Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36 papers

Ovarian failure related to eukaryotic initiation factor 2B mutations.

  • Anne Fogli‎ et al.
  • American journal of human genetics‎
  • 2003‎

Ovarian failure (OF) at age <40 years occurs in approximately 1% of all women. Other than karyotype abnormalities, very few genes are known to be associated with this ovarian dysfunction. We studied eight patients who presented with premature OF and white-matter abnormalities on magnetic resonance imaging. Neurological signs may be absent or present after OF. In seven patients, we report for the first time mutations in three of the five EIF2B genes (EIF2B2, -4, and -5) that were recently shown to cause childhood ataxia with central nervous system hypomyelination/vanishing white-matter disease leukodystrophy. The correlation we observed between the age at onset of the neurological deterioration and the severity of OF suggests a common pathophysiological pathway.


Vanishing white matter: Eukaryotic initiation factor 2B model and the impact of missense mutations.

  • Inna Slynko‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2021‎

Vanishing white matter (VWM) is a leukodystrophy, caused by recessive mutations in eukaryotic initiation factor 2B (eIF2B)-subunit genes (EIF2B1-EIF2B5); 80% are missense mutations. Clinical severity is highly variable, with a strong, unexplained genotype-phenotype correlation.


Identification of ubiquitin-modified lysine residues and novel phosphorylation sites on eukaryotic initiation factor 2B epsilon.

  • Alexander P Tuckow‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

Eukaryotic initiation factor 2Bε (eIF2Bε) plays a critical role in the initiation of mRNA translation and its expression and guanine nucleotide exchange activity are major determinants of the rate of protein synthesis. In this work we provide evidence that the catalytic epsilon subunit of eIF2B is subject to ubiquitination and proteasome-mediated degradation. Lysates of C2C12 myoblasts treated with proteasome inhibitor were subjected to sequential immunoprecipitations for eIF2Bε followed by ubiquitin. Tandem mass spectrometry (LC-MS/MS) analysis of immunoprecipitated proteins resulted in the identification of five peptides containing ubiquitin (diglycine) modifications on eIF2Bε. The specific lysine residues containing the ubiquitin modifications were localized as Lys-56, Lys-98, Lys-136, Lys-212 and Lys-500 (corresponding to the rat protein sequence). In addition three novel phosphorylation sites were identified including Ser-22, Ser-125, and Thr-317. Moreover, peptides corresponding to the amino acid sequence of the E3 ligase NEDD4 were also detected in the LC-MS/MS analysis, and an interaction between endogenous eIF2Bε with NEDD4 was confirmed by co-immunoprecipitation.


Glycogen synthase kinase-3 is the predominant insulin-regulated eukaryotic initiation factor 2B kinase in skeletal muscle.

  • L S Jefferson‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 1999‎

Eukaryotic initiation factor eIF2B is a guanine nucleotide exchange protein involved in regulation of translation initiation. Phosphorylation of the epsilon-subunit is thought to be important in insulin-mediated changes in eIF2B activity. However, elucidation of insulin's action has proven elusive, primarily because eIF2B epsilon is a substrate in vitro for at least three different protein kinases. In the present study, we observed changes in eIF2B epsilon kinase activity only in those muscles previously shown to exhibit alterations in protein synthesis in response to insulin. Specifically, eIF2B epsilon kinase activity was increased in psoas muscle from diabetic rats compared to controls. Treating diabetic rats with insulin rapidly reduced eIF2B epsilon kinase activity below control values. Changes were not observed in heart. To identify the kinase(s) in psoas responsible for phosphorylating eIF2B epsilon, the wildtype and two variant forms of the epsilon-subunit were expressed in and purified from Sf9 insect cells, and were used as substrates in protein kinase assays. The first variant contained a point mutation in the eIF2B epsilon cDNA that converted the glycogen synthase kinase-3 (GSK-3) phosphorylation site, Ser535, to a nonphosphorylatable Ala residue. In the second variant, the putative GSK-3 'priming' site, Ser539, was converted to Asp. Based on the pattern of phosphorylation of the wildtype and two variant forms of eIF2B epsilon using casein kinase (CK)-I, CK-II, or GSK-3 as well as that observed with skeletal muscle extracts, we conclude that the predominant eIF2B epsilon kinase in psoas muscle is GSK-3. Thus, insulin-mediated changes in eIF2B activity are likely to involve GSK-3.


The yeast eukaryotic translation initiation factor 2B translation initiation complex interacts with the fatty acid synthesis enzyme YBR159W and endoplasmic reticulum membranes.

  • Christopher M Browne‎ et al.
  • Molecular and cellular biology‎
  • 2013‎

Using affinity purifications coupled with mass spectrometry and yeast two-hybrid assays, we show the Saccharomyces cerevisiae translation initiation factor complex eukaryotic translation initiation factor 2B (eIF2B) and the very-long-chain fatty acid (VLCFA) synthesis keto-reductase enzyme YBR159W physically interact. The data show that the interaction is specifically between YBR159W and eIF2B and not between other members of the translation initiation or VLCFA pathways. A ybr159wΔ null strain has a slow-growth phenotype and a reduced translation rate but a normal GCN4 response to amino acid starvation. Although YBR159W localizes to the endoplasmic reticulum membrane, subcellular fractionation experiments show that a fraction of eIF2B cofractionates with lipid membranes in a YBR159W-independent manner. We show that a ybr159wΔ yeast strain and other strains with null mutations in the VLCFA pathway cause eIF2B to appear as numerous foci throughout the cytoplasm.


Impaired eukaryotic translation initiation factor 2B activity specifically in oligodendrocytes reproduces the pathology of vanishing white matter disease in mice.

  • Yifeng Lin‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2014‎

Vanishing white matter disease (VWMD) is an inherited autosomal-recessive hypomyelinating disease caused by mutations in eukaryotic translation initiation factor 2B (eIF2B). eIF2B mutations predominantly affect the brain white matter, and the characteristic features of VWMD pathology include myelin loss and foamy oligodendrocytes. Activation of pancreatic endoplasmic reticulum kinase (PERK) has been observed in oligodendrocytes in VWMD. PERK activation in response to endoplasmic reticulum stress attenuates eIF2B activity by phosphorylating eIF2α, suggesting that impaired eIF2B activity in oligodendrocytes induced by VWMD mutations or PERK activation exploit similar mechanisms to promote selective white matter pathology in VWMD. Using transgenic mice that allow for temporally controlled activation of PERK specifically in oligodendrocytes, we discovered that strong PERK activation in oligodendrocytes during development suppressed eIF2B activity and reproduced the characteristic features of VWMD in mice, including hypomyelinating phenotype, foamy oligodendrocytes, and myelin loss. Notably, impaired eIF2B activity induced by PERK activation in oligodendrocytes of fully myelinated adult mice had minimal effects on morphology or function. Our observations point to a cell-autonomous role of impaired eIF2B activity in myelinating oligodendrocytes in the pathogenesis of VWMD.


A point mutation in translation initiation factor 2B leads to a continuous hyper stress state in oligodendroglial-derived cells.

  • Liraz Kantor‎ et al.
  • PloS one‎
  • 2008‎

Mutations in eukaryotic translation initiation factor 2B (eIF2B) cause Childhood Ataxia with CNS Hypomyelination (CACH), also known as Vanishing White Matter disease (VWM). The disease is manifested by loss of brain myelin upon physiological stress. In a previous study, we showed that fibroblasts isolated from CACH/VWM patients are hypersensitive to pharmacologically-induced endoplasmic reticulum (ER) stress. Since brain cells from affected individuals are not available for research, we wished to assess the effect of eIF2B mutation on oligodendroglial-derived cells.


A point mutation in translation initiation factor eIF2B leads to function--and time-specific changes in brain gene expression.

  • Liraz Marom‎ et al.
  • PloS one‎
  • 2011‎

Mutations in eukaryotic translation initiation factor 2B (eIF2B) cause Childhood Ataxia with CNS Hypomyelination (CACH), also known as Vanishing White Matter disease (VWM), which is associated with a clinical pathology of brain myelin loss upon physiological stress. eIF2B is the guanine nucleotide exchange factor (GEF) of eIF2, which delivers the initiator tRNA(Met) to the ribosome. We recently reported that a R132H mutation in the catalytic subunit of this GEF, causing a 20% reduction in its activity, leads under normal conditions to delayed brain development in a mouse model for CACH/VWM. To further explore the effect of the mutation on global gene expression in the brain, we conducted a wide-scale transcriptome analysis of the first three critical postnatal weeks.


Saccharomyces cerevisiae ER membrane protein complex subunit 4 (EMC4) plays a crucial role in eIF2B-mediated translation regulation and survival under stress conditions.

  • Sonum Sharma‎ et al.
  • Journal, genetic engineering & biotechnology‎
  • 2020‎

Eukaryotic initiation factor 2B (eIF2B) initiates and regulates translation initiation in eukaryotes. eIF2B gene mutations cause leukoencephalopathy called vanishing white matter disease (VWM) in humans and slow growth (Slg-) and general control derepression (Gcd-) phenotypes in Saccharomyces cerevisiae.


DYRK2 negatively regulates cardiomyocyte growth by mediating repressor function of GSK-3β on eIF2Bε.

  • Celine S Weiss‎ et al.
  • PloS one‎
  • 2013‎

A prerequisite of hypertrophic response of the myocardium is an increase in protein synthesis. A central regulator of translation initiation is Eukaryotic initiation factor 2B (eIF2B). Here we assessed the hypothesis that regulation of protein synthesis via eIF2Bε is essential to cardiac hypertrophic response in vivo.


Human-induced pluripotent stem cell-derived cerebral organoid of leukoencephalopathy with vanishing white matter.

  • Jiong Deng‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2023‎

Leukoencephalopathy with vanishing white matter (VWM) is a rare autosomal recessive leukoencephalopathy resulting from mutations in EIF2B1-5, which encode subunits of eukaryotic translation initiation factor 2B (eIF2B). Studies have found that eIF2B mutation has a certain influence on embryonic brain development. So far, the effect of the eIF2B mutations on the dynamic process of brain development is not fully understood yet.


Modeling vanishing white matter disease with patient-derived induced pluripotent stem cells reveals astrocytic dysfunction.

  • Ling Zhou‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2019‎

Vanishing white matter disease (VWM) is an inherited leukoencephalopathy in children attributed to mutations in EIF2B1-5, encoding five subunits of eukaryotic translation initiation factor 2B (eIF2B). Although the defects are in the housekeeping genes, glial cells are selectively involved in VWM. Several studies have suggested that astrocytes are central in the pathogenesis of VWM. However, the exact pathomechanism remains unknown, and no model for VWM induced pluripotent stem cells (iPSCs) has been established.


Elevated Stratifin promotes cisplatin-based chemotherapy failure and poor prognosis in non-small cell lung cancer.

  • Yu-Shui Ma‎ et al.
  • Molecular therapy oncolytics‎
  • 2021‎

Drug resistance is a key factor in the treatment failure of clinical non-small cell lung cancer (NSCLC) patients after adjuvant chemotherapy. Here, our results provide the first evidence that eukaryotic translation initiation factor 2b subunit delta (EIF2B4)-Stratifin (SFN) fusion and increased SFN expression are associated with chemotherapy tolerance and activation of the phosphatidylinositol 3 kinase/v-akt murine thymoma viral oncogene (PI3K/Akt) signaling pathway in NSCLC patients, suggesting that SFN might have potential prognostic value as a tumor biomarker for the prognosis of patients with NSCLC.


Farnesol inhibits translation to limit growth and filamentation in C. albicans and S. cerevisiae.

  • Nkechi E Egbe‎ et al.
  • Microbial cell (Graz, Austria)‎
  • 2017‎

Candida albicans is a polymorphic yeast where the capacity to switch between yeast and filamentous growth is critical for pathogenicity. Farnesol is a quorum-sensing sesquiterpene alcohol that, via regulation of specific signalling and transcription components, inhibits filamentous growth in Candida albicans. Here we show that farnesol also inhibits translation at the initiation step in both Candida albicans and S. cerevisiae. In contrast to fusel alcohols, that target the eukaryotic initiation factor 2B (eIF2B), farnesol affects the interaction of the mRNA with the small ribosomal subunit leading to reduced levels of the 48S preinitiation ribosomal complex in S. cerevisiae. Therefore, farnesol targets a different step in the translation pathway than fusel alcohols to elicit a completely opposite physiological outcome by negating filamentous growth.


Poor cerebral inflammatory response in eIF2B knock-in mice: implications for the aetiology of vanishing white matter disease.

  • Yuval Cabilly‎ et al.
  • PloS one‎
  • 2012‎

Mutations in any of the five subunits of eukaryotic translation initiation factor 2B (eIF2B) can lead to an inherited chronic-progressive fatal brain disease of unknown aetiology termed leucoencephalopathy with vanishing white matter (VWM). VWM is one of the most prevalent childhood white matter disorders, which markedly deteriorates after inflammation or exposure to other stressors. eIF2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions. A previous study demonstrated that Eif2b5(R132H/R132H) mice suffer delayed white matter development and fail to recover from cuprizone-induced demyelination, although eIF2B enzymatic activity in the mutant brain is reduced by merely 20%.


Translational control by RGS2.

  • Chau H Nguyen‎ et al.
  • The Journal of cell biology‎
  • 2009‎

The regulator of G protein signaling (RGS) proteins are a family of guanosine triphosphatase (GTPase)-accelerating proteins. We have discovered a novel function for RGS2 in the control of protein synthesis. RGS2 was found to bind to eIF2Bepsilon (eukaryotic initiation factor 2B epsilon subunit) and inhibit the translation of messenger RNA (mRNA) into new protein. This effect was not observed for other RGS proteins tested. This novel function of RGS2 is distinct from its ability to regulate G protein-mediated signals and maps to a stretch of 37 amino acid residues within its conserved RGS domain. Moreover, RGS2 was capable of interfering with the eIF2-eIF2B GTPase cycle, which is a requisite step for the initiation of mRNA translation. Collectively, this study has identified a novel role for RGS2 in the control of protein synthesis that is independent of its established RGS domain function.


Dynamic cycling of eIF2 through a large eIF2B-containing cytoplasmic body: implications for translation control.

  • Susan G Campbell‎ et al.
  • The Journal of cell biology‎
  • 2005‎

The eukaryotic translation initiation factor 2B (eIF2B) provides a fundamental controlled point in the pathway of protein synthesis. eIF2B is the heteropentameric guanine nucleotide exchange factor that converts eIF2, from an inactive guanosine diphosphate-bound complex to eIF2-guanosine triphosphate. This reaction is controlled in response to a variety of cellular stresses to allow the rapid reprogramming of cellular gene expression. Here we demonstrate that in contrast to other translation initiation factors, eIF2B and eIF2 colocalize to a specific cytoplasmic locus. The dynamic nature of this locus is revealed through fluorescence recovery after photobleaching analysis. Indeed eIF2 shuttles into these foci whereas eIF2B remains largely resident. Three different strategies to decrease the guanine nucleotide exchange function of eIF2B all inhibit eIF2 shuttling into the foci. These results implicate a defined cytoplasmic center of eIF2B in the exchange of guanine nucleotides on the eIF2 translation initiation factor. A focused core of eIF2B guanine nucleotide exchange might allow either greater activity or control of this elementary conserved step in the translation pathway.


Reorganization of budding yeast cytoplasm upon energy depletion.

  • Guendalina Marini‎ et al.
  • Molecular biology of the cell‎
  • 2020‎

Yeast cells, when exposed to stress, can enter a protective state in which cell division, growth, and metabolism are down-regulated. They remain viable in this state until nutrients become available again. How cells enter this protective survival state and what happens at a cellular and subcellular level are largely unknown. In this study, we used electron tomography to investigate stress-induced ultrastructural changes in the cytoplasm of yeast cells. After ATP depletion, we observed significant cytosolic compaction and extensive cytoplasmic reorganization, as well as the emergence of distinct membrane-bound and membraneless organelles. Using correlative light and electron microscopy, we further demonstrated that one of these membraneless organelles was generated by the reversible polymerization of eukaryotic translation initiation factor 2B, an essential enzyme in the initiation of protein synthesis, into large bundles of filaments. The changes we observe are part of a stress-induced survival strategy, allowing yeast cells to save energy, protect proteins from degradation, and inhibit protein functionality by forming assemblies of proteins.


Cellular eIF2B subunit localization: implications for the integrated stress response and its control by small molecule drugs.

  • Rachel E Hodgson‎ et al.
  • Molecular biology of the cell‎
  • 2019‎

Eukaryotic initiation factor 2 (eIF2) is a G protein critical for translation. It is tightly regulated in the integrated stress response (ISR) via phosphorylation of eIF2α and the subsequent control of eukaryotic initiation factor 2B (eIF2B), a multisubunit guanine nucleotide exchange factor. Through studying the localization of eIF2B subunits, we identified cytoplasmic eIF2B bodies in mammalian cells. We highlight a relationship between body size and the eIF2B subunits localizing to them; larger bodies contain all subunits and smaller bodies contain predominantly catalytic subunits. eIF2 localizes to eIF2B bodies and shuttles within these bodies in a manner that correlates with eIF2B activity. On stress, eIF2α-P localizes predominately to larger bodies and results in a decreased shuttling of eIF2. Interestingly, drugs that inhibit the ISR can rescue eIF2 shuttling in a manner correlating to levels of eIF2α-P. In contrast, smaller bodies show increased eIF2 shuttling in response to stress, which is accompanied by the localization of eIF2Bδ to these bodies, suggesting the formation of a novel trimeric complex of eIF2B. This response is mimicked by ISR-inhibiting drugs, providing insight into their potential mechanism of action. This study provides evidence that the composition and function of mammalian eIF2B bodies are regulated by the ISR and the drugs that control it.


Guanabenz ameliorates disease in vanishing white matter mice in contrast to sephin1.

  • Diede Witkamp‎ et al.
  • Annals of clinical and translational neurology‎
  • 2022‎

Vanishing white matter (VWM) is a leukodystrophy, characterized by stress-sensitive neurological deterioration and premature death. It is currently without curative treatment. It is caused by bi-allelic pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B). eIF2B is essential for the regulation of the integrated stress response (ISR), a physiological response to cellular stress. Preclinical studies on VWM mouse models revealed that deregulated ISR is key in the pathophysiology of VWM and an effective treatment target. Guanabenz, an α2-adrenergic agonist, attenuates the ISR and has beneficial effects on VWM neuropathology. The current study aimed at elucidating guanabenz's disease-modifying potential and mechanism of action in VWM mice. Sephin1, an ISR-modulating guanabenz analog without α2-adrenergic agonistic properties, was included to separate effects on the ISR from α2-adrenergic effects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: