Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,805 papers

Biodistribution of etoposide via intratumoral chemotherapy with etoposide-loaded implants.

  • Chunsheng Wu‎ et al.
  • Drug delivery‎
  • 2020‎

Etoposide (VP16) is the traditional antitumor agent which has been widely used in a variety of cancers. However, intravenous administration of VP16 was limited in clinical application because of its low aqueous solubility, poor bioavailability and dose-limiting adverse effects. Local chemotherapy with VP16-loaded drug delivery systems could provide a continuous release of drug at the target site, while minimizing the systemic toxicity. In this study, we prepared the poly-l-lactic acid (PLLA) based VP16-loaded implants (VP16 implants) by the direct compression method. The VP16 implants were characterized with regards to drug content, micromorphology, drug release profiles, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) analyses. Furthermore, the biodistribution of VP16 via intratumoral chemotherapy with VP16 implants was investigated using the murine Lewis lung carcinoma model. Our results showed that VP16 dispersed homogenously in the polymeric matrix. Both in vitro and in vivo drug release profiles of the implants were characterized by high initial burst release followed by sustained release of VP16. The VP16 implants showed good compatibility between VP16 and the excipients. Intratumoral chemotherapy with VP16 implants resulted in significantly higher concentration and longer duration of VP16 in tumor tissues compared with single intraperitoneal injection of VP16 solution. Moreover, we found the low level of VP16 in plasma and normal organ tissues. These results suggested that intratumoral chemotherapy with VP16 implants enabled high drug concentration at the target site and has the potential to be used as a novel method to treat cancer.


PPIP5K1 Suppresses Etoposide-triggered Apoptosis.

  • Gayane Machkalyan‎ et al.
  • Journal of molecular signaling‎
  • 2016‎

Inositol hexakisphosphate kinase 2 (IP6K2) potentiates pro-apoptotic signalling and increases the sensitivity of mammalian cells to cytotoxic agents. Diphosphoinositol pentakisphosphate kinase (PPIP5K) generates inositol pyrophosphates (InsPPs) that are structurally distinct from those produced by IP6K2 and their possible roles in affecting cell viability remain unclear. In the present study, we tested the impact of PPIP5K1 on cellular sensitivity to various genotoxic agents to determine if PPIP5K1 and IP6K2 contribute similarly to apoptosis. We observed that PPIP5K1 overexpression decreased sensitivity of cells toward several cytotoxic agents, including etoposide, cisplatin, and sulindac. We further tested the impact of PPIP5K1 overexpression on an array of apoptosis markers and observed that PPIP5K1 decreased p53 phosphorylation on key residues, including Ser-15, -46, and -392. Overexpression of a kinase-impaired PPIP5K1 mutant failed to protect cells from apoptosis, indicating this protection is a consequence PPIP5K1 catalytic activity, in contrast with the sensitivity conferred by IP6K2, which is dependent on both catalytic and non-catalytic functions. These observations reveal distinct roles for PPIP5K1 and IP6K2 and the InsPPs they produce in controlling cell death.


Acute myelomonocytic leukemia after treatment with chronic oral etoposide: are MLL and LTG9 genes targets for etoposide?

  • H Goto‎ et al.
  • International journal of hematology‎
  • 1994‎

A patient with secondary acute myelomonocytic leukemia after treatment with chronic oral etoposide (VP-16) for lung cancer is reported. The leukemic cells showed a t(9;11)(p22;q23) translocation. Southern blot analysis revealed the rearrangement of the MLL (ALL-1/HRX) gene at 11q23. Reverse transcriptase-polymerase chain reaction (RT-PCR) revealed a chimeric mRNA between the MLL gene at 11q23 and LTG9 (MLLT3/AF-9) gene at 9p22. The patient was successfully treated with a VP-16 based regimen. This case is instructive in the understanding of the leukemogenesis of VP-16-related leukemias.


Differential gene and microRNA expression between etoposide resistant and etoposide sensitive MCF7 breast cancer cell lines.

  • Karobi Moitra‎ et al.
  • PloS one‎
  • 2012‎

In order to develop targeted strategies for combating drug resistance it is essential to understand it's basic molecular mechanisms. In an exploratory study we have found several possible indicators of etoposide resistance operating in MCF7VP cells, including up-regulation of ABC transporter genes, modulation of miRNA, and alteration in copy numbers of genes.


Numerical analysis of etoposide induced DNA breaks.

  • Aida Muslimović‎ et al.
  • PloS one‎
  • 2009‎

Etoposide is a cancer drug that induces strand breaks in cellular DNA by inhibiting topoisomerase II (topoII) religation of cleaved DNA molecules. Although DNA cleavage by topoisomerase II always produces topoisomerase II-linked DNA double-strand breaks (DSBs), the action of etoposide also results in single-strand breaks (SSBs), since religation of the two strands are independently inhibited by etoposide. In addition, recent studies indicate that topoisomerase II-linked DSBs remain undetected unless topoisomerase II is removed to produce free DSBs.


Pericentromeric Satellite III transcripts induce etoposide resistance.

  • Julian Kanne‎ et al.
  • Cell death & disease‎
  • 2021‎

Non-coding RNA from pericentromeric satellite repeats are involved in stress-dependent splicing processes, maintenance of heterochromatin, and are required to protect genome stability. Here we show that the long non-coding satellite III RNA (SatIII) generates resistance against the topoisomerase IIa (TOP2A) inhibitor etoposide in lung cancer. Because heat shock conditions (HS) protect cells against the toxicity of etoposide, and SatIII is significantly induced under HS, we hypothesized that the protective effect could be traced back to SatIII. Using genome methylation profiles of patient-derived xenograft mouse models we show that the epigenetic modification of the SatIII DNA locus and the resulting SatIII expression predict chemotherapy resistance. In response to stress, SatIII recruits TOP2A to nuclear stress bodies, which protects TOP2A from a complex formation with etoposide and results in decreased DNA damage after treatment. We show that BRD4 inhibitors reduce the expression of SatIII, restoring etoposide sensitivity.


Photochemical Internalization of Etoposide Using Dendrimer Nanospheres Loaded with Etoposide and Protoporphyrin IX on a Glioblastoma Cell Line.

  • Martin Hsiu-Chu Lin‎ et al.
  • Pharmaceutics‎
  • 2021‎

Glioblastoma multiforme (GBM) is the most common malignant primary neoplasm of the adult central nervous system originating from glial cells. The prognosis of those affected by GBM has remained poor despite advances in surgery, chemotherapy, and radiotherapy. Photochemical internalization (PCI) is a release mechanism of endocytosed therapeutics into the cytoplasm, which relies on the membrane disruptive effect of light-activated photosensitizers. In this study, phototherapy by PCI was performed on a human GBM cell-line using the topoisomerase II inhibitor etoposide (Etop) and the photosensitizer protoporphyrin IX (PpIX) loaded in nanospheres (Ns) made from generation-5 polyamidoamine dendrimers (PAMAM(G5)). The resultant formulation, Etop/PpIX-PAMAM(G5) Ns, measured 217.4 ± 2.9 nm in diameter and 40.5 ± 1.3 mV in charge. Confocal microscopy demonstrated PpIX fluorescence within the endo-lysosomal compartment, and an almost twofold increase in cellular uptake compared to free PpIX by flow cytometry. Phototherapy with 3 min and 5 min light illumination resulted in a greater extent of synergism than with co-administered Etop and PpIX; notably, antagonism was observed without light illumination. Mechanistically, significant increases in oxidative stress and apoptosis were observed with Etop/PpIX-PAMAM(G5) Ns upon 5 min of light illumination in comparison to treatment with either of the agents alone. In conclusion, simultaneous delivery and endo-lysosomal co-localization of Etop and PpIX by PAMAM(G5) Ns leads to a synergistic effect by phototherapy; in addition, the finding of antagonism without light illumination can be advantageous in lowering the dark toxicity and improving photo-selectivity.


Human Lactoferrin Synergizes with Etoposide to Inhibit Lung Adenocarcinoma Cell Growth While Attenuating Etoposide-Mediated Cytotoxicity of Human Endothelial Cells.

  • Paulina Olszewska‎ et al.
  • Biomedicines‎
  • 2022‎

Lung cancer continues to be the deadliest cancer worldwide. A new strategy of combining chemotherapeutics with naturally occurring anticancer compounds, such as lactoferrin, might improve the efficacy and toxicity of current chemotherapy. The aim of this study was to evaluate the effect of recombinant human lactoferrin (rhLf) in combination with etoposide on anticancer activity in human lung adenocarcinoma cells. In addition, we examined the impact of rhLf on etoposide-induced cytotoxicity of human endothelial cells. We found that treatment of A549 cells with a combination of etoposide and rhLf resulted in significantly greater inhibition of cancer cell growth as compared to etoposide alone. The combination repressed cancer cell growth by cell cycle arrest in the G2/M phase and induction of apoptosis. In contrast to cancer cells, rhLf did not affect endothelial cell viability. Importantly, rhLf significantly diminished the etoposide-induced cytotoxicity of endothelial cells. Analysis of the type of drug interaction based on combination index value showed that rhLf synergized with etoposide to induce anticancer activity. The calculated dose reduction index indicated that the combination treatment reduced a 10-fold of etoposide dose to achieve the same anticancer effect. Our data demonstrate that rhLf enhanced the anticancer activity of etoposide and diminished etoposide-induced cytotoxic effect in endothelial cells.


Etoposide induces nuclear re-localisation of AID.

  • Laurens J Lambert‎ et al.
  • PloS one‎
  • 2013‎

During B cell activation, the DNA lesions that initiate somatic hypermutation and class switch recombination are introduced by activation-induced cytidine deaminase (AID). AID is a highly mutagenic protein that is maintained in the cytoplasm at steady state, however AID is shuttled across the nuclear membrane and the protein transiently present in the nucleus appears sufficient for targeted alteration of immunoglobulin loci. AID has been implicated in epigenetic reprogramming in primordial germ cells and cell fusions and in induced pluripotent stem cells (iPS cells), however AID expression in non-B cells is very low. We hypothesised that epigenetic reprogramming would require a pathway that instigates prolonged nuclear residence of AID. Here we show that AID is completely re-localised to the nucleus during drug withdrawal following etoposide treatment, in the period in which double strand breaks (DSBs) are repaired. Re-localisation occurs 2-6 hours after etoposide treatment, and AID remains in the nucleus for 10 or more hours, during which time cells remain live and motile. Re-localisation is cell-cycle dependent and is only observed in G2. Analysis of DSB dynamics shows that AID is re-localised in response to etoposide treatment, however re-localisation occurs substantially after DSB formation and the levels of re-localisation do not correlate with γH2AX levels. We conclude that DSB formation initiates a slow-acting pathway which allows stable long-term nuclear localisation of AID, and that such a pathway may enable AID-induced DNA demethylation during epigenetic reprogramming.


Molecular determinants of etoposide resistance in HL60 cells.

  • Rasha H Alghamdi‎ et al.
  • Bioinformation‎
  • 2022‎

Chemotherapy resistance is the main reason for treatment failure in acute myeloid leukemia (AML) and the major cause of its mortality. Etoposide is a DNA topoisomerase-II inhibitor that is used either as a single agent or in combination with cytarabine, azacytidine, vinca alkaloids, and anthracyclines for the treatment of relapsed /refractory AML. In this study, we sought to determine and understand the mechanism of etoposide resistance in AML using the HL60 cell line.HL60 cells were treated with incremental doses of etoposide and resistant colonies were isolated by culturing the resistant cells in semi-solid culture media. Three clones were selected for etoposide resistance namely, HL60-EtopR H1A, HL60-EtopR H1B, and HL60-EtopR H1C which demonstrated 4.78, 2.39, and 4.42-fold higher resistance to etoposide compared with the parental cells. To determine molecular differences between the etoposide-resistant HL60-EtopR cells and the parental cells, microarray-based gene expression profiling was performed. We found up regulation of members of the src tyrosine kinase family genes in the etoposide resistant cells. Further studies are required to evaluate the role of Src inhibitors in targeting etoposide resistant cells.


Distinct effects of etoposide on glutamine-addicted neuroblastoma.

  • Kadri Valter‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2020‎

The majority of anticancer drugs are DNA-damaging agents, and whether or not they may directly target mitochondria remains unclear. In addition, tumors such as neuroblastoma exhibit addiction to glutamine in spite of it being a nonessential amino acid. Our aim was to evaluate the direct effect of widely used anticancer drugs on mitochondrial activity in combination with glutamine withdrawal, and possible apoptotic effects of such interaction. Our results revealed that etoposide inhibits mitochondrial respiratory chain Complex I causing the leakage of electrons and the superoxide radical formation. However, it was not sufficient to induce apoptosis, and apoptotic manifestation was detectable only alongside the withdrawal of glutamine, a precursor for antioxidant glutathione. Thus, the simultaneous depletion of glutathione and destabilization of mitochondria by ROS can compromise the barrier properties of the mitochondrial membrane, leading to cytochrome c release and the activation of the mitochondrial apoptotic pathway. Thus, the depletion of antioxidants or the inhibition of the pathways responsible for cellular antioxidant response can enhance mitochondrial targeting and strengthen antitumor therapy.


Comparable safety profile of BeEAM (bendamustine, etoposide, cytarabine, melphalan) and BEAM (carmustine, etoposide, cytarabine, melphalan) as conditioning before autologous haematopoietic cell transplantation.

  • Andrzej Frankiewicz‎ et al.
  • Contemporary oncology (Poznan, Poland)‎
  • 2018‎

BEAM (carmustine, etoposide, cytarabine, melphalan) is the most frequently used high-dose chemotherapy regimen for patients with lymphoma referred for autologous haematopoietic cell transplantation (autoHCT). Recently, a novel conditioning protocol containing bendamustine instead of carmustine (BeEAM) has been proposed to potentially increase the efficacy.


Etoposide sensitizes neuroblastoma cells expressing caspase 8 to TRAIL.

  • Hye Ryung Kim‎ et al.
  • Cell biology international reports‎
  • 2012‎

TRAIL [TNF (tumour necrosis factor)-related apoptosis-inducing ligand] is a promising agent for clinical use since it kills a wide range of tumour cells without affecting normal cells. We provide evidence that pretreatment with etoposide significantly enhanced TRAIL-mediated apoptosis via up-regulation of DR5 (death receptor 5 or TRAIL-R2) expression in the caspase 8 expressing neuroblastoma cell line, SK-N-MC. In addition, sequential treatment with etoposide and TRAIL increased caspases 8, 9 and 3 activation, Mcl-1 cleavage and Bid truncation, which suggests that the ability of etoposide and TRAIL to induce apoptosis is mediated through activation of an intrinsic signalling pathway. Although TRAIL-R2 expression increased in IMR-32 cells in response to etoposide treatment, cell death was not increased by concurrent treatment with TRAIL compared with etoposide alone, because the cells lacked caspase 8 expression. Restoration of caspase 8 expression by exposure to IFNγ (interferon γ) sensitizes IMR-32 cells to TRAIL. Moreover, pretreatment with etoposide increased TRAIL-induced apoptosis in caspase 8 restored IMR-32 cells through activation of a caspase cascade that included caspases 8, 9 and 3. These results indicate that the etoposide-mediated sensitization of neuroblastoma cells to TRAIL is associated with an increase in TRAIL-R2 expression and requires caspase 8 expression. These observations support the potential use of a combination of etoposide and TRAIL in future clinical trials.


Etoposide Reduces Peroxynitrite-Induced Cytotoxicity via Direct Scavenging Effect.

  • In-Young Choi‎ et al.
  • Experimental neurobiology‎
  • 2010‎

Previously, we reported that glucose-deprived astrocytes are more vulnerable to the cytotoxicity of peroxynitrite, the reaction product of nitric oxide and superoxide anion. The augmented vulnerability of glucose-deprived astrocytes to peroxynitrite cytotoxicity was dependent on their proliferation rate. Inhibition of cell cycle progression has been shown to inhibit the apoptotic cell death occurring in cerebral ischemia-reperfusion. In the present study, we demonstrate that the increased death of glucose-deprived astrocytes by peroxynitrte was largely blocked by the cell cycle phase G2/M transition blocker etoposide. However, the cytoprotective effect of etoposide was not associated with its inhibition of cell cycle progression. Instead, etoposide effectively scavenged peroxynitrite. However, etoposide did not scavenge individual nitric oxide and superoxide anion and it did not prevent the hydrogen peroxide-induced cytotoxicity. The present results indicate that etoposide prevents the toxicity of peroxynitrite in astrocytes by directly scavenging peroxynitrite, not by inhibiting cell cycle progression.


Etoposide damages female germ cells in the developing ovary.

  • Agnes Stefansdottir‎ et al.
  • BMC cancer‎
  • 2016‎

As with many anti-cancer drugs, the topoisomerase II inhibitor etoposide is considered safe for administration to women in the second and third trimesters of pregnancy, but assessment of effects on the developing fetus have been limited. The purpose of this research was to examine the effect of etoposide on germ cells in the developing ovary. Mouse ovary tissue culture was used as the experimental model, thus allowing us to examine effects of etoposide on all stages of germ cell development in the same way, in vitro.


Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation.

  • Xuan Fu‎ et al.
  • PloS one‎
  • 2008‎

DNA damage such as double-stranded DNA breaks (DSBs) has been reported to stimulate mitochondrial biogenesis. However, the underlying mechanism is poorly understood. The major player in response to DSBs is ATM (ataxia telangiectasia mutated). Upon sensing DSBs, ATM is activated through autophosphorylation and phosphorylates a number of substrates for DNA repair, cell cycle regulation and apoptosis. ATM has been reported to phosphorylate the alpha subunit of AMP-activated protein kinase (AMPK), which senses AMP/ATP ratio in cells, and can be activated by upstream kinases. Here we provide evidence for a novel role of ATM in mitochondrial biogenesis through AMPK activation in response to etoposide-induced DNA damage.


Pharmacokinetics and dose adjustment of etoposide administered in a medium-dose etoposide, cyclophosphamide and total body irradiation regimen before allogeneic hematopoietic stem cell transplantation.

  • Yuki Tazawa‎ et al.
  • Journal of pharmaceutical health care and sciences‎
  • 2016‎

We investigated the pharmacokinetics of etoposide (ETP) to reduce the inter-individual variations of ETP concentrations in patients with acute leukemia who underwent allogeneic hematopoietic stem cell transplantation. We also carried out an in vivo study using rats to verify the dose adjustment.


DNA-AP sites generation by etoposide in whole blood cells.

  • Emilio Rojas‎ et al.
  • BMC cancer‎
  • 2009‎

Etoposide is currently one of the most commonly used antitumor drugs. The mechanisms of action proposed for its antitumor activity are based mainly on its interaction with topoisomerase II. Etoposide effects in transformed cells have been described previously. The aim of the present study was to evaluate the genotoxic effects of this drug in non-transformed whole blood cells, such as occurs as collateral damage induced by some chemotherapies.


MiR-302a sensitizes leukemia cells to etoposide by targeting Rad52.

  • Xiaoning Liu‎ et al.
  • Oncotarget‎
  • 2017‎

miR-302a have been reported to participate in various physiological and pathological processes, however, a role for miR-302a in etoposide (VP-16) resistance of acute myeloid leukemia (AML) has not been reported. In this study, the aberrant expression of miR-302a was analyzed in patients with AML and in the AML HL-60 and U937 cell lines. Overexpression of miR-302a, by targeting the 3'UTR of Rad52, enhanced VP-16 sensitivity in the HL-60 and U937 cell. Accordingly, knockdown of Rad52 sensitized the HL-60 and U937 cells to VP-16-induced apoptosis and proliferation suppression. In addition, miR-302a enhanced the tumor-suppressive effect of VP-16 in a xenograft model of human HL-60 and U937 cell lines. Moreover, miR-302a repressed the AKT/Gsk3β/β-catenin pathway after Rad52 inhibition. Reintroduction of Rad52 reversed miR-302a-induced signaling suppression. The results of the present study demonstrated that miR-302a may be a target for the treatment of AML and a potential indicator of the therapeutic sensitivity of AML to VP-16.


BeEAM (Bendamustine, Etoposide, Cytarabine, Melphalan) Versus BEAM (Carmustine, Etoposide, Cytarabine, Melphalan) as Conditioning Regimen Before Autologous Haematopoietic Cell Transplantation: A Systematic Review and Meta-Analysis.

  • Ran Wu‎ et al.
  • Cell transplantation‎
  • 2023‎

High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) is a standard of care for selected patients with refractory/relapsed Hodgkin's lymphoma (HL) or non-Hodgkin's lymphoma (NHL), and it is also used as first-line clinical consolidation option for some aggressive NHL subtypes. Conditioning regimen prior to ASCT is one of the essential factors related with clinical outcomes post transplant. The conditioning regimen of carmustine, etoposide, cytarabine, and melphalan (BEAM) traditionally is considered the standard of care for patients with lymphoma who are eligible for transplantation. Replacement of carmustine with bendamustine (BeEAM) was described as an alternative conditioning regimen in the autograft setting for patients with lymphoma. Several studies have reported inconsistent clinical outcomes comparing BeEAM and BEAM. Therefore, in the lack of well-designed prospective comparative studies, the comparison of BeEAM versus BEAM is based on retrospective trials. To compare the clinical outcomes between BeEAM and BEAM, we performed a meta-analysis of 10 studies which compared the outcomes between BeEAM and BEAM in patients autografted for lymphoma disease (HL or NHL). We searched article titles and compared transplantation with BeEAM versus BEAM in MEDLINE (PubMed), Cochrane library, and EMBASE database. Here, we report the results of nine main endpoints in our meta-analysis comparing BeEAM and BEAM, including neutrophil engraftment (NE), platelet engraftment (PE), overall survival (OS), progression free survival (PFS), non-relapse mortality (NRM), relapse rate (RR), grade 3 mucositis, renal toxicity, and cardiotoxicity. We discovered that the BeEAM regimen was associated with a slightly better PFS [pooled odds ratio (OR) of 0.70, 95% confidence interval (CI), 0.52-0.94, P = 0.02], lower RR (0.49, 95% CI, 0.31-0.76, P = 0.002), higher mucositis (3.43, 95% CI, 2.29-5.16, P = 0.001), renal toxicity (4.49, 95% CI, 2.68-7.51, P = 0.001), and cardiotoxicity (1.88, 95% CI, 1.03-3.40, P = 0.03). We also discovered that the two groups had equivalent NE (pooled WMD -0.64, 95% CI, -1.46 to 0.18, P = 0.13), PE (pooled WMD -0.3, 95% CI, -1.68 to 2.28, P = 0.77), OS (0.73, 95% CI, 0.52-1.01, P = 0.07), and NRM (1.51, 95% CI, 0.76-2.98, P = 0.24). The results of this meta-analysis show that the BeEAM regimen is a viable alternative to BEAM. More prospective comparisons between BeEAM and BEAM are required.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: