Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Excitatory amino acids, possible causative agents of nodding syndrome in eastern Africa.

  • Yasushi Miyauchi‎ et al.
  • Tropical medicine and health‎
  • 2023‎

Nodding syndrome (NS) is one type of epilepsy and a progressive disease characterized by nodding symptoms with children in sub-Saharan Africa. The burden for NS children is heavy, not only mentally but financially for themselves and their families, and yet, the cause and cure of NS remain unknown. The kainic acid-induced model in experimental animals is a well-known epilepsy model that is useful for studying human diseases. In this study, we examined similarities of clinical symptoms and histological brain changes between NS patients and kainic acid-treated rats. In addition, we argued for kainic acid agonist as one of the causes of NS.


Inhibition of excitatory amino acid-activated currents by trichloroethanol and trifluoroethanol in mouse hippocampal neurones.

  • R W Peoples‎ et al.
  • British journal of pharmacology‎
  • 1998‎

1. The effects of the active metabolite of chloral derivative sedative-hypnotic agents, 2,2,2-trichloroethanol (trichloroethanol), and its analog 2,2,2-trifluoroethanol (trifluoroethanol), were studied on ion current activated by the excitatory amino acids N-methyl-D-aspartate (NMDA) and kainate in mouse hippocampal neurones in culture using whole-cell patch-clamp recording. 2. Both trichloroethanol and trifluoroethanol inhibited excitatory amino acid-activated currents in a concentration-dependent manner. Trichloroethanol inhibited NMDA- and kainate-activated currents with IC50 values of 6.4 and 12 mM, respectively, while trifluoroethanol inhibited NMDA- and kainate-activated currents with IC50 values of 28 and 35 mM, respectively. 3. Both trichloroethanol and trifluoroethanol appeared to be able to inhibit excitatory amino acid-activated currents by 100 per cent. 4.Concentration-response analysis of NMDA- and kainate-activated current revealed that trichloroethanol decreased the maximal response to both agonists without significantly affecting their EC50 values. 5. Both trichloroethanol and trifluoroethanol inhibited excitatory amino acid-activated currents more potently than did ethanol. The inhibitory potency of trichloroethanol and trifluoroethanol appears to be associated with their increased hydrophobicity. 6. The observation that trichloroethanol inhibits excitatory amino acid-activated currents at anaesthetic concentrations suggests that inhibition of excitatory amino acid receptors may contribute to the CNS depressant effects of chloral derivative sedative-hypnotic agents.


The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells.

  • Jared Ching‎ et al.
  • Oncotarget‎
  • 2015‎

Glioma cells release glutamate through expression of system xc-, which exchanges intracellular glutamate for extracellular cysteine. Lack of the excitatory amino acid transporter 2 (EAAT2) expression maintains high extracellular glutamate levels in the glioma microenvironment, causing excitotoxicity to surrounding parenchyma. Not only does this contribute to the survival and proliferation of glioma cells, but is involved in the pathophysiology of tumour-associated epilepsy (TAE). We investigated the role of the peroxisome proliferator activated receptor gamma (PPARγ) agonist pioglitazone in modulating EAAT2 expression in glioma cells. We found that EAAT2 expression was increased in a dose dependent manner in both U87MG and U251MG glioma cells. Extracellular glutamate levels were reduced with the addition of pioglitazone, where statistical significance was reached in both U87MG and U251MG cells at a concentration of ≥ 30 μM pioglitazone (p < 0.05). The PPARγ antagonist GW9662 inhibited the effect of pioglitazone on extracellular glutamate levels, indicating PPARγ dependence. In addition, pioglitazone significantly reduced cell viability of U87MG and U251MG cells at ≥ 30 μM and 100 μM (p < 0.05) respectively. GW9662 also significantly reduced viability of U87MG and U251MG cells with 10 μM and 30 μM (p < 0.05) respectively. The effect on viability was partially dependent on PPARγ activation in U87MG cells but not U251MG cells, whereby PPARγ blockade with GW9662 had a synergistic effect. We conclude that PPARγ agonists may be therapeutically beneficial in the treatment of gliomas and furthermore suggest a novel role for these agents in the treatment of tumour associated seizures through the reduction in extracellular glutamate.


Effect of excitatory and inhibitory agents and a glial inhibitor on optically-recorded primary-afferent excitation.

  • Hiroshi Ikeda‎ et al.
  • Molecular pain‎
  • 2008‎

The effects of GABA, excitatory amino-acid receptors antagonists and a glial metabolism inhibitor on primary-afferent excitation in the spinal dorsal horn were studied by imaging the presynaptic excitation of high-threshold afferents in cord slices from young rats with a voltage-sensitive dye. Primary afferent fibers and terminals were anterogradely labeled with a voltage-sensitive dye from the dorsal root attached to the spinal cord slice. Single-pulse stimulation of C fiber-activating strength to the dorsal root elicited compound action potential-like optical responses in the superficial dorsal horn. The evoked presynaptic excitation was increased by the GABAA receptor antagonists picrotoxin and bicuculline, by glutamate receptor antagonists D-AP5 and CNQX, and by the glial metabolism inhibitor mono-fluoroacetic acid (MFA). The increase in presynaptic excitation by picrotoxin was inhibited in the presence of D-AP5, CNQX and MFA. Presynaptic modulation in the central terminal of fine primary afferents by excitatory and inhibitory amino acids may represent a mechanism that regulates the transmission of pain.


Dose-Dependent Behavioral and Antioxidant Effects of Quercetin and Methanolic and Acetonic Extracts from Heterotheca inuloides on Several Rat Tissues following Kainic Acid-Induced Status Epilepticus.

  • Liliana Carmona-Aparicio‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

Kainic acid (KA) has been used to study the neurotoxicity induced after status epilepticus (SE) due to activation of excitatory amino acids with neuronal damage. Medicinal plants can protect against damage caused by KA-induced SE; in particular, organic extracts of Heterotheca inuloides and its metabolite quercetin display antioxidant activity and act as hepatoprotective agents. However, it is unknown whether these properties can protect against the hyperexcitability underlying the damage caused by KA-induced SE. Our aim was to study the protective effects (with regard to behavior and antioxidant activity) of administration of natural products methanolic (ME) and acetonic (AE) extracts and quercetin (Q) from H. inuloides at doses of 30 mg/kg (ME30, AE30, and Q30 groups), 100 mg/kg (ME100, AE100, and Q100 groups), and 300 mg/kg (ME300, AE300, and Q300 groups) against damage in brain regions of male Wistar rats treated with KA. We found dose-dependent effects on behavioral and biochemical studies in the all-natural product groups vs. the control group, with decreases in seizure severity (Racine's scale) and increases in seizure latency (p < 0.05 in the ME100, AE100, Q100, and Q300 groups and p < 0.01 in the AE300 and ME300 groups); on lipid peroxidation and carbonylated proteins in all brain tissues (p < 0.0001); and on GPx, GR, CAT, and SOD activities with all the treatments vs. KA (p ≤ 0.001). In addition, there were strong negative correlations between carbonyl levels and latency in the group treated with KA and in the group treated with methanolic extract in the presence of KA (r = -0.9919, p = 0.0084). This evidence suggests that organic extracts and quercetin from H. inuloides exert anticonvulsant effects via direct scavenging of reactive oxygen species (ROS) and modulation of antioxidant enzyme activity.


Estrogen and progesterone attenuate glutamate neurotoxicity via regulation of EAAT3 and GLT-1 in a rat model of ischemic stroke.

  • Sara Nematipour‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2020‎

Glutamate is the most widespread neurotransmitter in the central nervous system and has several functions as a neuromodulator in the brain although in pathological conditions like ischemia it is excessively released causing cell death. Under physiological conditions, glutamate is rapidly scavenged from the synaptic cleft by excitatory amino-acid transporters (EAATs). An imbalance in glutamatergic neurotransmission could influence the expression of glutamate transporters and is a pathological feature in several neurological disorders. It has been shown that estrogen and progesterone act as neuroprotective agents after brain injury. This study aims to investigate the role of hormone therapy after middle cerebral artery occlusion (tMCAO) in the expression of GLT-1 and EAAT3 as glutamate transporters.


5-HT1A Receptor Agonist Promotes Retinal Ganglion Cell Function by Inhibiting OFF-Type Presynaptic Glutamatergic Activity in a Chronic Glaucoma Model.

  • Xujiao Zhou‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

Serotonin receptors are potential neuroprotective agents in degenerative diseases of the central nervous system. The protective effects of serotonin receptor (5-HT1A) agonists on the survival and function of retinal ganglion cells (RGCs) by regulating the release of the presynaptic neurotransmitter γ-aminobutyric acid (GABA) were confirmed in our previous study of a chronic glaucoma rat model. However, the roles of excitatory amino acids and their interactions with the 5-HT1A receptor in glaucoma remain unknown. Here, we found that ocular hypertension increased glutamine synthetase (GS) and excitatory amino acid transporter 2 (EAAT2) expression in rat retinas. In addition, the high expression of GS and EAAT2 induced by glaucoma was downregulated by the 5-HT1A receptor agonist 8-OH-DPAT and the 5-HT1A receptor antagonist WAY-100635, respectively. Patch-clamp techniques were used to record glutamate receptor-mediated spontaneous and miniature glutamatergic excitatory post-synaptic currents (sEPSCs and mEPSCs) as well as L-glutamate-induced current in OFF-type and ON-type RGCs in rat retinal slices. Although there were no significant differences in the frequency and amplitude of sEPSC and mEPSC release between normal and glaucoma OFF- and ON-type RGCs, exogenous 8-OH-DPAT administration specifically reduced the frequency, but not the amplitude, of sEPSC and mEPSC release in glaucoma OFF-type rather than ON-type RGCs; these effects were completely blocked by WAY-100635. In summary, 8-OH-DPAT decreases and increases GS and EAAT2 expression of glaucomatous retina, respectively, while decreasing sEPSC and mEPSC frequency. In contrast, WAY-100635 increases and decreases GS and EAAT2 expression of glaucomatous retina, respectively, while increasing sEPSC and mEPSC frequency. The reduction of glutamatergic presynaptic transmission by 8-OH-DPAT deactivates RGCs at the neural network level and reduces the excitotoxic damage in the pathological process of chronic glaucoma.


Pain Inhibits GRPR Neurons via GABAergic Signaling in the Spinal Cord.

  • Rita Bardoni‎ et al.
  • Scientific reports‎
  • 2019‎

It has been known that algogens and cooling could inhibit itch sensation; however, the underlying molecular and neural mechanisms remain poorly understood. Here, we show that the spinal neurons expressing gastrin releasing peptide receptor (GRPR) primarily comprise excitatory interneurons that receive direct and indirect inputs from C and Aδ fibers and form contacts with projection neurons expressing the neurokinin 1 receptor (NK1R). Importantly, we show that noxious or cooling agents inhibit the activity of GRPR neurons via GABAergic signaling. By contrast, capsaicin, which evokes a mix of itch and pain sensations, enhances both excitatory and inhibitory spontaneous synaptic transmission onto GRPR neurons. These data strengthen the role of GRPR neurons as a key circuit for itch transmission and illustrate a spinal mechanism whereby pain inhibits itch by suppressing the function of GRPR neurons.


Pharmacological evidence that D-aspartate activates a current distinct from ionotropic glutamate receptor currents in Aplysia californica.

  • Stephen L Carlson‎ et al.
  • Brain and behavior‎
  • 2012‎

D-Aspartate (D-Asp) activates a nonspecific cation current of unknown identity independent of L-glutamate (L-Glu) in neurons of Aplysia californica. Whole-cell voltage clamp studies were conducted using primary cultures of Aplysia buccal S cluster (BSC) neurons to characterize these receptor channels pharmacologically. The N-methyl-D-aspartate receptor (NMDAR) coagonist glycine potentiated D-Asp currents only at -30 mV, while D-serine did not potentiate D-Asp currents at any amplitude. Portions of D-Asp currents were blocked by the L-Glu antagonists kynurenate, DL-2-amino-5-phosphonopentanoic acid (APV), (2S,3R)-1-(phenanthren-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA), and 1,3-dihydro-5-[3-[4-(phenylmethyl)-1-2H-benzimidazol-2-one (TCS46b), suggesting that L-Glu channels, particularly NMDAR-like channels, may partially contribute to D-Asp whole-cell currents. In contrast, L-Glu currents were unaffected by APV, and showed greater block by kynurenate, suggesting that D-Asp and L-Glu act, in part, at different sites. The excitatory amino acid transport blocker DL-threo-b-Benzyloxyaspartic acid (TBOA) blocked a fraction of D-Asp currents, suggesting that currents associated with these transporters also contribute. Non-NMDA L-GluR antagonists that preferentially block alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA)/kainate receptors significantly increased D-Asp currents, suggesting a possible allosteric potentiating effect of these antagonists on D-Asp receptors. L-Glu-induced currents were significantly reduced in the presence of bath-applied D-Asp, whereas bath-applied L-Glu had no effect on D-Asp-induced currents. The mixed effects of these agents on D-Asp-induced currents in Aplysia illustrate that the underlying channels are not uniformly characteristic of any known agonist associated channel type.


Tizanidine: neuropharmacology and mechanism of action.

  • D M Coward‎
  • Neurology‎
  • 1994‎

Pharmacologic and electrophysiologic studies over the past 20 years have shown tizanidine to be a potent, central-acting myotonolytic agent that principally affects spinal polysynaptic reflexes. This action arises from agonistic activity of the compound at noradrenergic alpha 2 receptors, resulting in both direct impairment of excitatory amino acid release from spinal interneurons and a concomitant inhibition of facilitatory coeruleospinal pathways. Similar alpha 2-receptor-mediated inhibition of interneuronal activity appears to underlie the additional antinociceptive and anticonvulsant activity of tizanidine reported in several species and test paradigms. Despite its structural and biochemical similarity to clonidine, the cardiovscular properties of tizanidine are mild and transitory in relation to its activity as a muscle relaxant. These findings, together with a possible greater separation between myotonolytic and general CNS depressant activity than with other agents, make tizanidine a valuable addition in the pharmacologic treatment of spasticity.


Atomistic mechanism for the activation and desensitization of an AMPA-subtype glutamate receptor.

  • Hao Dong‎ et al.
  • Nature communications‎
  • 2011‎

Ionotropic glutamate receptors (iGluRs) mediate fast excitatory synaptic transmission in the central nervous system. Upon agonist binding, an iGluR opens to allow the flow of cations and subsequently enters into a desensitized state. It remains unclear how agonist binding to the ligand-binding domain (LBD) is transmitted to the transmembrane domain (TMD) for channel activation and desensitization. Here we report molecular dynamics simulations of an AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-subtype iGluR in explicit water and membrane. Channel opening and closing were observed in simulations of the activation and desensitization processes, respectively. The motions of the LBD-TMD linkers along the central axis of the receptor and in the lateral plane contributed cooperatively to channel opening and closing. The detailed mechanism of channel activation and desensitization suggested by the simulations here is consistent with existing data and may serve as a guide for new experiments and for the design of pharmacological agents.


Subthalamic stimulation evokes complex EPSCs in the rat substantia nigra pars reticulata in vitro.

  • Ke-Zhong Shen‎ et al.
  • The Journal of physiology‎
  • 2006‎

The subthalamic nucleus (STN) plays an important role in movement control by exerting its excitatory influence on the substantia nigra pars reticulata (SNR), a major output structure of the basal ganglia. Moreover, excessive burst firing of SNR neurons seen in Parkinson's disease has been attributed to excessive transmission in the subthalamonigral pathway. Using the 'blind' whole-cell patch clamp recording technique in rat brain slices, we found that focal electrical stimulation of the STN evoked complex, long-duration excitatory postsynaptic currents (EPSCs) in SNR neurons. Complex EPSCs lasted 200-500 ms and consisted of an initial monosynaptic EPSC followed by a series of late EPSCs superimposed on a slow inward shift in holding current. Focal stimulation of regions outside the STN failed to evoke complex EPSCs. The late component of complex EPSCs was markedly reduced by ionotropic glutamate receptor antagonists (2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitro-quinoxalone) and by a GABAA receptor agonist (isoguvacine) when these agents were applied directly to the STN using a fast-flow microapplicator. Moreover, the complex EPSC was greatly enhanced by bath application of the GABAA receptor antagonists picrotoxin or bicuculline. These data suggest that recurrent glutamate synapses in the STN generate polysynaptic, complex EPSCs that are under tonic inhibition by GABA. Because complex EPSCs are expected to generate bursts of action potentials in SNR neurons, we suggest that complex EPSCs may contribute to the pathological burst firing that is associated with the symptoms of Parkinson's disease.


The effects of artificial calcium buffers on calcium responses and glutamate-mediated excitotoxicity in cultured hippocampal neurons.

  • K M Abdel-Hamid‎ et al.
  • Neuroscience‎
  • 1997‎

After loading cultured rat hippocampal neurons with teh acetoxymethyl ester of the Ca2+ buffer BAPTA, or its dimethyl analogue DMB, the magnitudes of transient (20-25 s) depolarization- or excitatory amino acid-induced Ca2+ responses were reduced, as were the rates of increase and recovery of [Ca2+]i. In contrast, during prolonged (3-30 min) stimulation, the magnitudes of the Ca2+ responses were not reduced in buffer-loaded neurons, even though the rates of increase and recovery were still much slower compared to neurons loaded with the control molecule half-BAPTA-AM. The potential consequences of this action of BAPTA and DMB were then examined in an in vitro model of excitotoxicity in which we found that, in both fetal and postnatal cultures, glutamate-induced excitotoxicity was enhanced, rather than reduced. An additional and unexpected observation was that during exposure of neurons to solutions containing BAPTA-AM, dimethyl-BAPTA-AM, or half-BAPTA-AM, we observed a rapid but reversible increase in intracellular [Ca2+] that appeared to be mediated via an activation of voltage-operated Ca2+ channels; most probably due to a direct depolarizing effect. We suggest that the presence of artificial Ca2+ buffers interferes with the normal Ca(2+)-dependent mechanisms for limiting Ca2+ entry during stimulation and thereby leads to an enhanced net Ca2+ influx. One consequence of this action is to enhance the potency of glutamate as an excitotoxic agent. These results agree with previous observations that excitotoxicity is better correlated with the total net flux of Ca2+, rather than measurements of intracellular ionic Ca2+. Our results do not support a potential use of artificial Ca2+ buffers as neuroprotective agents.


A toll-like receptor 9 antagonist restores below-level glial glutamate transporter expression in the dorsal horn following spinal cord injury.

  • Alexandra Pallottie‎ et al.
  • Scientific reports‎
  • 2018‎

Spinal cord (SC) trauma elicits pathological changes at the primary lesion and in regions distant from the injury epicenter. Therapeutic agents that target mechanisms at the injury site are likely to exert additional effects in these remote regions. We previously reported that a toll-like receptor 9 (TLR9) antagonist, oligodeoxynucleotide 2088 (ODN 2088), improves functional deficits and modulates the milieu at the epicenter in mice sustaining a mid-thoracic contusion. The present investigations use the same paradigm to assess ODN 2088-elicited alterations in the lumbar dorsal horn (LDH), a region remote from the injury site where SCI-induced molecular alterations have been well defined. We report that ODN 2088 counteracts the SCI-elicited decrease in glial glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT1) levels, whereas the levels of the neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1) and astroglial GABA transporter 3 (GAT3) were unaffected. The restoration of GLAST and GLT1 was neither paralleled by a global effect on astrocyte and microglia activation nor by changes in the expression of cytokines and growth factors reported to regulate these transporters. We conclude that the effects of intrathecal ODN 2088 treatment extend to loci beyond the epicenter by selectively targeting glial glutamate transporters.


Pinostrobin alleviates chronic restraint stress‑induced cognitive impairment by modulating oxidative stress and the function of astrocytes in the hippocampus of rats.

  • Sitthisak Thongrong‎ et al.
  • Biomedical reports‎
  • 2023‎

Chronic stress has been recognized to induce the alterations of neuronal and glial cells in the hippocampus, and is thus implicated in cognitive dysfunction. There is increasing evidence to indicate that natural compounds capable of exerting neuroprotective and antioxidant activities, may function as potential therapeutic agents for cognitive impairment. The present study examined the neuroprotective effects of pinostrobin from Boesenbergia rotunda (L.) against chronic restraint stress (CRS)-induced cognitive impairment associated with the alterations of oxidative stress, neuronal density and glial fibrillary acidic protein (GFAP) of astrocytes in the hippocampus. For this purpose, male Wistar rats were administered once daily with pinostrobin (20 and 40 mg/kg, per os) prior to exposure to CRS (6 h/day) for 21 days. The cognitive behaviors, the concentration of malondialdehyde, and the activities of superoxide dismutase and catalase were determined. Histologically, the alterations in astrocytic GFAP and excitatory amino acid transporter 2 (EAAT2) in the hippocampus were examined. The results revealed that pinostrobin potentially attenuated cognitive impairment in the Y-maze and in novel object recognition tests, with a reduction in oxidative stress. Furthermore, pinostrobin effectively increased neuronal density, as well as the immunoreactivities of GFAP and EAAT2 in the hippocampus. Taken together, these findings indicate that treatment with pinostrobin alleviates chronic stress-induced cognitive impairment by exerting antioxidant effects, reducing neuronal cell damage, and improving the function of astrocytic GFAP and EAAT2. Thus, pinostrobin may have potential for use as a neuroprotective agent to protect against chronic stress-induced brain dysfunction and cognitive deficits.


Therapeutic Effect of Astroglia-like Mesenchymal Stem Cells Expressing Glutamate Transporter in a Genetic Rat Model of Depression.

  • Amit Shwartz‎ et al.
  • Theranostics‎
  • 2017‎

Recent studies have proposed that abnormal glutamatergic neurotransmission and glial pathology play an important role in the etiology and manifestation of depression. It was postulated that restoration of normal glutamatergic transmission, by enhancing glutamate uptake, may have a beneficial effect on depression. We examined this hypothesis using unique human glial-like mesenchymal stem cells (MSCs), which in addition to inherent properties of migration to regions of injury and secretion of neurotrophic factors, were differentiated to express high levels of functional glutamate transporters (excitatory amino acid transporters; EAAT). Additionally, gold nanoparticles (GNPs), which serve as contrast agents for CT imaging, were loaded into the cells for non-invasive, real-time imaging and tracking of MSC migration and final location within the brain. MSC-EAAT (2×105; 10 μl) were administered (i.c.v.) to Flinder Sensitive Line rats (FSLs), a genetic model for depression, and longitudinal behavioral and molecular changes were monitored. FSL rats treated with MSC-EAAT showed attenuated depressive-like behaviors (measured by the forced swim test, novelty exploration test and sucrose self-administration paradigm), as compared to controls. CT imaging, Flame Atomic Absorption Spectroscopy analysis and immunohistochemistry showed that the majority of MSCs homed specifically to the dentate gyrus of the hippocampus, a region showing structural brain changes in depression, including loss of glial cells. mRNA and protein levels of EAAT1 and BDNF were significantly elevated in the hippocampus of MSC-EAAT-treated FSLs. Our findings indicate that MSC-EAATs effectively improve depressive-like manifestations, possibly in part by increasing both glutamate uptake and neurotropic factor secretion in the hippocampus.


Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717) in nonhuman primates.

  • Linda J Porrino‎ et al.
  • PLoS biology‎
  • 2005‎

The deleterious effects of prolonged sleep deprivation on behavior and cognition are a concern in modern society. Persons at risk for impaired performance and health-related issues resulting from prolonged sleep loss would benefit from agents capable of reducing these detrimental effects at the time they are sleep deprived. Agents capable of improving cognition by enhancing brain activity under normal circumstances may also have the potential to reduce the harmful or unwanted effects of sleep deprivation. The significant prevalence of excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamatergic receptors in the brain provides a basis for implementing a class of drugs that could act to alter or remove the effects of sleep deprivation. The ampakine CX717 (Cortex Pharmaceuticals), a positive allosteric modulator of AMPA receptors, was tested for its ability to enhance performance of a cognitive, delayed match-to-sample task under normal circumstances in well-trained monkeys, as well as alleviate the detrimental effects of 30-36 h of sleep deprivation. CX717 produced a dose-dependent enhancement of task performance under normal alert testing conditions. Concomitant measures of regional cerebral metabolic rates for glucose (CMRglc) during the task, utilizing positron emission tomography, revealed increased activity in prefrontal cortex, dorsal striatum, and medial temporal lobe (including hippocampus) that was significantly enhanced over normal alert conditions following administration of CX717. A single night of sleep deprivation produced severe impairments in performance in the same monkeys, accompanied by significant alterations in task-related CMRglc in these same brain regions. However, CX717 administered to sleep-deprived monkeys produced a striking removal of the behavioral impairment and returned performance to above-normal levels even though animals were sleep deprived. Consistent with this recovery, CMRglc in all but one brain region affected by sleep deprivation was also returned to the normal alert pattern by the drug. The ampakine CX717, in addition to enhancing cognitive performance under normal alert conditions, also proved effective in alleviating impairment of performance due to sleep deprivation. Therefore, the ability to activate specific brain regions under normal alert conditions and alter the deleterious effects of sleep deprivation on activity in those same regions indicate a potential role for ampakines in sustaining performance under these types of adverse conditions.


Overwhelmingly asynchronous firing of rat subthalamic nucleus neurones in brain slices provides little evidence for intrinsic interconnectivity.

  • C L Wilson‎ et al.
  • Neuroscience‎
  • 2004‎

In Parkinson's disease the neurones of the subthalamic nucleus show increased synchrony and oscillatory burst discharge, thought to reflect a breakdown of parallel processing in basal ganglia circuitry. To understand better the mechanisms underlying this transition, we sought to mimic this change in firing pattern within sagittal slices of rat midbrain. The firing patterns of up to four simultaneously extracellularly recorded subthalamic nucleus (STN) neurones were analysed using burst and oscillation detection programs, and correlated activity between pairs of neurones assessed. In control conditions all but 11 of 488 (2%) neurones fired in a predominantly tonic pattern (with mean oscillation frequency >3 Hz), with no significantly cross-correlated activity in any of 393 pairs of neurones. The glutamate antagonists DL-2-amino-phosphonopentanoic acid (APV), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-methyl-2-(phenylethynyl)pyridine (MPEP) did not change the firing rate or pattern of these cells, providing no evidence for a role of glutamatergic collaterals within the STN under these conditions. The GABA(A) receptor antagonist bicuculline and GABA(B) receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl]phenylmethyl phosphinic acid (CGP 55845) were also without effect on firing rate or pattern in these cells, suggesting that there was no active input from other GABAergic basal ganglia nuclei in this slice. The dopamine receptor antagonist haloperidol caused no significant change to firing rate or pattern of firing in these cells, suggesting that there was no active dopaminergic input in this slice. Excitations of STN neurones by muscarine, (+)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD), N-methyl-D-aspartic acid (NMDA) or dopamine were all unaccompanied by a change in firing pattern or any significant correlated activity between STN neurone pairs. Burst firing could be induced in STN neurones with either the potassium channel blocker tetraethylammonium (TEA; 10 mM; in 100/138 [72%] of cells) or with a combination of NMDA and the calcium-activated potassium channel blocker apamin (in 101/216 [47%] of cells). Burst firing in TEA was unchanged by CNOX and APV, MPEP, CGP55845, haloperidol, dopamine, and ACPD, although muscarine produced a significant increase in oscillation frequency. Burst firing in NMDA and apamin was unchanged by CNQX and APV, dopamine, muscarine and ACPD, although bicuculline caused a significant increase in oscillation frequency. Such burst firing was not accompanied by synchrony in any condition, either alone, or during application of excitatory agents or glutamate or GABA antagonists. As the bursting seen here was unaccompanied by the synchronous activity that has often been observed (pathologically) in vivo, it probably reflects solely intrinsic STN neuronal properties, rather than network activity. No functional role was found for glutamatergic collaterals within the STN, either when cells are firing tonically or burst firing. The circuitry needed to produce synchrony in the STN is most likely not intrinsic to the STN itself, but requires connections with other basal ganglia nuclei, and/or the cortex, which are not present in this preparation.


Activation of nicotinic acetylcholine receptors induces potentiation and synchronization within in vitro hippocampal networks.

  • Sarra Djemil‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

Nicotinic acetylcholine receptors (nAChRs) are known to play a role in cognitive functions of the hippocampus, such as memory consolidation. Given that they conduct Ca2+ and are capable of regulating the release of glutamate and γ-aminobutyric acid (GABA) within the hippocampus, thereby shifting the excitatory-inhibitory ratio, we hypothesized that the activation of nAChRs will result in the potentiation of hippocampal networks and alter synchronization. We used nicotine as a tool to investigate the impact of activation of nAChRs on neuronal network dynamics in primary embryonic rat hippocampal cultures prepared from timed-pregnant Sprague-Dawley rats. We perturbed cultured hippocampal networks with increasing concentrations of bath-applied nicotine and performed network extracellular recordings of action potentials using a microelectrode array. We found that nicotine modulated network dynamics in a concentration-dependent manner; it enhanced firing of action potentials as well as facilitated bursting activity. In addition, we used pharmacological agents to determine the contributions of discrete nAChR subtypes to the observed network dynamics. We found that β4-containing nAChRs are necessary for the observed increases in spiking, bursting, and synchrony, while the activation of α7 nAChRs augments nicotine-mediated network potentiation but is not necessary for its manifestation. We also observed that antagonists of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs) partially blocked the effects of nicotine. Furthermore, nicotine exposure promoted autophosphorylation of Ca2+ /calmodulin-dependent kinase II (CaMKII) and serine 831 phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit GluA1. These results suggest that nicotinic receptors induce potentiation and synchronization of hippocampal networks and glutamatergic synaptic transmission. Findings from this work highlight the impact of cholinergic signaling in generating network-wide potentiation in the form of enhanced spiking and bursting dynamics that coincide with molecular correlates of memory such as increased phosphorylation of CaMKII and GluA1. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: