate nucleus. A large number of immunoreactive fibers were observed in areas ranging from the cerebral cortex to the spinal cord, and were noted in the following locations: the preoptic area, the tuberal and posterior hypothalamic areas, the bed nucleus of the stria terminalis, the nuclei of the spinal trigeminal nerve, the hypoglossal nucleus, the nucleus of the solitary tract, and the dorsal horn of the spinal cord. The results generally parallel those described in the rat and guinea pig.


PF4, a FMRFamide-related peptide, gates low-conductance Cl(-) channels in Ascaris suum.

  • Jenny Purcell‎ et al.
  • European journal of pharmacology‎
  • 2002‎

Here we describe the actions of the peptide Lys-Pro-Asn-Phe-Ile-Arg-Phe-NH(2), or PF4, on inside-out membrane patches (n=164), recorded from vesicles derived from Ascaris suum somatic muscle cells. We observed numerous, small-amplitude Cl(-) channels in the membrane patches. The conductance of the Cl(-) channels ranged from 1.09 to 7.07 pS, the open probability (P(open)) ranged from 0.047+/-0.015 (mean+/-S.E.M.) at 0 microM PF4 to 0.156+/-0.026 at 0.1 microM PF4. The channel mean open time was more variable and prolonged at negative potentials than when the membrane patch was clamped at positive potentials: at 0.03 microM PF4, the mean open time (+/-S.E.M) at -80 mV was 522+/-333 ms; at+80 mV, it was 25+/-7 ms. When patches were isolated from the parent vesicle, there were no changes in channel characteristics, suggesting that the channels function without the involvement of cytoplasmic components. Similarly, the channel characteristics were not affected by the G-protein inhibitor, guanosine-5'-O-(2-thiodiphosphate), indicating that the ion channels do not require a G-protein to function. These data indicate that the PF4-activated Cl(-) channels function independently of intracellular signal transducers and are, therefore, directly gated by PF4.


FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system.

  • James Siho Lee‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2017‎

Animals, including humans, can adapt to environmental stress through phenotypic plasticity. The free-living nematode Caenorhabditis elegans can adapt to harsh environments by undergoing a whole-animal change, involving exiting reproductive development and entering the stress-resistant dauer larval stage. The dauer is a dispersal stage with dauer-specific behaviors for finding and stowing onto carrier animals, but how dauers acquire these behaviors, despite having a physically limited nervous system of 302 neurons, is poorly understood. We compared dauer and reproductive development using whole-animal RNA sequencing at fine time points and at sufficient depth to measure transcriptional changes within single cells. We detected 8,042 genes differentially expressed during dauer and reproductive development and observed striking up-regulation of neuropeptide genes during dauer entry. We knocked down neuropeptide processing using sbt-1 mutants and demonstrate that neuropeptide signaling promotes the decision to enter dauer rather than reproductive development. We also demonstrate that during dauer neuropeptides modulate the dauer-specific nictation behavior (carrier animal-hitchhiking) and are necessary for switching from repulsion to CO2 (a carrier animal cue) in nondauers to CO2 attraction in dauers. We tested individual neuropeptides using CRISPR knockouts and existing strains and demonstrate that the combined effects of flp-10 and flp-17 mimic the effects of sbt-1 on nictation and CO2 attraction. Through meta-analysis, we discovered similar up-regulation of neuropeptides in the dauer-like infective juveniles of diverse parasitic nematodes, suggesting the antiparasitic target potential of SBT-1. Our findings reveal that, under stress, increased neuropeptide signaling in C. elegans enhances their decision-making accuracy and expands their behavioral repertoire.


Distribution of presumptive chemosensory afferents with FMRFamide- or substance P-like immunoreactivity in decapod crustaceans.

  • M Schmidt‎
  • Brain research‎
  • 1997‎

In five species of decapod crustaceans--Cherax destructor (crayfish), Carcinus maenas (crab), Homarus americanus (clawed lobster), Eriocheir sinensis (crab), Macrobrachium rosenbergii (shrimp)--immunocytochemical stainings revealed the presence of sensory afferents with FMRFamide-like immunoreactivity in the central nervous system. These afferents were extremely thin, very numerous, and innervated all sensory neuropils except the optic and olfactory lobes. In their target neuropils they gave rise to condensed net- or ball-like terminal structures. Only in Homarus americanus but not in any other studied species immunocytochemistry revealed a separate, non-overlapping class of sensory afferents with substance P-like immunoreactivity. Also the afferents with substance P-like immunoreactivity were very thin and numerous, innervated all sensory neuropils except optic and olfactory lobes, and gave rise to condensed terminal structures. From their morphological characteristics it can be concluded that likely both classes of afferents are chemosensory. The substance P-like immunoreactivity suggests a link with the nociceptor afferents of vertebrates, with which both classes of afferents share several other morphological features.


FMRFamide-like immunoreactivity in the brain of the Pacific hagfish, Eptatretus stouti (Myxinoidea).

  • H Wicht‎ et al.
  • Cell and tissue research‎
  • 1992‎

The distribution of FMRFamide-like immunoreactivity was investigated in the brain of a myxinoid, the Pacific hagfish, Eptatretus stouti, by means of immunocytochemistry. In the forebrain, labelled cell bodies occurred in the infundibular nucleus of the hypothalamus and some closely adjacent nuclei. Labelled fibers formed a diffuse network in the forebrain, but there was no evidence for the presence of intracerebral ganglionic cells of the terminal nerve or a central projection of the terminal nerve. In the hindbrain, a group of labelled cells was found in the trigeminal sensory nucleus. A distinct terminal arborization occurred in the ventrally adjacent nucleus A of Kusunoki and around the nuclei of the branchial motor column. These findings suggest that FMRFamide may play a role in the central control of branchiomotor activity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: