Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 204 papers

Cysteine transport through excitatory amino acid transporter 3 (EAAT3).

  • Spencer D Watts‎ et al.
  • PloS one‎
  • 2014‎

Excitatory amino acid transporters (EAATs) limit glutamatergic signaling and maintain extracellular glutamate concentrations below neurotoxic levels. Of the five known EAAT isoforms (EAATs 1-5), only the neuronal isoform, EAAT3 (EAAC1), can efficiently transport the uncharged amino acid L-cysteine. EAAT3-mediated cysteine transport has been proposed to be a primary mechanism used by neurons to obtain cysteine for the synthesis of glutathione, a key molecule in preventing oxidative stress and neuronal toxicity. The molecular mechanisms underlying the selective transport of cysteine by EAAT3 have not been elucidated. Here we propose that the transport of cysteine through EAAT3 requires formation of the thiolate form of cysteine in the binding site. Using Xenopus oocytes and HEK293 cells expressing EAAT2 and EAAT3, we assessed the transport kinetics of different substrates and measured transporter-associated currents electrophysiologically. Our results show that L-selenocysteine, a cysteine analog that forms a negatively-charged selenolate ion at physiological pH, is efficiently transported by EAATs 1-3 and has a much higher apparent affinity for transport when compared to cysteine. Using a membrane tethered GFP variant to monitor intracellular pH changes associated with transport activity, we observed that transport of either L-glutamate or L-selenocysteine by EAAT3 decreased intracellular pH, whereas transport of cysteine resulted in cytoplasmic alkalinization. No change in pH was observed when cysteine was applied to cells expressing EAAT2, which displays negligible transport of cysteine. Under conditions that favor release of intracellular substrates through EAAT3 we observed release of labeled intracellular glutamate but did not detect cysteine release. Our results support a model whereby cysteine transport through EAAT3 is facilitated through cysteine de-protonation and that once inside, the thiolate is rapidly re-protonated. Moreover, these findings suggest that cysteine transport is predominantly unidirectional and that reverse transport does not contribute to depletion of intracellular cysteine pools.


Constitutive Endocytosis of the Neuronal Glutamate Transporter Excitatory Amino Acid Transporter-3 Requires ARFGAP1.

  • Kusumika Saha‎ et al.
  • Frontiers in physiology‎
  • 2021‎

The eukaryotic endocytic pathway regulates protein levels available at the plasma membrane by recycling them into specific endosomal compartments. ARFGAP1 is a component of the coat protein I (COPI) complex but it also plays a role in promoting adapter protein-2 (AP-2) mediated endocytosis. The excitatory amino acid transporter-3 (EAAT3) mediates the reuptake of glutamate from the synaptic cleft to achieve rapid termination of synaptic transmission at glutamatergic synapses. In this study, we identified two interacting proteins of EAAT3 by mass spectrometry (MS) ARFGAP1 and ARF6. We explored the role of ARFGAP1 and ARF6 in the endocytosis of EAAT3. Our data revealed that ARFGAP1 plays a role in the recycling of EAAT3, by utilizing its GTPase activating protein (GAP) activity and ARF6 acting as the substrate. ARFGAP1 promotes cargo sorting of EAAT3 via a single phenylalanine residue (F508) located at the C-terminus of the transporter. ARFGAP1-promoted AP-2 dependent endocytosis is abolished upon neutralizing F508. We utilized a heterologous expression system to identify an additional motif in the C-terminus of EAAT3 that regulates its endocytosis. Impairment in endocytosis did not affect somatodendritic targeting in cultured hippocampal neurons. Our findings support a model where endocytosis of EAAT3 is a multifactorial event regulated by ARFGAP1, occurring via the C-terminus of the transporter, and is the first study to examine the role of ARFGAP1 in the endocytosis of a transport protein.


Cellular and synaptic localization of the neuronal glutamate transporters excitatory amino acid transporter 3 and 4.

  • A Furuta‎ et al.
  • Neuroscience‎
  • 1997‎

Glutamate transport is a primary mechanism for the synaptic inactivation of glutamate. Excitatory amino acid transporter 4 (EAAT4) is a novel glutamate transporter with properties of a ligand-gated chloride channel that was recently cloned from human brain. The present study was an investigation of the protein expression and cellular localization of EAAT4 in human and rat brain, and comparison with another neuronal glutamate transporter, EAAT3 (rabbit excitatory amino acid carrier 1; EAAC1). Regional immunoblot analysis of EAAT4, using a monospecific oligopeptide (carboxy-terminal) affinity-purified polyclonal antibody, revealed that the protein was restricted to the central nervous system. The EAAT4 protein was largely expressed in cerebellum, with a much lower expression in hippocampus, neocortex, striatum, brain stem and thalamus. Immunohistochemical studies showed intense EAAT4 immunoreactivity in the human and rat cerebellar Purkinje cells with a somatodendritic localization. Other brain regions including neocortex, hippocampus, striatum showed faint neuropil staining of EAAT4. Immunogold localization identified EAAT4 protein at plasma membranes of Purkinje cell dendrites and spines. In the hippocampus and neocortex, EAAT4 immunoreactivity was found mainly at small calibre dendrites. Rarely, EAAT4 immunoreactivity was found in astrocytic cell processes of forebrain. In the cerebellum, EAAT4 localization partly overlapped with the neuronal localization of EAAT3 (EAAC1). Immunoreactivity for EAAT3 was enriched in the somatodendritic compartment of the Purkinje cells like EAAT4, but EAAT3 was also found in Purkinje cell axons and in boutons in deep cerebellar nuclei, as well as in granular cells and stellate cells. Our results indicate that EAAT4 protein is largely localized to cerebellar cortex and lower levels of EAAT4 protein are present in forebrain by immunoblot and immunohistochemistry. Both neuronal glutamate transporter EAAT3 (EAAC1) and EAAT4 are located at somatodendritic compartment of Purkinje cells, and probably contribute to glutamate re-uptake mechanisms at Purkinje cell synapses.


Excitatory amino acid transporter 5 is widely expressed in peripheral tissues.

  • A Lee‎ et al.
  • European journal of histochemistry : EJH‎
  • 2013‎

It is routinely stated in the literature that Excitatory Amino Acid Transporter 5 (EAAT5) is a retina-specific glutamate transporter. EAAT5 is expressed by retinal photoreceptors and bipolar cells, where it serves as a slow transporter and as an inhibitory glutamate receptor, the latter role is due to the gating of a large chloride conductance. The dogma of an exclusively retinal distribution has arisen because Northern blot analyses have previously shown only modest hybridisation in non-retinal tissues. Others have re-interpreted this as indicating that EAAT5 was only present in retinal tissues. However, this view appears to be erroneous; recent evidence demonstrating abundant expression of EAAT5 in rat testis prompted us to re-examine this dogma. A new antibody was developed to an intracellular loop region of rat EAAT5. This new tool, in concert with RT-PCR and sequencing, demonstrated that EAAT5 is widely distributed at the mRNA and protein levels in many non-nervous tissues including liver, kidney, intestine, heart, lung, and skeletal muscle. We conclude that EAAT5 is a widely distributed protein. Whether it functions in all locations as a glutamate transporter, or mainly as a glutamate-gated chloride conductance, remains to be determined.


Nonsynaptic localization of the excitatory amino acid transporter 4 in photoreceptors.

  • Leonardo Pignataro‎ et al.
  • Molecular and cellular neurosciences‎
  • 2005‎

Excitatory amino acid transporters (EAATs) are involved in regulating extracellular glutamate levels at synaptic regions in the CNS. EAAT1, 2, 3, and 5 have been found in the mammalian retina, but the presence of EAAT4 has remained controversial. Recently, we found a high level of EAAT4 mRNA in the human retina, and this observation lead us to examine whether EAAT4 was expressed in the mammalian retina. Immunoblotting studies showed the presence of EAAT4-immunoreactive proteins in human and mouse retinas, corresponding to EAAT4 monomers and dimers. Immunohistochemistry revealed that EAAT4 was localized in rod and cone photoreceptor outer segments in the human retina, and in the outer and inner segments of mouse and ground squirrel retinas. In no case was EAAT4 found in the outer plexiform layer or in any other layer in the retina. EAAT4 expression by photoreceptors was confirmed by immunoblotting a purified rod outer segment preparation, which showed the presence of a 50-kDa EAAT4-immunoreactive protein. In addition, the EAAT4-associated protein, GTRAP41, was found in the human, mouse, and squirrel retinas as well as in the rod outer segment preparation. Further immunocytochemical and co-immunoprecipitation experiments demonstrated that GTRAP41 was colocalized and interacted in vivo with EAAT4. Importantly, glutamate uptake and drug inhibition experiments showed that an EAAT4-like glutamate uptake system is present in the rod outer segments. Finally, we examined whether glutamate signaling mediated by EAAT4 can modulate rod outer segment phagocytosis by the retinal pigment epithelium. Results of the present study show that EAAT4 is present in the outer segments, a nonsynaptic region of photoreceptors, where it might provide a feedback mechanism for sensing extracellular glutamate or serve as an outer barrier to prevent glutamate from escaping from the retina.


Cryo-EM structures of excitatory amino acid transporter 3 visualize coupled substrate, sodium, and proton binding and transport.

  • Biao Qiu‎ et al.
  • Science advances‎
  • 2021‎

Human excitatory amino acid transporter 3 (hEAAT3) mediates glutamate uptake in neurons, intestine, and kidney. Here, we report cryo-EM structures of hEAAT3 in several functional states where the transporter is empty, bound to coupled sodium ions only, or fully loaded with three sodium ions, a proton, and the substrate aspartate. The structures suggest that hEAAT3 operates by an elevator mechanism involving three functionally independent subunits. When the substrate-binding site is near the cytoplasm, it has a remarkably low affinity for the substrate, perhaps facilitating its release and allowing the rapid transport turnover. The mechanism of the coupled uptake of the sodium ions and the substrate is conserved across evolutionarily distant families and is augmented by coupling to protons in EAATs. The structures further suggest a mechanism by which a conserved glutamate residue mediates proton symport.


Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2.

  • Takafumi Kato‎ et al.
  • Nature communications‎
  • 2022‎

Glutamate is a pivotal excitatory neurotransmitter in mammalian brains, but excessive glutamate causes numerous neural disorders. Almost all extracellular glutamate is retrieved by the glial transporter, Excitatory Amino Acid Transporter 2 (EAAT2), belonging to the SLC1A family. However, in some cancers, EAAT2 expression is enhanced and causes resistance to therapies by metabolic disturbance. Despite its crucial roles, the detailed structural information about EAAT2 has not been available. Here, we report cryo-EM structures of human EAAT2 in substrate-free and selective inhibitor WAY213613-bound states at 3.2 Å and 2.8 Å, respectively. EAAT2 forms a trimer, with each protomer consisting of transport and scaffold domains. Along with a glutamate-binding site, the transport domain possesses a cavity that could be disrupted during the transport cycle. WAY213613 occupies both the glutamate-binding site and cavity of EAAT2 to interfere with its alternating access, where the sensitivity is defined by the inner environment of the cavity. We provide the characterization of the molecular features of EAAT2 and its selective inhibition mechanism that may facilitate structure-based drug design for EAAT2.


Excitatory amino acid transporter 1 supports adult hippocampal neural stem cell self-renewal.

  • Joshua D Rieskamp‎ et al.
  • iScience‎
  • 2023‎

Within the adult mammalian dentate gyrus (DG) of the hippocampus, glutamate stimulates neural stem cell (NSC) self-renewing proliferation, providing a link between adult neurogenesis and local circuit activity. Here, we show that glutamate-induced self-renewal of adult DG NSCs requires glutamate transport via excitatory amino acid transporter 1 (EAAT1) to stimulate lipogenesis. Loss of EAAT1 prevented glutamate-induced self-renewing proliferation of NSCs in vitro and in vivo, with little role evident for canonical glutamate receptors. Transcriptomics and further pathway manipulation revealed that glutamate simulation of NSCs relied on EAAT1 transport-stimulated lipogenesis. Our findings demonstrate a critical, direct role for EAAT1 in stimulating NSCs to support neurogenesis in adulthood, thereby providing insights into a non-canonical mechanism by which NSCs sense and respond to their niche.


Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia.

  • Xiangdong Deng‎ et al.
  • BMC psychiatry‎
  • 2004‎

The glutamatergic dysfunction hypothesis of schizophrenia suggests that genes involved in glutametergic transmission are candidates for schizophrenic susceptibility genes. We have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. In this study we report an association study of the excitatory amino acid transporter 2 gene, SLC1A2 with schizophrenia.


Localization and function of the brain excitatory amino acid transporter type 1 in cardiac mitochondria.

  • J Carter Ralphe‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2004‎

Glutamate is the only amino acid extracted by healthy myocardium in net amounts, with uptake further increased during hypoxic or ischemic conditions. Glutamate supplementation provides cardioprotection from hypoxic and reperfusion injury through several metabolic pathways that depend upon adequate transport of glutamate into the mitochondria. Glutamate transport across the inner mitochondrial membrane is a key component of the malate/aspartate shuttle. Glutamate transport in the brain has been well characterized since the discovery of the excitatory amino acid transporter (EAAT) family. We hypothesize that a protein similar to EAAT1 found in brain may function as a glutamate transporter in cardiac mitochondria. Rat heart total RNA was screened by reverse transcriptase-polymerase chain reaction with an array of primer pairs derived from the rat brain EAAT1 cDNA sequence, yielding a 3786-bp cDNA comprising a 1638-bp open reading frame identical to rat brain EAAT1 with flanking 5'- and 3'-untranslated regions. Northern blot analysis confirmed a 4-kb mRNA product in rat heart and brain, with greater abundance in brain. A protein of the predicted approximate 60-kD size was recognized in myocardial lysates by an anti-EAAT1 polyclonal antibody produced against an amino-terminal peptide from human EAAT1. The protein enriched in rat heart mitochondria by immunoblot, co-localized with the mitochondrial protein cytochrome c by immunohistochemistry, and further localized to the inner mitochondrial membrane upon digitonin fractionation of the mitochondria. In myocytes overexpressing EAAT1, activity of the malate/aspartate shuttle increased by 33% compared to non-transfected cells (P = 0.004). These data indicate that EAAT1 is expressed in myocardial mitochondria, and functions in the malate/aspartate shuttle, suggesting a role for EAAT1 in myocardial glutamate metabolism.


Chemoenzymatic Synthesis and Pharmacological Characterization of Functionalized Aspartate Analogues As Novel Excitatory Amino Acid Transporter Inhibitors.

  • Haigen Fu‎ et al.
  • Journal of medicinal chemistry‎
  • 2018‎

Aspartate (Asp) derivatives are privileged compounds for investigating the roles governed by excitatory amino acid transporters (EAATs) in glutamatergic neurotransmission. Here, we report the synthesis of various Asp derivatives with (cyclo)alkyloxy and (hetero)aryloxy substituents at C-3. Their pharmacological properties were characterized at the EAAT1-4 subtypes. The l- threo-3-substituted Asp derivatives 13a-e and 13g-k were nonsubstrate inhibitors, exhibiting pan activity at EAAT1-4 with IC50 values ranging from 0.49 to 15 μM. Comparisons between (dl- threo)-19a-c and (dl- erythro)-19a-c Asp analogues confirmed that the threo configuration is crucial for the EAAT1-4 inhibitory activities. Analogues (3b-e) of l-TFB-TBOA (3a) were shown to be potent EAAT1-4 inhibitors, with IC50 values ranging from 5 to 530 nM. Hybridization of the nonselective EAAT inhibitor l-TBOA with EAAT2-selective inhibitor WAY-213613 or EAAT3-preferring inhibitor NBI-59159 yielded compounds 8 and 9, respectively, which were nonselective EAAT inhibitors displaying considerably lower IC50 values at EAAT1-4 (11-140 nM) than those displayed by the respective parent molecules.


Phylogenetic analysis of the vertebrate excitatory/neutral amino acid transporter (SLC1/EAAT) family reveals lineage specific subfamilies.

  • Matthias Gesemann‎ et al.
  • BMC evolutionary biology‎
  • 2010‎

The composition and expression of vertebrate gene families is shaped by species specific gene loss in combination with a number of gene and genome duplication events (R1, R2 in all vertebrates, R3 in teleosts) and depends on the ecological and evolutionary context. In this study we analyzed the evolutionary history of the solute carrier 1 (SLC1) gene family. These genes are supposed to be under strong selective pressure (purifying selection) due to their important role in the timely removal of glutamate at the synapse.


Loss of excitatory amino acid transporter restraint following chronic intermittent hypoxia contributes to synaptic alterations in nucleus tractus solitarii.

  • Diana Martinez‎ et al.
  • Journal of neurophysiology‎
  • 2020‎

Peripheral viscerosensory afferent signals are transmitted to the nucleus tractus solitarii (nTS) via release of glutamate. Following release, glutamate is removed from the extrasynaptic and synaptic cleft via excitatory amino acid transporters (EAATs), thus limiting glutamate receptor activation or over activation, and maintaining its working range. We have shown that EAAT block with the antagonist threo-β-benzyloxyaspartic acid (TBOA) depolarized nTS neurons and increased spontaneous excitatory postsynaptic current (sEPSC) frequency yet reduced the amplitude of afferent (TS)-evoked EPSCs (TS-EPSCs). Interestingly, chronic intermittent hypoxia (CIH), a model of obstructive sleep apnea (OSA), produces similar synaptic responses as EAAT block. We hypothesized EAAT expression or function are downregulated after CIH, and this reduction in glutamate removal contributes to the observed neurophysiological responses. To test this hypothesis, we used brain slice electrophysiology and imaging of glutamate release and TS-afferent Ca2+ to compare nTS properties of rats exposed to 10 days of normoxia (Norm; 21%O2) or CIH. Results show that EAAT blockade with (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]-amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) in Norm caused neuronal depolarization, generation of an inward current, and increased spontaneous synaptic activity. The latter augmentation was eliminated by inclusion of tetrodotoxin in the perfusate. TS stimulation during TFB-TBOA also elevated extracellular glutamate and decreased presynaptic Ca2+ and TS-EPSC amplitude. In CIH, the effects of EAAT block are eliminated or attenuated. CIH reduced EAAT expression in nTS, which may contribute to the attenuated function seen in this condition. Therefore, CIH reduces EAAT influence on synaptic and neuronal activity, which may lead to the physiological consequences seen in OSA and CIH.NEW & NOTEWORTHY Removal of excitatory amino acid transporter (EAAT) restraint increases spontaneous synaptic activity yet decreases afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. In the chronic intermittent hypoxia model of obstructive sleep apnea, this restraint is lost due to reduction in EAAT expression and function. Thus EAATs are important in controlling elevated glutamatergic signaling, and loss of such control results in maladaptive synaptic signaling.


Up-regulation of astrocyte excitatory amino acid transporter 2 alleviates central sensitization in a rat model of chronic migraine.

  • Xue Zhou‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

Central sensitization is the potential pathogenesis of chronic migraine (CM) and is related to persistent neuronal hyperexcitability. Dysfunction of excitatory amino acid transporter 2 (EAAT2) leads to the accumulation of glutamate in the synaptic cleft, which may contribute to central sensitization by overactivating glutamate N-methyl-D-aspartate receptors and enhancing synaptic plasticity. However, the therapeutic potential of CM by targeting glutamate clearance remains largely unexplored. The purpose of this study was to investigate the role of EAAT2 in CM central sensitization and explore the effect of EAAT2 expression enhancer LDN-212320 in CM rats. The glutamate concentration was measured by high-performance liquid chromatography in a rat model of CM. Then, q-PCR and western blots were performed to detect EAAT2 expression, and the immunoreactivity of astrocytes was detected by immunofluorescence staining. To understand the effect of EAAT2 on central sensitization of CM, mechanical and thermal hyperalgesia and central sensitization-associated proteins were examined after administration of LDN-212320. In addition, the expression of synaptic-associated proteins was examined and Golgi-Cox staining was used to observe the dendritic spine density of trigeminal nucleus caudalis neurons. Also, the synaptic ultrastructure was observed by transmission electron microscope (TEM) to explore the changes of synaptic plasticity. In our study, elevated glutamate concentration and decreased EAAT2 expression were found in the trigeminal nucleus caudalis of CM rats, administration of LDN-212320 greatly up-regulated the protein expression of EAAT2, alleviated hyperalgesia, decreased the concentration of glutamate and the activation of astrocytes. Furthermore, reductions in calcitonin gene-related peptide, substance P(SP), and phosphorylated NR2B were examined after administration of LDN-212320. Moreover evaluation of the synaptic structure, synaptic plasticity-, and central sensitization-related proteins indicated that EAAT2 might participate in the CM central sensitization process by regulating synaptic plasticity. Taken together, up-regulation of EAAT2 expression has a protective effect in CM rats, and LDN-212320 may have clinical therapeutic potential. Cover Image for this issue: https://doi.org/10.1111/jnc.14769.


Aminophylline and Ephedrine, but Not Flumazenil, Inhibit the Activity of the Excitatory Amino Acid Transporter 3 Expressed in Xenopus Oocytes and Reverse the Increased Activity by Propofol.

  • Sohyeon Moon‎ et al.
  • BioMed research international‎
  • 2018‎

We investigated the effects of flumazenil, aminophylline, and ephedrine on the excitatory amino acid transporter type 3 (EAAT3) activity and the interaction with propofol. EAAT3 was expressed in the Xenopus oocytes. L-Glutamate-induced membrane currents were measured using the two-electrode voltage clamp at various drug concentrations. Oocytes were preincubated with protein kinase C- (PKC-) activator, or inhibitor, and phosphatidylinositol 3-kinase (PI3K) inhibitor. To study the interaction with propofol, oocytes were exposed to propofol, propofol + aminophylline, or ephedrine. Aminophylline and ephedrine significantly decreased EAAT3 activity. Aminophylline (95 μM) and ephedrine (1.19 μM) significantly decreased Vmax, but not Km of EAAT3, for glutamate. The phorbol 12-myristate-13-acetate-induced increase in EAAT3 activity was abolished by aminophylline or ephedrine. The decreased EAAT3 activities by PKC inhibitors (staurosporine, chelerythrine) and PI3K inhibitor (wortmannin) were not significantly different from those by aminophylline or ephedrine, as well as those by PKC inhibitors or PI3K inhibitor + aminophylline or ephedrine. The enhanced EAAT3 activities induced by propofol were significantly abolished by aminophylline or ephedrine. Aminophylline and ephedrine inhibit EAAT3 activity via PKC and PI3K pathways and abolish the increased EAAT3 activity by propofol. Our results indicate a novel site of action for aminophylline and ephedrine.


Effect of early weaning on the expression of excitatory amino acid transporter 1 in the jejunum and ileum of piglets.

  • Qiu-Ju Wang‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The present study aimed to compare the expression levels of excitatory amino acid transporters (EAATs) and growth status of piglets weaned at 10‑20 days after birth with suckling piglets. A total of 40 hybrid piglets (Landrace x Large White x Duroc) born to 40 different sows, with similar body weight were selected for the present study. They were randomly divided into two groups (n=20 per group): Control group (suckling piglets) and experimental group (weaned piglets, reared in isolation). The experiment lasted for 10 days. At the end of the experiment, 12 piglets were randomly selected from each group and the jejunum and the ileum were collected in order to determine excitatory amino acid carrier 1 (EAAC1) expression levels and free amino acid content. The present study determined that early weaning significantly reduced EAAC1 gene and protein (57 and 73 kDa) expression levels and glutamate transporter associate protein 3‑18 (GTRAP3‑18; 50 kDa) in the jejunum and the ileum compared with the suckling group (P<0.05). Weaning led to an increased content of free glutamic acid (Glu) and total amino acids in the jejunum; however, content of free Glu and total amino acids in the ileum was significantly reduced (P<0.05). Early weaning reduced the expression of EAAC1 and GTRAP3‑18, which was possibly due to the amino acid absorption and transport disorder in the small intestine due to the Glu deficiency.


Protein kinase C-dependent trafficking of glutamate transporters excitatory amino acid carrier 1 and glutamate transporter 1b in cultured cerebellar granule cells.

  • U Karatas-Wulf‎ et al.
  • Neuroscience‎
  • 2009‎

Previous data showed that cell surface expression of the glutamate transporters GLT1a and excitatory amino acid carrier 1 (EAAC1), localized in glia and neurons of the CNS, can be regulated by protein kinase C (PKC). Regulation and physiological importance of GLT1b, a splice variant of GLT1a, is not understood. In the present study we used cultured cerebellar granule cells (CGCs) from mice to investigate PKC dependent trafficking of GLT1b in comparison to GLT1a and EAAC1 using immunohistochemistry and subcellular fractionation followed by Western blotting. In neurites of CGCs, GLT1b and EAAC1 were localized to different aggregates of vesicles that were different from vesicle aggregates containing vesicular glutamate transporters. In CGCs cultured with low-potassium medium, stimulation of PKC by phorbol ester enhanced the formation of large varicosities in neurites that exhibited immunoreactivity for GLT1a, GLT1b, and EAAC1. Stimulation of PKC leads to a significant increase of GLT1b and EAAC1 in the plasma membrane whereas GLT1a in the plasma membrane was decreased. Following PKC stimulation, also a significant increase of transporter-mediated glutamate uptake representing sodium dependent glutamate uptake, was observed. Similarly, the fraction of glutamate uptake, that was sensitive to the inhibitor WAY-213613 and represents uptake by GLT1a and GLT1b, was increased after stimulation by PKC. The findings suggest that PKC is similarly involved in regulation of surface trafficking of GLT1b and EAAC1 and that PKC stimulated increase in surface location of GLT1b and EAAC1 in glutamatergic CGCs.


Methamphetamine Activates Trace Amine Associated Receptor 1 to Regulate Astrocyte Excitatory Amino Acid Transporter-2 via Differential CREB Phosphorylation During HIV-Associated Neurocognitive Disorders.

  • Irma E Cisneros‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Methamphetamine (METH) use, referred to as methamphetamine use disorder (MUD), results in neurocognitive decline, a characteristic shared with HIV-associated neurocognitive disorders (HAND). MUD exacerbates HAND partly through glutamate dysregulation. Astrocyte excitatory amino acid transporter (EAAT)-2 is responsible for >90% of glutamate uptake from the synaptic environment and is significantly decreased with METH and HIV-1. Our previous work demonstrated astrocyte trace amine associated receptor (TAAR) 1 to be involved in EAAT-2 regulation. Astrocyte EAAT-2 is regulated at the transcriptional level by cAMP responsive element binding (CREB) protein and NF-κB, transcription factors activated by cAMP, calcium and IL-1β. Second messengers, cAMP and calcium, are triggered by TAAR1 activation, which is upregulated by IL-1β METH-mediated increases in these second messengers and signal transduction pathways have not been shown to directly decrease astrocyte EAAT-2. We propose CREB activation serves as a master regulator of EAAT-2 transcription, downstream of METH-induced TAAR1 activation. To investigate the temporal order of events culminating in CREB activation, genetically encoded calcium indicators, GCaMP6s, were used to visualize METH-induced calcium signaling in primary human astrocytes. RNA interference and pharmacological inhibitors targeting or blocking cAMP-dependent protein kinase A and calcium/calmodulin kinase II confirmed METH-induced regulation of EAAT-2 and resultant glutamate clearance. Furthermore, we investigated METH-mediated CREB phosphorylation at both serine 133 and 142, the co-activator and co-repressor forms, respectively. Overall, this work revealed METH-induced differential CREB phosphorylation is a critical regulator for EAAT-2 function and may thus serve as a mechanistic target for the attenuation of METH-induced excitotoxicity in the context of HAND.


The mouse and human excitatory amino acid transporter gene (EAAT1) maps to mouse chromosome 15 and a region of syntenic homology on human chromosome 5.

  • M A Kirschner‎ et al.
  • Genomics‎
  • 1994‎

The gene for human excitatory amino acid transporter (EAAT1) was localized to the distal region of human chromosome 5p13 by in situ hybridization of metaphase chromosome spreads. Interspecific back-cross analysis identified the mouse Eaat1 locus in a region of 5p13 homology on mouse chromosome 15. Markers that are linked with EAAT1 on both human and mouse chromosomes include the receptors for leukemia inhibitory factor, interleukin-7, and prolactin. The Eaat1 locus appears not to be linked to the epilepsy mutant stg locus, which is also on chromosome 15. The EAAT1 locus is located in a region of 5p deletions that have been associated with mental retardation and microcephaly.


A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2).

  • D N Furness‎ et al.
  • Neuroscience‎
  • 2008‎

The relative distribution of the excitatory amino acid transporter 2 (EAAT2) between synaptic terminals and astroglia, and the importance of EAAT2 for the uptake into terminals is still unresolved. Here we have used antibodies to glutaraldehyde-fixed d-aspartate to identify electron microscopically the sites of d-aspartate accumulation in hippocampal slices. About 3/4 of all terminals in the stratum radiatum CA1 accumulated d-aspartate-immunoreactivity by an active dihydrokainate-sensitive mechanism which was absent in EAAT2 glutamate transporter knockout mice. These terminals were responsible for more than half of all d-aspartate uptake of external substrate in the slices. This is unexpected as EAAT2-immunoreactivity observed in intact brain tissue is mainly associated with astroglia. However, when examining synaptosomes and slice preparations where the extracellular space is larger than in perfusion fixed tissue, it was confirmed that most EAAT2 is in astroglia (about 80%). Neither d-aspartate uptake nor EAAT2 protein was detected in dendritic spines. About 6% of the EAAT2-immunoreactivity was detected in the plasma membrane of synaptic terminals (both within and outside of the synaptic cleft). Most of the remaining immunoreactivity (8%) was found in axons where it was distributed in a plasma membrane surface area several times larger than that of astroglia. This explains why the densities of neuronal EAAT2 are low despite high levels of mRNA in CA3 pyramidal cell bodies, but not why EAAT2 in terminals account for more than half of the uptake of exogenous substrate by hippocampal slice preparations. This and the relative amount of terminal versus glial uptake in the intact brain remain to be discovered.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: