Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 261 papers

Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells.

  • Kanive Parashiva Guruprasad‎ et al.
  • BMC complementary and alternative medicine‎
  • 2012‎

Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated.


Ethyl methanesulfonate induces mutations in Caenorhabditis elegans embryos at a high frequency.

  • Phil S Hartman‎ et al.
  • Mutation research‎
  • 2014‎

Mutagenesis protocols typically call for exposure of late-stage larvae or adults to a mutagen with the intention of inducing mutations in a robust germ line. Instead, ca. 16,000 CB665 [unc-58(e665)] one- to four-cell embryos of the nematode Caenorhabditis elegans were hand selected and exposed to ethyl methanesulfonate (EMS) for 50min. Twenty-one reversion mutants were recovered, of which 17 were intragenic suppressors of the e665 mutation. The mutation frequency was 6.5-fold higher than when CB665 adults were similarly mutagenized, which was predicted given that cell-cycle checkpoints are muted in C. elegans embryos. The mutation spectrum was similar to that obtained after standard EMS mutagenesis.


artMAP: A user-friendly tool for mapping ethyl methanesulfonate-induced mutations in Arabidopsis.

  • Peter Javorka‎ et al.
  • Plant direct‎
  • 2019‎

Mapping-by-sequencing is a rapid method for identifying both natural as well as induced variations in the genome. However, it requires extensive bioinformatics expertise along with the computational infrastructure to analyze the sequencing data and these requirements have limited its widespread adoption. In the current study, we develop an easy to use tool, artMAP, to discover ethyl methanesulfonate (EMS) induced mutations in the Arabidopsis genome. The artMAP pipeline consists of well-established tools including TrimGalore, BWA, BEDTools, SAMtools, and SnpEff which were integrated in a Docker container. artMAP provides a graphical user interface and can be run on a regular laptop and desktop, thereby limiting the bioinformatics expertise required. artMAP can process input sequencing files generated from single or paired-end sequencing. The results of the analysis are presented in interactive graphs which display the annotation details of each mutation. Due to its ease of use, artMAP makes the identification of EMS-induced mutations in Arabidopsis possible with only a few mouse click. The source code of artMAP is available on Github (https://github.com/RihaLab/artMAP).


Protective effect of caffeine on ethyl methanesulfonate-induced wing primordial cells of Drosophila melanogaster.

  • G Prakash‎ et al.
  • Toxicology international‎
  • 2014‎

The antimutagenic effect of caffeine is evaluated against ethyl methanesulfonate (EMS)-induced mutation rate in Drosophila.


Genome-wide survey of artificial mutations induced by ethyl methanesulfonate and gamma rays in tomato.

  • Kenta Shirasawa‎ et al.
  • Plant biotechnology journal‎
  • 2016‎

Genome-wide mutations induced by ethyl methanesulfonate (EMS) and gamma irradiation in the tomato Micro-Tom genome were identified by a whole-genome shotgun sequencing analysis to estimate the spectrum and distribution of whole-genome DNA mutations and the frequency of deleterious mutations. A total of ~370 Gb of paired-end reads for four EMS-induced mutants and three gamma-ray-irradiated lines as well as a wild-type line were obtained by next-generation sequencing technology. Using bioinformatics analyses, we identified 5920 induced single nucleotide variations and insertion/deletion (indel) mutations. The predominant mutations in the EMS mutants were C/G to T/A transitions, while in the gamma-ray mutants, C/G to T/A transitions, A/T to T/A transversions, A/T to G/C transitions and deletion mutations were equally common. Biases in the base composition flanking mutations differed between the mutagenesis types. Regarding the effects of the mutations on gene function, >90% of the mutations were located in intergenic regions, and only 0.2% were deleterious. In addition, we detected 1,140,687 spontaneous single nucleotide polymorphisms and indel polymorphisms in wild-type Micro-Tom lines. We also found copy number variation, deletions and insertions of chromosomal segments in both the mutant and wild-type lines. The results provide helpful information not only for mutation research, but also for mutant screening methodology with reverse-genetic approaches.


Determination of potential thresholds for N-ethyl-N-nitrosourea and ethyl methanesulfonate based on a multi-endpoint genotoxicity assessment platform in rats.

  • Xuejiao Zhu‎ et al.
  • Environmental science and pollution research international‎
  • 2022‎

The main goal of the study was to investigate the genotoxic response of N-ethyl-N-nitrosourea (ENU) and ethyl methanesulfonate (EMS) at low doses in a multi-endpoint genotoxicity assessment platform in rats and to derive potential thresholds and related metrics. Male Sprague-Dawley rats were treated by daily oral gavage for 28 consecutive days with ENU (0.25 ~ 8 mg/kg bw) and EMS (5 ~ 160 mg/kg bw), both with six closely spaced dose levels. Pig-a gene mutation assay, micronucleus test, and comet assay were performed in several timepoints. Then, the dose-response relationships were analyzed for possible points of departure (PoD) using the no observed genotoxic effect level and benchmark dose (BMD) protocols with different critical effect sizes (CES, 0.05, 0.1, 0.5, and 1SD). Overall, dose-dependent increases in all investigated endpoints were found for ENU and EMS. PoDs varied across genetic endpoints, timepoints, and statistical methods, and selecting an appropriate lower 95% confidence limit of BMD needs a comprehensive consideration of the mode of action of chemicals, the characteristics of tests, and the model fitting methods. Under the experimental conditions, the PoDs of ENU and EMS were 0.0036 mg/kg bw and 1.7 mg/kg bw, respectively.


Genome-Wide Analysis of Artificial Mutations Induced by Ethyl Methanesulfonate in the Eggplant (Solanum melongena L.).

  • Xi-Ou Xiao‎ et al.
  • Genes‎
  • 2019‎

Whole-genome sequences of four EMS (ethyl methanesulfonate)-induced eggplant mutants were analyzed to identify genome-wide mutations. In total, 173.01 GB of paired-end reads were obtained for four EMS-induced mutants and (WT) wild type and 1,076,010 SNPs (single nucleotide polymorphisms) and 183,421 indels were identified. The most common mutation type was C/G to T/A transitions followed by A/T to G/C transitions. The mean densities were one SNP per 1.3 to 2.6 Mb. The effect of mutations on gene function was annotated and only 7.2% were determined to be deleterious. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed 10 and 11 genes, which were nonsynonymous mutation or frameshift deletion in 48-5 and L6-5 involved in the anthocyanin biosynthesis or flavone and flavonol biosynthesis. QRT-PCR results showed that only the Sme2.5_06210.1_g00004.1, which was annotated as UFGT (Flavonoid galactosidase transferase), expression significantly decreased in the L6-5 mutant compared with the WT. Also, the Sme2.5_06210.1_g00004.1 expression was lower in the colorless eggplant compared with colorful eggplant in the natural eggplant cultivar. These results suggest that Sme2.5_06210.1_g00004.1 may play a key role in eggplant anthocyanin synthesis.


Transcriptome analysis of the Chinese bread wheat cultivar Yunong 201 and its ethyl methanesulfonate mutant line.

  • Ning Zhang‎ et al.
  • Gene‎
  • 2016‎

Roche 454 next-generation sequencing was applied to obtain extensive information about the transcriptomes of the bread wheat cultivar Yunong 201 and its EMS mutant line Yunong 3114. Totals of 1.43 million and 1.44 million raw reads were generated, 14,432, 17,845 and 27,867 isotigs were constructed using the reads in Yunong 201, Yunong 3114 and their combination, respectively. Moreover, 29,042, 34,722, and 48,486 unigenes were generated in Yunong 201, Yunong 3114, and combined cultivars, respectively. A total of 50,382 and 59,891 unigenes from the Yunong 201 and Yunong 3114 were mapped on different chromosomes. Of all unigenes, 1363 DEGs were identified in Yunong 201 and Yunong 3114. qRT-PCR analysis confirmed the expression profiles of 40 candidate unigenes possibly related to abiotic stresses. The expression patterns of four annotated DEGs were also verified in the two wheat cultivars under abiotic stresses. This study provided useful information for further analysis of wheat functional genomics.


Scanning the effects of ethyl methanesulfonate on the whole genome of Lotus japonicus using second-generation sequencing analysis.

  • Nur Fatihah Mohd-Yusoff‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2015‎

Genetic structure can be altered by chemical mutagenesis, which is a common method applied in molecular biology and genetics. Second-generation sequencing provides a platform to reveal base alterations occurring in the whole genome due to mutagenesis. A model legume, Lotus japonicus ecotype Miyakojima, was chemically mutated with alkylating ethyl methanesulfonate (EMS) for the scanning of DNA lesions throughout the genome. Using second-generation sequencing, two individually mutated third-generation progeny (M3, named AM and AS) were sequenced and analyzed to identify single nucleotide polymorphisms and reveal the effects of EMS on nucleotide sequences in these mutant genomes. Single-nucleotide polymorphisms were found in every 208 kb (AS) and 202 kb (AM) with a bias mutation of G/C-to-A/T changes at low percentage. Most mutations were intergenic. The mutation spectrum of the genomes was comparable in their individual chromosomes; however, each mutated genome has unique alterations, which are useful to identify causal mutations for their phenotypic changes. The data obtained demonstrate that whole genomic sequencing is applicable as a high-throughput tool to investigate genomic changes due to mutagenesis. The identification of these single-point mutations will facilitate the identification of phenotypically causative mutations in EMS-mutated germplasm.


Studies on Improving the Efficiency of Somatic Embryogenesis in Grapevine (Vitis vinifera L.) and Optimising Ethyl Methanesulfonate Treatment for Mutation Induction.

  • Ranjith Pathirana‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Somatic embryogenesis (SE) has many applications in grapevine biotechnology including micropropagation, eradicating viral infections from infected cultivars, mass production of hypocotyl explants for micrografting, as a continuous source for haploid and doubled haploid plants, and for germplasm conservation. It is so far the only pathway for the genetic modification of grapevines through transformation. The single-cell origin of somatic embryos makes them an ideal explant for mutation breeding as the resulting mutants will be chimera-free. In the present research, two combinations of plant growth regulators and different explants from flower buds at two stages of maturity were tested in regard to the efficiency of callusing and embryo formation from the callus produced in three white grape cultivars. Also, the treatment of somatic embryos with the chemical mutagen ethyl methanesulfonate (EMS) was optimised. Medium 2339 supplemented with β-naphthoxyacetic acid (5 μM) and 6-benzylaminopurine (BAP-9.0 μM) produced significantly more calluses than medium 2337 supplemented with 2,4-dichlorophenoxyacetic acid (4.5 µM) and BAP (8.9 µM) in all explants. The calluses produced on medium 2337 were harder and more granular and produced more SEs. Although the stage of the maturity of floral bud did not have a significant effect on the callusing of the explants, calluses produced from immature floral bud explants in the premeiotic stage produced significantly more SEs than those from more mature floral buds. Overall, immature ovaries and cut floral buds exposing the cut ends of filaments, style, etc., tested for the first time in grapevine SE, produced the highest percentage of embryogenic calluses. It is much more efficient to cut the floral bud and culture than previously reported explants such as anthers, ovaries, stigmas and styles during the short flowering period when the immature flower buds are available. When the somatic embryos of the three cultivars were incubated for one hour with 0.1% EMS, their germination was reduced by 50%; an ideal treatment considered to obtain a high frequency of mutations for screening. Our research findings will facilitate more efficient SE induction in grapevines and inducing mutations for improving individual traits without altering the genetic background of the cultivar.


Genotoxic Effects of Etoposide, Bleomycin, and Ethyl Methanesulfonate on Cultured CHO Cells: Analysis by GC-MS/MS and Comet Assay.

  • Donald H Atha‎ et al.
  • Journal of nucleic acids‎
  • 2020‎

To evaluate methods for analysis of genotoxic effects on mammalian cell lines, we tested the effect of three common genotoxic agents on Chinese hamster ovary (CHO) cells by single-cell gel electrophoresis (comet assay) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Suspension-grown CHO cells were separately incubated with etoposide, bleomycin, and ethyl methanesulfonate and analyzed by an alkaline comet assay and GC-MS/MS. Although DNA strand breaks were detected by the comet assay after treatment with all three agents, GC-MS/MS could only detect DNA nucleobase lesions oxidatively induced by bleomycin. This demonstrates that although GC-MS/MS has limitations in detection of genotoxic effects, it can be used for selected chemical genotoxins that contribute to oxidizing processes. The comet assay, used in combination with GC-MS/MS, can be a more useful approach to screen a wide range of chemical genotoxins as well as to monitor other DNA-damaging factors.


Microspore Induced Doubled Haploids Production from Ethyl Methanesulfonate (EMS) Soaked Flower Buds Is an Efficient Strategy for Mutagenesis in Chinese Cabbage.

  • Yin Lu‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Chinese cabbage buds were soaked with Ethyl methanesulfonate (EMS) to induce mutagenesis. The influence of different EMS concentrations and treatment durations on microspore development, embryo production rate and seedling rate were evaluated in five Chinese cabbage genotypes. Mutations in four color-related genes were identified using high resolution melting (HRM) curves of their PCR products. The greatest embryo production and seedling rates were observed when buds were treated with 0.03 to 0.1% EMS for 5 to 10 min, while EMS concentrations greater than 0.1% were lethal to the microspores. In total, 142 mutants with distinct variations in leaf shape, leaf color, corolla size, flower color, bolting time and downy mildew resistance were identified from 475 microspore culture derived Doubled Haploids. Our results demonstrate that microspore derived Doubled Haploids from EMS soaked buds represents an efficient approach to rapidly generate homozygous Chinese cabbage mutants.


Highly Efficient and Comprehensive Identification of Ethyl Methanesulfonate-Induced Mutations in Nicotiana tabacum L. by Whole-Genome and Whole-Exome Sequencing.

  • Hisashi Udagawa‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Tobacco (Nicotiana tabacum L.) is a complex allotetraploid species with a large 4.5-Gb genome that carries duplicated gene copies. In this study, we describe the development of a whole-exome sequencing (WES) procedure in tobacco and its application to characterize a test population of ethyl methanesulfonate (EMS)-induced mutations. A probe set covering 50.3-Mb protein coding regions was designed from a reference tobacco genome. The EMS-induced mutations in 19 individual M2 lines were analyzed using our mutation analysis pipeline optimized to minimize false positives/negatives. In the target regions, the on-target rate of WES was approximately 75%, and 61,146 mutations were detected in the 19 M2 lines. Most of the mutations (98.8%) were single nucleotide variants, and 95.6% of them were C/G to T/A transitions. The number of mutations detected in the target coding sequences by WES was 93.5% of the mutations detected by whole-genome sequencing (WGS). The amount of sequencing data necessary for efficient mutation detection was significantly lower in WES (11.2 Gb), which is only 6.2% of the required amount in WGS (180 Gb). Thus, WES was almost comparable to WGS in performance but is more cost effective. Therefore, the developed target exome sequencing, which could become a fundamental tool in high-throughput mutation identification, renders the genome-wide analysis of tobacco highly efficient.


Selectively Targeting Tumor Hypoxia With the Hypoxia-Activated Prodrug CP-506.

  • Alexander M A van der Wiel‎ et al.
  • Molecular cancer therapeutics‎
  • 2021‎

Hypoxia-activated prodrugs (HAP) are a promising class of antineoplastic agents that can selectively eliminate hypoxic tumor cells. This study evaluates the hypoxia-selectivity and antitumor activity of CP-506, a DNA alkylating HAP with favorable pharmacologic properties. Stoichiometry of reduction, one-electron affinity, and back-oxidation rate of CP-506 were characterized by fast-reaction radiolytic methods with observed parameters fulfilling requirements for oxygen-sensitive bioactivation. Net reduction, metabolism, and cytotoxicity of CP-506 were maximally inhibited at oxygen concentrations above 1 μmol/L (0.1% O2). CP-506 demonstrated cytotoxicity selectively in hypoxic 2D and 3D cell cultures with normoxic/anoxic IC50 ratios up to 203. Complete resistance to aerobic (two-electron) metabolism by aldo-keto reductase 1C3 was confirmed through gain-of-function studies while retention of hypoxic (one-electron) bioactivation by various diflavin oxidoreductases was also demonstrated. In vivo, the antitumor effects of CP-506 were selective for hypoxic tumor cells and causally related to tumor oxygenation. CP-506 effectively decreased the hypoxic fraction and inhibited growth of a wide range of hypoxic xenografts. A multivariate regression analysis revealed baseline tumor hypoxia and in vitro sensitivity to CP-506 were significantly correlated with treatment response. Our results demonstrate that CP-506 selectively targets hypoxic tumor cells and has broad antitumor activity. Our data indicate that tumor hypoxia and cellular sensitivity to CP-506 are strong determinants of the antitumor effects of CP-506.


Evaluation of spatial and temporal changes in biomarker responses in the common carp (Cyprinus carpio L.) for biomonitoring the Meriç Delta, Turkey.

  • Abbas Güngördü‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2012‎

The aim of this study is to examine the activity of several biomarkers in carp, Cyprinus carpio L., to determine their response to xenobiotics, such as organochlorine pesticides (OCPs), in the Meriç Delta. Fish were collected from contaminated sites and from areas regarded as relatively less contaminated in four sampling periods. Hepatic glutathione S-transferase (GST), carboxylesterase (CaE), lactate dehydrogenase, aspartate aminotransferase, and acid phosphatase activities were measured as biomarkers in the fish. For all fish, the condition factor and hepatosomatic index, were calculated to determine the condition of the fish. The results of this study indicated that the mean GST activity showed an increase in fish from the Meriç-Ergene junction site and a decrease in Enez site with respect to fish from Meriç site. Furthermore, the study shows that spatial and temporal changes of biomarkers such as GST and CaE might be useful for the assessment of environmental contamination in the Meriç Delta.


Assessment of seasonal and sex-related variability of biomarkers in carp (Cyprinus carpio L.) from Karakaya Dam Lake, Turkey.

  • Abbas Güngördü‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2011‎

This study examines seasonal changes in the activities of selected biomarkers in carp (Cyprinus carpio L.) from Karakaya Dam Lake and evaluates the influence of gender and environmental factors on those activities. Physicochemical characteristics of water were evaluated in the lakewater. Fish were sampled on seasonal basis, and liver ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase, glutathione reductase, plasma lactate dehydrogenase, aspartate and alanine aminotransferase, and brain acetylcholinesterase (AChE) activities were assayed. Plasma vitellogenin level and hepatosomatic index and condition factors were also determined. Strong seasonal variations were observed but there were no gender differences among selected markers. The highest vitellogenin level of male fish was detected as 606ng/mL which represents the estrogenicity of water in the lake in September 2005. In addition, the seasonal changes of some biomarkers such as EROD and AChE showed that the lake may be at risk of pollution by some xenobiotics arising from agricultural and/or industrial activities.


Lipid environment modulates the development of acute tolerance to ethanol in Caenorhabditis elegans.

  • Jill C Bettinger‎ et al.
  • PloS one‎
  • 2012‎

The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT) to ethanol is a fast compensatory response that develops within a single drug session and normalizes neuronal function despite the continued presence of the drug. We performed a genetic screen to identify genes required for the development of acute functional tolerance to ethanol in the nematode C. elegans. We identified mutations affecting multiple genes in a genetic pathway known to regulate levels of triacylglycerols (TAGs) via the lipase LIPS-7, indicating that there is an important role for TAGs in the development of tolerance. Genetic manipulation of lips-7 expression, up or down, produced opposing effects on ethanol sensitivity and on the rate of development of AFT. Further, decreasing cholesterol levels through environmental manipulation mirrored the effects of decreased TAG levels. Finally, we found that genetic alterations in the levels of the TAG lipase LIPS-7 can modify the phenotype of gain-of-function mutations in the ethanol-inducible ion channel SLO-1, the voltage- and calcium-sensitive BK channel. This study demonstrates that the lipid milieu modulates neuronal responses to ethanol that include initial sensitivity and the development of acute tolerance. These results lend new insight into studies of alcohol dependence, and suggest a model in which TAG levels are important for the development of AFT through alterations of the action of ethanol on membrane proteins.


A new software tool for computer assisted in vivo high-content analysis of transplanted fluorescent cells in intact zebrafish larvae.

  • Jan-Lukas Førde‎ et al.
  • Biology open‎
  • 2022‎

Acute myeloid leukemia and myelodysplastic syndromes are cancers of the bone marrow with poor prognosis in frail and older patients. To investigate cancer pathophysiology and therapies, confocal imaging of fluorescent cancer cells and their response to treatments in zebrafish larvae yields valuable information. While zebrafish larvae are well suited for confocal imaging, the lack of efficient processing of large datasets remains a severe bottleneck. To alleviate this problem, we present a software tool that segments cells from confocal images and track characteristics such as volume, location in the larva and fluorescent intensity on a single-cell basis. Using this software tool, we were able to characterise the responses of the cancer cell lines Molm-13 and MDS-L to established treatments. By utilizing the computer-assisted processing of confocal images as presented here, more information can be obtained while being less time-consuming and reducing the demand of manual data handling, when compared to a manual approach, thereby accelerating the pursuit of novel anti-cancer treatments. The presented software tool is available as an ImageJ java-plugin at https://zenodo.org/10.5281/zenodo.7383160 and the source code at https://github.com/Jfo004/ConfocalCellSegmentation.


Simultaneous Determination of 15 Sulfonate Ester Impurities in Phentolamine Mesylate, Amlodipine Besylate, and Tosufloxacin Tosylate by LC-APCI-MS/MS.

  • Bo Jin‎ et al.
  • Journal of analytical methods in chemistry‎
  • 2019‎

Sulfonate esters have been recognized as potential genotoxic impurities (PGIs) in pharmaceuticals. An LC-MS/MS method was developed and validated for the simultaneous determination of 15 sulfonate esters, including methyl, ethyl, propyl, isopropyl, and n-butyl esters of methanesulfonate, benzenesulfonate, and p-toluenesulfonate in drug products. The method utilized atmospheric pressure chemical ionization (APCI) in multiple reaction monitoring (MRM) mode for the quantitation of impurities. The method employed an ODS column as the stationary phase and water-acetonitrile as the solvents for gradient elution without derivatization steps. The method was specific, linear, accurate, precise, and robust. Recoveries of the sulfonic esters from three drug matrices were observed in the range of 91.6∼109.0% with an RSD of not greater than 17.9% at the concentration of the LOQ and in the range of 90.4%∼105.2% with an RSD of not greater than 7.1% at the concentration of 50 ng/mL for the methanesulfonates and 10 ng/mL for the benzenesulfonates and p-toluenesulfonates. The LOD was not greater than 15 ng/mL, 2 ng/mL, and 1 ng/mL for the methanesulfonate, benzenesulfonate, and p-toluenesulfonate esters, respectively. This method was sufficiently sensitive to detect the 15 PGIs in the phentolamine mesylate tablet, amlodipine besylate tablet, and tosufloxacin tosylate tablet. This analytical method is a direct, specific, rapid, and accurate quality control tool for the determination of the 15 sulfonate esters that are most likely to exist in drug products.


Collaborative Study of Thresholds for Mutagens: Hormetic Responses in Cell Proliferation Tests Using Human and Murine Lymphoid Cells.

  • Shizuyo Sutou‎ et al.
  • Dose-response : a publication of International Hormesis Society‎
  • 2021‎

We previously showed that hormetic responses can be established in cell activity tests using human and murine adherent cells. This time, we examined whether hormetic responses can be established in cell proliferation tests using suspended human and murine lymphoid cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: