Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 268 papers

Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers.

  • Ganesh V Raj‎ et al.
  • eLife‎
  • 2017‎

The majority of human breast cancer is estrogen receptor alpha (ER) positive. While anti-estrogens/aromatase inhibitors are initially effective, resistance to these drugs commonly develops. Therapy-resistant tumors often retain ER signaling, via interaction with critical oncogenic coregulator proteins. To address these mechanisms of resistance, we have developed a novel ER coregulator binding modulator, ERX-11. ERX-11 interacts directly with ER and blocks the interaction between a subset of coregulators with both native and mutant forms of ER. ERX-11 effectively blocks ER-mediated oncogenic signaling and has potent anti-proliferative activity against therapy-sensitive and therapy-resistant human breast cancer cells. ERX-11 is orally bioavailable, with no overt signs of toxicity and potent activity in both murine xenograft and patient-derived breast tumor explant models. This first-in-class agent, with its novel mechanism of action of disrupting critical protein-protein interactions, overcomes the limitations of current therapies and may be clinically translatable for patients with therapy-sensitive and therapy-resistant breast cancers.


Pocket similarity identifies selective estrogen receptor modulators as microtubule modulators at the taxane site.

  • Yu-Chen Lo‎ et al.
  • Nature communications‎
  • 2019‎

Taxanes are a family of natural products with a broad spectrum of anticancer activity. This activity is mediated by interaction with the taxane site of beta-tubulin, leading to microtubule stabilization and cell death. Although widely used in the treatment of breast cancer and other malignancies, existing taxane-based therapies including paclitaxel and the second-generation docetaxel are currently limited by severe adverse effects and dose-limiting toxicity. To discover taxane site modulators, we employ a computational binding site similarity screen of > 14,000 drug-like pockets from PDB, revealing an unexpected similarity between the estrogen receptor and the beta-tubulin taxane binding pocket. Evaluation of nine selective estrogen receptor modulators (SERMs) via cellular and biochemical assays confirms taxane site interaction, microtubule stabilization, and cell proliferation inhibition. Our study demonstrates that SERMs can modulate microtubule assembly and raises the possibility of an estrogen receptor-independent mechanism for inhibiting cell proliferation.


Add-On Selective Estrogen Receptor Modulators for Methadone Maintenance Treatment.

  • Chieh-Liang Huang‎ et al.
  • Frontiers in endocrinology‎
  • 2021‎

Methadone maintenance treatment (MMT) remains the cornerstone for the management of opiate abuse. However, MMT can be associated with complex factors, including complications during the tolerance phase, the inability of some patients to maintain treatment effects during the tapering or abstinence phases, and the development of methadone dependence. Previous studies have revealed a sex disparity in MMT efficacy, showing that women undergoing MMT experiencing an increase in psychological symptoms compared with men and suggesting a link between disparate responses and the effects of estrogen signaling on methadone metabolism. More specifically, estradiol levels are positively associated with MMT dosing, and the expression of a single-nucleotide polymorphism (SNP) associated with estrogen receptor (ER) regulation is also associated with MMT dosing. In addition to performing mechanistic dissections of estrogen signaling in the presence of methadone, past studies have also proposed the targeting of estrogen signaling during MMT. The present report provides an overview of the relevant literature regarding sex effects, including differences in sex hormones and their potential impacts on MMT regimens. Moreover, this article provides a pharmacological perspective on the targeting of estrogen signals through the use of selective ER modulators (SERMs) during MMT. Preliminary preclinical experiments were also performed to evaluate the potential effects of targeting estrogen signaling with tamoxifen on methadone metabolism.


Combination of selective androgen and estrogen receptor modulators in orchiectomized rats.

  • P J Roch‎ et al.
  • Journal of endocrinological investigation‎
  • 2022‎

Selective androgen and estrogen receptor modulators, ostarine (OST) and raloxifen (RAL), reportedly improve muscle tissue and offer therapeutic approaches to muscle maintenance in the elderly. The present study evaluated the effects of OST and RAL and their combination on musculoskeletal tissue in orchiectomized rats.


Selective Estrogen Receptor Modulators Suppress Hif1α Protein Accumulation in Mouse Osteoclasts.

  • Mayu Morita‎ et al.
  • PloS one‎
  • 2016‎

Anti-bone resorptive drugs such as bisphosphonates, the anti-RANKL antibody (denosumab), or selective estrogen receptor modulators (SERMs) have been developed to treat osteoporosis. Mechanisms underlying activity of bisphosphonates or denosumab in this context are understood, while it is less clear how SERMs like tamoxifen, raloxifene, or bazedoxifene inhibit bone resorption. Recently, accumulation of hypoxia inducible factor 1 alpha (Hif1α) in osteoclasts was shown to be suppressed by estrogen in normal cells. In addition, osteoclast activation and decreased bone mass seen in estrogen-deficient conditions was found to require Hif1α. Here, we used western blot analysis of cultured osteoclast precursor cells to show that tamoxifen, raloxifene, or bazedoxifene all suppress Hif1α protein accumulation. The effects of each SERM on osteoclast differentiation differed in vitro. Our results suggest that interventions such as the SERMs evaluated here could be useful to inhibit Hif1α and osteoclast activity under estrogen-deficient conditions.


Selective estrogen receptor modulators regulate reactive microglia after penetrating brain injury.

  • George E Barreto‎ et al.
  • Frontiers in aging neuroscience‎
  • 2014‎

Following brain injury, microglia assume a reactive-like state and secrete pro-inflammatory molecules that can potentiate damage. A therapeutic strategy that may limit microgliosis is of potential interest. In this context, selective estrogen receptor modulators, such as raloxifene and tamoxifen, are known to reduce microglia activation induced by neuroinflammatory stimuli in young animals. In the present study, we have assessed whether raloxifene and tamoxifen are able to affect microglia activation after brain injury in young and aged animals in time points relevant to clinics, which is hours after brain trauma. Volume fraction of MHC-II(+) microglia was estimated according to the point-counting method of Weibel within a distance of 350 μm from the lateral border of the wound, and cellular morphology was measured by fractal analysis. Two groups of animals were studied: (1) young rats, ovariectomized at 2 months of age; and (2) aged rats, ovariectomized at 18 months of age. Fifteen days after ovariectomy animals received a stab wound brain injury and the treatment with estrogenic compounds. Our findings indicate that raloxifene and tamoxifen reduced microglia activation in both young and aged animals. Although the volume fraction of reactive microglia was found lower in aged animals, this was accompanied by important changes in cell morphology, where aged microglia assume a bushier and hyperplasic aspect when compared to young microglia. These data suggest that early regulation of microglia activation provides a mechanism by which selective estrogen receptors modulators (SERMs) may exert a neuroprotective effect in the setting of a brain trauma.


Selective Estrogen Receptor Modulators: Cannabinoid Receptor Inverse Agonists with Differential CB1 and CB2 Selectivity.

  • Lirit N Franks‎ et al.
  • Frontiers in pharmacology‎
  • 2016‎

Selective estrogen receptor modulators (SERMs) are used to treat estrogen receptor (ER)-positive breast cancer and osteoporosis. Interestingly, tamoxifen and newer classes of SERMs also exhibit cytotoxic effects in cancers devoid of ERs, indicating a non-estrogenic mechanism of action. Indicative of a potential ER-independent target, reports demonstrate that tamoxifen binds to cannabinoid receptors (CBRs) with affinity in the low μM range and acts as an inverse agonist. To identify cannabinoids with improved pharmacological properties relative to tamoxifen, and further investigate the use of different SERM scaffolds for future cannabinoid drug development, this study characterized the affinity and activity of SERMs in newer structural classes at CBRs. Fourteen SERMs from five structurally distinct classes were screened for binding to human CBRs. Compounds from four of five SERM classes examined bound to CBRs. Subsequent studies fully characterized CBR affinity and activity of one compound from each class. Ospemifine (a triphenylethylene) selectively bound to CB1Rs, while bazedoxifine (an indole) bound to CB2Rs with highest affinity. Nafoxidine (a tetrahydronaphthalene) and raloxifene (RAL; a benzothiaphene) bound to CB1 and CB2Rs non-selectively. All four compounds acted as inverse agonists at CB1 and CB2Rs, reducing basal G-protein activity with IC50 values in the nM to low μM range. Ospemifine, bazedoxifene and RAL also acted as inverse agonists to elevate basal intracellular cAMP levels in intact CHO-hCB2 cells. The four SERMs examined also acted as CB1 and CB2R antagonists in the cAMP assay, producing rightward shifts in the concentration-effect curve of the CBR agonist CP-55,940. In conclusion, newer classes of SERMs exhibit improved pharmacological characteristics (e.g., in CBR affinity and selectivity) relative to initial studies with tamoxifen, and thus suggest that different SERM scaffolds may be useful for development of safe and selective drugs acting via CBRs.


Genome-wide transcriptional regulation of estrogen receptor targets in fallopian tube cells and the role of selective estrogen receptor modulators.

  • Georgette Moyle-Heyrman‎ et al.
  • Journal of ovarian research‎
  • 2016‎

The fallopian tube epithelium is one of the potential sources of high-grade serous ovarian cancer (HGSC). The use of estrogen only hormone replacement therapy increases ovarian cancer (OVCA) risk. Despite estrogen's influence in OVCA, selective estrogen receptor modulators (SERMs) typically demonstrate only a 20 % response rate. This low response could be due to a variety of factors including the loss of estrogen receptor signaling or the role of estrogen in different potential cell types of origin. The response of fallopian tube epithelium to SERMs is not known, and would be useful when determining therapeutic options for tumors arising from this cell type, such as HGSC.


Fatty acids derived from royal jelly are modulators of estrogen receptor functions.

  • Paraskevi Moutsatsou‎ et al.
  • PloS one‎
  • 2010‎

Royal jelly (RJ) excreted by honeybees and used as a nutritional and medicinal agent has estrogen-like effects, yet the compounds mediating these effects remain unidentified. The possible effects of three RJ fatty acids (FAs) (10-hydroxy-2-decenoic-10H2DA, 3,10-dihydroxydecanoic-3,10DDA, sebacic acid-SA) on estrogen signaling was investigated in various cellular systems. In MCF-7 cells, FAs, in absence of estradiol (E(2)), modulated the estrogen receptor (ER) recruitment to the pS2 promoter and pS2 mRNA levels via only ERβ but not ERα, while in presence of E(2) FAs modulated both ERβ and ERα. Moreover, in presence of FAs, the E(2)-induced recruitment of the EAB1 co-activator peptide to ERα is masked and the E(2)-induced estrogen response element (ERE)-mediated transactivation is inhibited. In HeLa cells, in absence of E(2), FAs inhibited the ERE-mediated transactivation by ERβ but not ERα, while in presence of E(2), FAs inhibited ERE-activity by both ERβ and ERα. Molecular modeling revealed favorable binding of FAs to ERα at the co-activator-binding site, while binding assays showed that FAs did not bind to the ligand-binding pocket of ERα or ERβ. In KS483 osteoblasts, FAs, like E(2), induced mineralization via an ER-dependent way. Our data propose a possible molecular mechanism for the estrogenic activities of RJ's components which, although structurally entirely different from E(2), mediate estrogen signaling, at least in part, by modulating the recruitment of ERα, ERβ and co-activators to target genes.


Estrogens, selective estrogen receptor modulators, and a selective estrogen receptor down-regulator inhibit endothelial production of tissue factor pathway inhibitor 1.

  • Anders E A Dahm‎ et al.
  • BMC cardiovascular disorders‎
  • 2006‎

Hormone therapy, oral contraceptives, and tamoxifen increase the risk of thrombotic disease. These compounds also reduce plasma content of tissue factor pathway inhibitor-1 (TFPI), which is the physiological inhibitor of the tissue factor pathway of coagulation. The current aim was to study if estrogens and estrogen receptor (ER) modulators may inhibit TFPI production in cultured endothelial cells and, if so, identify possible mechanisms involved.


Estrogen Receptor Modulators in Viral Infections Such as SARS-CoV-2: Therapeutic Consequences.

  • Nikita Abramenko‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.


Investigation of the potential effects of estrogen receptor modulators on immune checkpoint molecules.

  • Nikita Abramenko‎ et al.
  • Scientific reports‎
  • 2024‎

Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.


Selective estrogen receptor modulators regulate dendritic spine plasticity in the hippocampus of male rats.

  • Ignacio González-Burgos‎ et al.
  • Neural plasticity‎
  • 2012‎

Some selective estrogen receptor modulators, such as raloxifene and tamoxifen, are neuroprotective and reduce brain inflammation in several experimental models of neurodegeneration. In addition, raloxifene and tamoxifen counteract cognitive deficits caused by gonadal hormone deprivation in male rats. In this study, we have explored whether raloxifene and tamoxifen may regulate the number and geometry of dendritic spines in CA1 pyramidal neurons of the rat hippocampus. Young adult male rats were injected with raloxifene (1 mg/kg), tamoxifen (1 mg/kg), or vehicle and killed 24 h after the injection. Animals treated with raloxifene or tamoxifen showed an increased numerical density of dendritic spines in CA1 pyramidal neurons compared to animals treated with vehicle. Raloxifene and tamoxifen had also specific effects in the morphology of spines. These findings suggest that raloxifene and tamoxifen may influence the processing of information by hippocampal pyramidal neurons by affecting the number and shape of dendritic spines.


The Effect of Selective Estrogen Receptor Modulators (SERMs) on the Tamoxifen Resistant Breast Cancer Cells.

  • Bo Yoon Chang‎ et al.
  • Toxicological research‎
  • 2011‎

Selective estrogen receptor modulators (SERMs) are synthetic molecules which bind to estrogen receptors (ER) and can modulate its transcriptional capabilities in different ways in diverse estrogen target tissues. Tamoxifen, the prototypical SERM, is extensively used for targeted therapy of ER positive breast cancers. Unfortunately, the use of tamoxifen is associated with acquired resistance and some undesirable side effects. This study investigated the availability of the conventional SERMs on the TAM-resistance breast cancer cells. SERMs showed more effectiveness in MCF-7 cells than tamoxifen resistant cells, except toremifene and ospemifene. Especially, toremifene was more efficacious in tamoxifen resistant cells than MCF-7. Ospemifene had similar cytotoxic activity on the two types of breast cancers. The other SERMs used in this experiment didn't inhibit efficiently the proliferation of tamoxifen resistant cells. These results support the possibility to usage of toremifene on tamoxifen resistant cancer. The effectiveness by toremifene on tamoxifen resistant cells might be different pathways from the apoptosis and the autophagy. Further study should be needed to elucidate the underlying mechanism of effect of toremifene on tamoxifen resistant cancer.


Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport.

  • María E Fernández-Suárez‎ et al.
  • Scientific reports‎
  • 2016‎

Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [(3)H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [(3)H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages.


Estrogen-responsive genes encoding egg yolk proteins vitellogenin and apolipoprotein II in chicken are differentially regulated by selective estrogen receptor modulators.

  • Warren N Ratna‎ et al.
  • Theriogenology‎
  • 2016‎

In a hen, large quantities of the egg yolk proteins, apolipoprotein II (apo-II) and vitellogenin (VG), are expressed in the liver and transported to the oviduct during egg production. Estrogenic stimulation of the hepatic expression of apo-II and VG is due to both transcriptional increase and mRNA stabilization. The nucleolytic degradation of apo-II messenger RNA (mRNA) is prevented by estrogen-regulated mRNA-stabilizing factor (E-RmRNASF). Gene-specific effects of a select panel of selective estrogen receptor modulators (SERMs) on the hepatic expression of the estrogen-responsive genes encoding apo-II, VG, and E-RmRNASF in the chicken liver were investigated. In the present study, 6-week-old roosters were treated with the vehicle, estrogen, the SERMs genistein, resveratrol, tamoxifen, pterostilbene, raloxifene, catechin, and clomiphene or a combination of estrogen and a 200-fold excess of each of the SERMs. Results from mRNA stabilization studies conducted to investigate the stimulation of expression of E-RmRNASF in the liver by these agents showed that the expression of E-RmRNASF in the liver was stimulated by estrogen and the SERMs genistein, resveratrol, tamoxifen, pterostilbene, and catechin but not by the vehicle, clomiphene or raloxifene. The expression of apo-II and VG from the aforementioned treatments was determined by Northern blot analysis, RNase protection assays, and Western blot analysis. The transcription and protein expression of both apo-II and VG genes were seen in response to treatment with estrogen but not with the SERMs or combinations of estrogen and each of the SERMs. The SERMs that stimulated the expression of E-RmRNASF antagonized the stimulation of the expression of both apo-II and VG by estrogen, demonstrating a gene-specific, selective regulation of the aforementioned genes in the chicken liver by the SERMs. The above panel of SERMs may likely have adverse effects on egg production.


Selective inhibition of Ebola entry with selective estrogen receptor modulators by disrupting the endolysosomal calcium.

  • Hanlu Fan‎ et al.
  • Scientific reports‎
  • 2017‎

The Ebola crisis occurred in West-Africa highlights the urgency for its clinical treatments. Currently, no Food and Drug Administration (FDA)-approved therapeutics are available. Several FDA-approved drugs, including selective estrogen receptor modulators (SERMs), possess selective anti-Ebola activities. However, the inhibitory mechanisms of these drugs remain elusive. By analyzing the structures of SERMs and their incidental biological activity (cholesterol accumulation), we hypothesized that this incidental biological activity induced by SERMs could be a plausible mechanism as to their inhibitory effects on Ebola infection. Herein, we demonstrated that the same dosages of SERMs which induced cholesterol accumulation also inhibited Ebola infection. SERMs reduced the cellular sphingosine and subsequently caused endolysosomal calcium accumulation, which in turn led to blocking the Ebola entry. Our study clarified the specific anti-Ebola mechanism of SERMs, even the cationic amphiphilic drugs (CADs), this mechanism led to the endolysosomal calcium as a critical target for development of anti-Ebola drugs.


Estrogen-induced stromal cell-derived factor-1 (SDF-1/Cxcl12) expression is repressed by progesterone and by Selective Estrogen Receptor Modulators via estrogen receptor alpha in rat uterine cells and tissues.

  • Lindsay Glace‎ et al.
  • Steroids‎
  • 2009‎

Endometriosis, defined as the presence of endometrial glands and stroma at extra-uterine sites, is a gynecological condition that affects women of reproductive age. Consistent with its uterine origins, endometriotic lesions and resulting symptoms are hormonally responsive. To investigate Progesterone Receptor (PR)-based therapies, we measured physiological endpoints and gene expression in rat models of uterine cell estrogenic activity. Estrogen-induced ELT-3 rat leiomyoma cell proliferation was significantly inhibited by progesterone (P4), while the antiprogestin RU486 or the Selective PR Modulator (SPRM) asoprisnil, did not block proliferation. Stromal cell-derived factor-1 (SDF-1/Cxcl12) gene expression was induced by estrogen, and was repressed by the Selective Estrogen Receptor Modulators (SERMs), the antiestrogen ICI 182,780, and P4, but not by RU486 or the ERbeta-selective ligand ERB-041. In ELT-3 cells, asoprisnil demonstrated partial PR agonism on SDF-1 gene repression. Magnetic Resonance Imaging was used to monitor development of ectopic cysts in a rat surgical model of endometriosis. SERMs and P4 significantly decreased cyst volumes comparably by approximately 60%. However, ERB-041 and asoprisnil had no effect on cyst volume, and RU486 increased cyst volume by 20%. SDF-1 expression was modestly, but significantly, increased in the cyst compared to eutopic uterus, and P4 and raloxifene could repress the expression. We showed that SDF-1 was similarly regulated in human cells. These data suggest that transcriptional regulation of SDF-1 is a surrogate marker of estrogenic activities via ERalpha in rat uterine cells, and that SDF-1 repression by PR agonists can predict the ability to oppose the actions of estrogen in vivo.


A combined treatment with selective androgen and estrogen receptor modulators prevents bone loss in orchiectomized rats.

  • M Komrakova‎ et al.
  • Journal of endocrinological investigation‎
  • 2022‎

Enobosarm (EN), a selective androgen receptor modulator and raloxifene (RAL), a selective estrogen receptor modulator, have been shown to improve bone tissue in osteoporotic males. The present study evaluated the effects of a combination therapy of EN and RAL on bone properties in orchiectomized rats compared to the respective single treatments.


In silico elucidation of the molecular mechanism defining the adverse effect of selective estrogen receptor modulators.

  • Lei Xie‎ et al.
  • PLoS computational biology‎
  • 2007‎

Early identification of adverse effect of preclinical and commercial drugs is crucial in developing highly efficient therapeutics, since unexpected adverse drug effects account for one-third of all drug failures in drug development. To correlate protein-drug interactions at the molecule level with their clinical outcomes at the organism level, we have developed an integrated approach to studying protein-ligand interactions on a structural proteome-wide scale by combining protein functional site similarity search, small molecule screening, and protein-ligand binding affinity profile analysis. By applying this methodology, we have elucidated a possible molecular mechanism for the previously observed, but molecularly uncharacterized, side effect of selective estrogen receptor modulators (SERMs). The side effect involves the inhibition of the Sacroplasmic Reticulum Ca2+ ion channel ATPase protein (SERCA) transmembrane domain. The prediction provides molecular insight into reducing the adverse effect of SERMs and is supported by clinical and in vitro observations. The strategy used in this case study is being applied to discover off-targets for other commercially available pharmaceuticals. The process can be included in a drug discovery pipeline in an effort to optimize drug leads and reduce unwanted side effects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: