Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,903 papers

EEG Evoked Potentials to Repetitive Transcranial Magnetic Stimulation in Normal Volunteers: Inhibitory TMS EEG Evoked Potentials.

  • Jing Zhou‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2022‎

The impact of repetitive magnetic stimulation (rTMS) on cortex varies with stimulation parameters, so it would be useful to develop a biomarker to rapidly judge effects on cortical activity, including regions other than motor cortex. This study evaluated rTMS-evoked EEG potentials (TEP) after 1 Hz of motor cortex stimulation. New features are controls for baseline amplitude and comparison to control groups of sham stimulation. We delivered 200 test pulses at 0.20 Hz before and after 1500 treatment pulses at 1 Hz. Sequences comprised AAA = active stimulation with the same coil for test-treat-test phases (n = 22); PPP = realistic placebo coil stimulation for all three phases (n = 10); and APA = active coil stimulation for tests and placebo coil stimulation for treatment (n = 15). Signal processing displayed the evoked EEG waveforms, and peaks were measured by software. ANCOVA was used to measure differences in TEP peak amplitudes in post-rTMS trials while controlling for pre-rTMS TEP peak amplitude. Post hoc analysis showed reduced P60 amplitude in the active (AAA) rTMS group versus the placebo (APA) group. The N100 peak showed a treatment effect compared to the placebo groups, but no pairwise post hoc differences. N40 showed a trend toward increase. Changes were seen in widespread EEG leads, mostly ipsilaterally. TMS-evoked EEG potentials showed reduction of the P60 peak and increase of the N100 peak, both possibly reflecting increased slow inhibition after 1 Hz of rTMS. TMS-EEG may be a useful biomarker to assay brain excitability at a seizure focus and elsewhere, but individual responses are highly variable, and the difficulty of distinguishing merged peaks complicates interpretation.


Deconvolution analysis of target evoked potentials.

  • Cliff C Kerr‎ et al.
  • Journal of neuroscience methods‎
  • 2009‎

This paper demonstrates a method for analyzing target evoked potentials in an auditory oddball task, using Wiener deconvolution to separate the brain's task-dependent properties from its task-invariant response. It is shown that a target response can be deconvolved, and the result contains two delta-like peaks separated by approximately 100 ms, implying that targets resemble a superposition of two standard responses. The latencies and areas of these delta-like peaks give quantitative measures of the evoked potential, providing a method of analysis that is simpler and more physiologically meaningful than peak scoring. This deconvolution method is applied to both synthetic and experimental evoked potential data, and is demonstrated to be applicable even when normal evoked potential features are not clearly visible.


Multiresolution wavelet analysis of evoked potentials.

  • N V Thakor‎ et al.
  • IEEE transactions on bio-medical engineering‎
  • 1993‎

Neurological injury, such as from cerebral hypoxia, appears to cause complex changes in the shape of evoked potential (EP) signals. To characterize such changes we analyze EP signals with the aid of scaling functions called wavelets. In particular, we consider multiresolution wavelets that are a family of orthonormal functions. In the time domain, the multiresolution wavelets analyze EP signals at coarse or successively greater levels of temporal detail. In the frequency domain, the multiresolution wavelets resolve the EP signal into independent spectral bands. In an experimental demonstration of the method, somatosensory EP signals recorded during cerebral hypoxia in anesthetized cats are analyzed. Results obtained by multiresolution wavelet analysis are compared with conventional time-domain analysis and Fourier series expansions of the same signals. Multiresolution wavelet analysis appears to be a different, sensitive way to analyze EP signal features and to follow the EP signal trends in neurologic injury. Two characteristics appear to be of diagnostic value: the detail component of the MRW displays an early and a more rapid decline in response to hypoxic injury while the coarse component displays an earlier recovery upon reoxygenation.


32-channel mouse EEG: Visual evoked potentials.

  • Rüdiger Land‎ et al.
  • Journal of neuroscience methods‎
  • 2019‎

Measuring visual evoked potentials (VEP) by means of EEG allows the quasi non-invasive assessment of visual function in mice. Such sensory phenotyping is important to screen for genetic or aging effects on vision in preclinical mouse models. Thus, a standardized EEG-like approach for the assessment of sensory evoked potentials in mice is desirable.


Anti-Heartbeat-Evoked Potentials Performance in Event-Related Potentials-Based Mental Workload Assessment.

  • Sangin Park‎ et al.
  • Frontiers in physiology‎
  • 2021‎

The aim of this study was to determine the effect of heartbeat-evoked potentials (HEPs) on the performance of an event-related potential (ERP)-based classification of mental workload (MWL). We produced low- and high-MWLs using a mental arithmetic task and measured the ERP response of 14 participants. ERP trials were divided into three conditions based on the effect of HEPs on ERPs: ERPHEP, containing the heartbeat in a period of 280-700ms in ERP epochs after the target; ERPA-HEP, not including the heartbeat within the same period; and ERPT, all trials including ERPA-HEP and ERPHEP. We then compared MWL classification performance using the amplitude and latency of the P600 ERP among the three conditions. The ERPA-HEP condition achieved an accuracy of 100% using a radial basis function-support vector machine (with 10-fold cross-validation), showing an increase of 14.3 and 28.6% in accuracy compared to ERPT (85.7%) and ERPHEP (71.4%), respectively. The results suggest that evoked potentials caused by heartbeat overlapped or interfered with the ERPs and weakened the ERP response to stimuli. This study reveals the effect of the evoked potentials induced by heartbeats on the performance of the MWL classification based on ERPs.


Laser-Evoked Vertex Potentials Predict Defensive Motor Actions.

  • M Moayedi‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2015‎

The vertex potential is the largest response that can be recorded in the electroencephalogram of an awake, healthy human. It is elicited by sudden and intense stimuli, and is composed by a negative-positive deflection. The stimulus properties that determine the vertex potential amplitude have been well characterized. Nonetheless, its functional significance remains elusive. The dominant interpretation is that it reflects neural activities related to the detection of salient stimuli. However, given that threatening stimuli elicit both vertex potentials and defensive movements, we hypothesized that the vertex potential is related to the execution of defensive actions. Here, we directly compared the salience and motoric interpretations by investigating the relationship between the amplitude of laser-evoked potentials (LEPs) and the response time of movements with different defensive values. First, we show that a larger LEP negative wave (N2 wave) predicts faster motor response times. Second, this prediction is significantly stronger when the motor response is defensive in nature. Third, the relation between the N2 wave and motor response time depends not only on the kinematic form of the movement, but also on whether that kinematic form serves as a functional defense of the body. Therefore, the N2 wave of the LEP encodes key defensive reactions to threats.


Improving reproducibility of motor evoked potentials in mice.

  • Valerio Castoldi‎ et al.
  • Journal of neuroscience methods‎
  • 2022‎

In preclinical research involving murine models of neurological diseases, Motor Evoked Potentials (MEPs) can detect pathological alterations in nerve conduction throughout the cortico-spinal tract. In mice, MEPs elicited by electrical stimulation of the motor cortex can be performed with epicranial or subdermal electrodes such as implanted screws or removable needles, which are associated with invasive surgery and variability in placement of the stimulating electrodes, respectively.


Decoding Steady-State Visual Evoked Potentials From Electrocorticography.

  • Benjamin Wittevrongel‎ et al.
  • Frontiers in neuroinformatics‎
  • 2018‎

We report on a unique electrocorticography (ECoG) experiment in which Steady-State Visual Evoked Potentials (SSVEPs) to frequency- and phase-tagged stimuli were recorded from a large subdural grid covering the entire right occipital cortex of a human subject. The paradigm is popular in EEG-based Brain Computer Interfacing where selectable targets are encoded by different frequency- and/or phase-tagged stimuli. We compare the performance of two state-of-the-art SSVEP decoders on both ECoG- and scalp-recorded EEG signals, and show that ECoG-based decoding is more accurate for very short stimulation lengths (i.e., less than 1 s). Furthermore, whereas the accuracy of scalp-EEG decoding benefits from a multi-electrode approach, to address interfering EEG responses and noise, ECoG decoding enjoys only a marginal improvement as even a single electrode, placed over the posterior part of the primary visual cortex, seems to suffice. This study shows, for the first time, that EEG-based SSVEP decoders can in principle be applied to ECoG, and can be expected to yield faster decoding speeds using less electrodes.


Visual evoked potentials elicited by chromatic motion onset.

  • D J McKeefry‎
  • Vision research‎
  • 2001‎

Visually Evoked Potentials (VEPs) were recorded in response to the onset of chromatic and luminance motion gratings of 1 cpd and luminance 40 cd m(-2) subtending a 7 degrees field. At slow speeds (< or =2 cycles s(-1)) the motion onset response exhibits a clear amplitude minimum at isoluminance. Over the Michelson contrast range tested (0.05-0.75) the chromatic response at 2 cycles s(-1) possesses a linear response function compared to the saturating function of the luminance response and the contrast dependency of the former is a factor of 5-6 times greater than for the latter. These differences are suggestive of different neural substrates for the chromatic and luminance motion VEPs at slow speeds. At 10 cycles s(-1) the chromatic motion onset VEP exhibits no amplitude minimum at isoluminance and becomes more like its luminance counterpart in terms of its saturating contrast response function. Furthermore, the contrast dependency of the chromatic and luminance responses differs by only a factor of 1.6 at this faster rate. These findings are consistent with the idea of separate motion mechanisms that operate at fast and slow speeds, the latter having separate channels for colour and luminance motion.


Stimulus duration and vestibular sensory evoked potentials (VsEPs).

  • Timothy A Jones‎ et al.
  • Hearing research‎
  • 2021‎

Recording the linear vestibular sensory evoked potential (VsEP) relies on moving the head in a prescribed manner to synchronously activate neurons of the gravity receptor organs. One problematic issue in accomplishing this is the potential coactivation of cochlear neurons. Although the major stimulus parameters required to elicit the vestibular response have been characterized, some of the determinants of auditory coactivation have not been clearly addressed. In the present study, we show that the duration of the linear cranial jerk stimulus plays a critical role in avoiding coactivation of auditory responses during VsEP recordings. Acoustic masking procedures are essential when recording the VsEP, particularly when using stimulus durations of less than 1 ms.


Intensity Dependence of Auditory Evoked Potentials in Primary Dysmenorrhea.

  • Bingren Zhang‎ et al.
  • The journal of pain‎
  • 2017‎

Some studies suggest that women with primary dysmenorrhea have distinct emotional or personality features. For example, they might exaggerate their responses to external stimuli, such as to intensity-increasing auditory stimuli. Fifteen women with primary dysmenorrhea and 15 healthy women were invited to undergo tests of the intensity dependence of auditory evoked potentials (IDAEP), the Functional and Emotional Measure of Dysmenorrhea, and the Plutchik-van Praag Depression Inventory. Study participants with dysmenorrhea showed higher Functional and Emotional scale scores and stronger IDAEP. Regarding the IDAEP generation, the source inversion of N1 and P2 disclosed the activated bilateral superior temporal gyri, medial and superior prefrontal gyri in all participants, and additionally, the middle frontal gyri in dysmenorrhea patients. We report a pronounced IDAEP in primary dysmenorrhea, which indicates the decreased cerebral serotonergic innervations and points to increased activations in the prefrontal and frontal areas in the disorder.


Magnetic motor evoked potentials of cervical muscles in horses.

  • Joke Rijckaert‎ et al.
  • BMC veterinary research‎
  • 2018‎

When surgical treatment of cervical vertebral malformation is considered, precise localization of compression sites is essential, but remains challenging. Magnetic motor evoked potentials (mMEP) from paravertebral muscles are useful in localizing spinal cord lesions, but no information about cervical muscle mMEP in horses is available yet. Therefore, the aim of this study was to determine the possibility, normal values, inter- and intra-observer agreement and factors that have an effect on cervical mMEP in healthy horses.


Error related EEG potentials evoked by visuo-motor rotations.

  • Miri Benyamini‎ et al.
  • Brain research‎
  • 2021‎

Electroencephalographic (EEG) correlates of errors, known as error-related potentials (ErrPs), provide promising tools to investigate error processing in the brain and to detect and correct errors induced by brain-computer interfaces (BCIs). Visuo-motor rotation (VMR) is a well-known experimental paradigm to introduce visuo-motor errors that closely mimics directional errors induced by BCIs. However, investigations of ErrPs during VMR experiments are limited and reveals different ErrPs depending on task and synchronization. We conducted VMR experiments with 5 randomly selected conditions (no-rotation, small, ±22.5°, or large, ±45° rotations) to hamper adaptation and facilitate investigation of the effect of error size. We tracked eye movements so EEG was synchronized not only to onset of movement correction (OMC) but also to saccadic movement onset (SMO). Kinematic analysis indicated that maximum deviations from a straight line to the target were larger in trials with large rotations compared to small or no rotations, but there was a large overlap. Thus, we also compared ErrPs generated by trials with different maximum deviations. Our results reveal that trials with large rotations and especially trials with large maximum deviations evoke a significant positive ErrP component. The positive peak appeared 380 msec after SMO and 240 msec after OMC. Furthermore, the positive peak was associated with activity in Brodmann areas 5 and 7, in agreement with other studies and with the role of posterior parietal cortex in reaching movements. The observed ErrP may facilitate further investigation of error processing in the brain and error detection and correction in BCIs.


Cortical Auditory Evoked Potentials in 2-Year-Old Subjects.

  • Inaê Costa‎ et al.
  • International archives of otorhinolaryngology‎
  • 2020‎

Introduction  Cortical auditory evoked potentials (CAEPs) can be used to evaluate both peripheral and cortical components of auditory function, and contribute to the assessment of functional sensitivity and auditory thresholds, especially in neonates and infants. Auditory evoked potentials reflect auditory maturity and precede the acquisition of more complex auditory and cognitive skills, and are therefore crucial for speech and language development. Objective  The aim of the present study was to determine the presence, latency and amplitude of CAEP components in response to verbal stimuli in children aged 2 years old. Methods  The sample consisted of 19 subjects, 10 of whom were male while 9 were female. All of the participants were 24 months old at the time of assessment. Results  A total of 17 of the participants displayed all components of the CAEP. Additionally, no significant differences were observed between genders or ears in the present sample. The presence of all components of the CAEP in subjects aged 2 years old confirms the existence of a critical period for the maturation of auditory pathways in the first 2 years of life. Conclusion  In the present study, in addition to the P1/N1 components, it was possible to observe the presence of the CAEP P2/N2 components in individuals aged 24 months, confirming the existence of a critical period for the maturation of the auditory pathways in the first 2 years of life.


Dynamic causal modelling of evoked potentials: a reproducibility study.

  • Marta I Garrido‎ et al.
  • NeuroImage‎
  • 2007‎

Dynamic causal modelling (DCM) has been applied recently to event-related responses (ERPs) measured with EEG/MEG. DCM attempts to explain ERPs using a network of interacting cortical sources and waveform differences in terms of coupling changes among sources. The aim of this work was to establish the validity of DCM by assessing its reproducibility across subjects. We used an oddball paradigm to elicit mismatch responses. Sources of cortical activity were modelled as equivalent current dipoles, using a biophysical informed spatiotemporal forward model that included connections among neuronal subpopulations in each source. Bayesian inversion provided estimates of changes in coupling among sources and the marginal likelihood of each model. By specifying different connectivity models we were able to evaluate three different hypotheses: differences in the ERPs to rare and frequent events are mediated by changes in forward connections (F-model), backward connections (B-model) or both (FB-model). The results were remarkably consistent over subjects. In all but one subject, the forward model was better than the backward model. This is an important result because these models have the same number of parameters (i.e., the complexity). Furthermore, the FB-model was significantly better than both, in 7 out of 11 subjects. This is another important result because it shows that a more complex model (that can fit the data more accurately) is not necessarily the most likely model. At the group level the FB-model supervened. We discuss these findings in terms of the validity and usefulness of DCM in characterising EEG/MEG data and its ability to model ERPs in a mechanistic fashion.


Steady state visual evoked potentials in schizophrenia: A review.

  • Alexander Schielke‎ et al.
  • Frontiers in neuroscience‎
  • 2022‎

Over the past decades, researchers have explored altered rhythmic responses to visual stimulation in people with schizophrenia using steady state visual evoked potentials (SSVEPs). Here we systematically review studies performed between 1954 and 2021, as identified on PubMed. We included studies if they included people with schizophrenia, a control group, reported SSVEPs as their primary outcome, and used quantitative analyses in the frequency domain. We excluded studies that used SSVEPs to primarily quantify cognitive processes (e.g., attention). Fifteen studies met these criteria. These studies reported decreased SSVEPs across a range of frequencies and electrode locations in people living with schizophrenia compared to controls; none reported increases. Null results, however, were common. Given the typically modest number of subjects in these studies, this is consistent with a moderate effect size. It is notable that most studies targeted frequencies that fall within the alpha and beta band, and investigations of frequencies in the gamma band have been rare. We group test frequencies in frequency bands and summarize the results in topographic plots. From the wide range of approaches in these studies, we distill suggested experimental designs and analysis choices for future experiments. This will increase the value of SSVEP studies, improve our understanding of the mechanisms that result in altered rhythmic responses to visual stimulation in schizophrenia, and potentially further the development of diagnostic tools.


Scalp Topography of Lower Urinary Tract Sensory Evoked Potentials.

  • Stéphanie van der Lely‎ et al.
  • Brain topography‎
  • 2020‎

Impaired lower urinary tract (LUT) afferents often cause LUT symptoms. Assessment of LUT afferent pathways is possible using bipolar cortical sensory evoked potential (SEP) recordings with the active electrode at the vertex during electrical stimulation in the LUT. This study aimed to investigate the topographical distribution and microstates of lower urinary tract sensory evoked potentials (LUTSEPs) using different stimulation frequencies. Ninety healthy subjects (18-36 years old, 40 women) were randomly assigned to one of five stimulation locations [bladder dome; trigone; proximal, membranous (men only) or distal urethra]. Cycles of 0.5 Hz/1.1 Hz/1.6 Hz electrical stimulation were applied using a custom-made catheter. Cortical activity was recorded from 64 surface electrodes. Marker setting was performed manually on an individual subject-level for the P1, N1, and P2 components of vertex recordings. N1 and P2 topographies presented with central negativities and positivities around the vertex. Regarding topographical distribution, Randomization Graphical User interface (RAGU) analyses revealed consistent frequency effects and microstates for N1/P2. Higher stimulation frequencies resulted in decreasing map strength for P1, N1, and P2. LUTSEP topographies suggest central generators in the somatosensory cortex, which are not detectable in a bipolar set-up. The observed frequency effect indicates fiber refractoriness at higher frequencies. The multichannel approach allows more comprehensive assessment of LUTSEPs and might therefore be sensitive to pathological changes. Examinations in patients with LUT symptoms are needed to further investigate this biomarker.


Heart-brain interactions shape somatosensory perception and evoked potentials.

  • Esra Al‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Even though humans are mostly not aware of their heartbeats, several heartbeat-related effects have been reported to influence conscious perception. It is not clear whether these effects are distinct or related phenomena, or whether they are early sensory effects or late decisional processes. Combining electroencephalography and electrocardiography, along with signal detection theory analyses, we identify two distinct heartbeat-related influences on conscious perception differentially related to early vs. late somatosensory processing. First, an effect on early sensory processing was found for the heartbeat-evoked potential (HEP), a marker of cardiac interoception. The amplitude of the prestimulus HEP negatively correlated with localization and detection of somatosensory stimuli, reflecting a more conservative detection bias (criterion). Importantly, higher HEP amplitudes were followed by decreases in early (P50) as well as late (N140, P300) somatosensory-evoked potential (SEP) amplitudes. Second, stimulus timing along the cardiac cycle also affected perception. During systole, stimuli were detected and correctly localized less frequently, relating to a shift in perceptual sensitivity. This perceptual attenuation was accompanied by the suppression of only late SEP components (P300) and was stronger for individuals with a more stable heart rate. Both heart-related effects were independent of alpha oscillations' influence on somatosensory processing. We explain cardiac cycle timing effects in a predictive coding account and suggest that HEP-related effects might reflect spontaneous shifts between interoception and exteroception or modulations of general attentional resources. Thus, our results provide a general conceptual framework to explain how internal signals can be integrated into our conscious perception of the world.


Multifocal visual evoked potentials in chronic inflammatory demyelinating polyneuropathy.

  • Jonas Graf‎ et al.
  • Annals of clinical and translational neurology‎
  • 2018‎

Studies using conventional full-field visual evoked potentials (ffVEP) have reported subtle abnormalities in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). We hypothesize that these abnormalities can be detected in the majority of CIDP patients using enhanced methods.


Asymmetric vestibular evoked myogenic potentials in unilateral Menière patients.

  • C M Kingma‎ et al.
  • European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery‎
  • 2011‎

Vestibular evoked myogenic potentials (VEMPs) were measured in 22 unilateral Menière patients with monaural and binaural stimulation with 250 and 500 Hz tone bursts. For all measurement situations significantly lower VEMP amplitudes were on average measured at the affected side compared to the unaffected side. Unilateral Menière patients have, in contrast to normal subjects, asymmetric VEMPs, indicating a permanently affected vestibular (most likely otolith) system at the side of hearing loss. The diagnostic value of VEMP amplitude asymmetry measurement in individual patients is low, because of the large overlap of the VEMP amplitude asymmetry range for unilateral Menière patients with that for normal subjects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: