Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 4,330 papers

Proteomic Analysis of Ferrochelatase Interactome in Erythroid and Non-Erythroid Cells.

  • Chibuike David Obi‎ et al.
  • Life (Basel, Switzerland)‎
  • 2023‎

Heme is an essential cofactor for multiple cellular processes in most organisms. In developing erythroid cells, the demand for heme synthesis is high, but is significantly lower in non-erythroid cells. While the biosynthesis of heme in metazoans is well understood, the tissue-specific regulation of the pathway is less explored. To better understand this, we analyzed the mitochondrial heme metabolon in erythroid and non-erythroid cell lines from the perspective of ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Affinity purification of FLAG-tagged-FECH, together with mass spectrometric analysis, was carried out to identify putative protein partners in human and murine cell lines. Proteins involved in the heme biosynthetic process and mitochondrial organization were identified as the core components of the FECH interactome. Interestingly, in non-erythroid cell lines, the FECH interactome is highly enriched with proteins associated with the tricarboxylic acid (TCA) cycle. Overall, our study shows that the mitochondrial heme metabolon in erythroid and non-erythroid cells has similarities and differences, and suggests new roles for the mitochondrial heme metabolon and heme in regulating metabolic flux and key cellular processes.


Distinct miRNA Signatures and Networks Discern Fetal from Adult Erythroid Differentiation and Primary from Immortalized Erythroid Cells.

  • Panayiota L Papasavva‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

MicroRNAs (miRNAs) are small non-coding RNAs crucial for post-transcriptional and translational regulation of cellular and developmental pathways. The study of miRNAs in erythropoiesis elucidates underlying regulatory mechanisms and facilitates related diagnostic and therapy development. Here, we used DNA Nanoball (DNB) small RNA sequencing to comprehensively characterize miRNAs in human erythroid cell cultures. Based on primary human peripheral-blood-derived CD34+ (hCD34+) cells and two influential erythroid cell lines with adult and fetal hemoglobin expression patterns, HUDEP-2 and HUDEP-1, respectively, our study links differential miRNA expression to erythroid differentiation, cell type, and hemoglobin expression profile. Sequencing results validated by reverse-transcription quantitative PCR (RT-qPCR) of selected miRNAs indicate shared differentiation signatures in primary and immortalized cells, characterized by reduced overall miRNA expression and reciprocal expression increases for individual lineage-specific miRNAs in late-stage erythropoiesis. Despite the high similarity of same-stage hCD34+ and HUDEP-2 cells, differential expression of several miRNAs highlighted informative discrepancies between both cell types. Moreover, a comparison between HUDEP-2 and HUDEP-1 cells displayed changes in miRNAs, transcription factors (TFs), target genes, and pathways associated with globin switching. In resulting TF-miRNA co-regulatory networks, major therapeutically relevant regulators of globin expression were targeted by many co-expressed miRNAs, outlining intricate combinatorial miRNA regulation of globin expression in erythroid cells.


Cdk6 contributes to cytoskeletal stability in erythroid cells.

  • Iris Z Uras‎ et al.
  • Haematologica‎
  • 2017‎

Mice lacking Cdk6 kinase activity suffer from mild anemia accompanied by elevated numbers of Ter119+ cells in the bone marrow. The animals show hardly any alterations in erythroid development, indicating that Cdk6 is not required for proliferation and maturation of erythroid cells. There is also no difference in stress erythropoiesis following hemolysis in vivo However, Cdk6-/- erythrocytes have a shortened lifespan and are more sensitive to mechanical stress in vitro, suggesting differences in cytoskeletal architecture. Erythroblasts contain both Cdk4 and Cdk6, while mature erythrocytes apparently lack Cdk4 and their Cdk6 is partly associated with the cytoskeleton. We used mass spectrometry to show that Cdk6 interacts with a number of proteins involved in cytoskeleton organization. Cdk6-/- erythroblasts show impaired F-actin formation and lower levels of gelsolin, which interacts with Cdk6. We also found that Cdk6 regulates the transcription of a panel of genes involved in actin (de-)polymerization. Cdk6-deficient cells are sensitive to drugs that interfere with the cytoskeleton, suggesting that our findings are relevant to the treatment of patients with anemia - and may be relevant to cancer patients treated with the new generation of CDK6 inhibitors.


TP53 Modulates Oxidative Stress in Gata1+ Erythroid Cells.

  • Ashley C Kramer‎ et al.
  • Stem cell reports‎
  • 2017‎

Metabolism of oxidative stress is necessary for cellular survival. We have previously utilized the zebrafish as a model of the oxidative stress response. In this study, we found that gata1-expressing erythroid cells contributed to a significant proportion of total-body oxidative stress when animals were exposed to a strong pro-oxidant. RNA-seq of zebrafish under oxidative stress revealed the induction of tp53. Zebrafish carrying tp53 with a mutation in its DNA-binding domain were acutely sensitive to pro-oxidant exposure and displayed significant reactive oxygen species (ROS) and tp53-independent erythroid cell death resulting in an edematous phenotype. We found that a major contributing factor to ROS was increased basal mitochondrial respiratory rate without reserve. These data add to the concept that tp53, while classically a tumor suppressor and cell-cycle regulator, has additional roles in controlling cellular oxidative stress.


Differential regulation of the α-globin locus by Krüppel-like Factor 3 in erythroid and non-erythroid cells.

  • Alister P W Funnell‎ et al.
  • BMC molecular biology‎
  • 2014‎

Krüppel-like Factor 3 (KLF3) is a broadly expressed zinc-finger transcriptional repressor with diverse biological roles. During erythropoiesis, KLF3 acts as a feedback repressor of a set of genes that are activated by Krüppel-like Factor 1 (KLF1). Noting that KLF1 binds α-globin gene regulatory sequences during erythroid maturation, we sought to determine whether KLF3 also interacts with the α-globin locus to regulate transcription.


Disruption of the BCL11A Erythroid Enhancer Reactivates Fetal Hemoglobin in Erythroid Cells of Patients with β-Thalassemia Major.

  • Nikoletta Psatha‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2018‎

In the present report, we carried out clinical-scale editing in adult mobilized CD34+ hematopoietic stem and progenitor cells (HSPCs) using zinc-finger nuclease-mediated disruption of BCL11a to upregulate the expression of γ-globin (fetal hemoglobin). In these cells, disruption of the erythroid-specific enhancer of the BCL11A gene increased endogenous γ-globin expression to levels that reached or exceeded those observed following knockout of the BCL11A coding region without negatively affecting survival or in vivo long-term proliferation of edited HSPCs and other lineages. In addition, BCL11A enhancer modification in mobilized CD34+ cells from patients with β-thalassemia major resulted in a readily detectable γ-globin increase with a preferential increase in G-gamma, leading to an improved phenotype and, likely, a survival advantage for maturing erythroid cells after editing. Furthermore, we documented that both normal and β-thalassemia HSPCs not only can be efficiently expanded ex vivo after editing but can also be successfully edited post-expansion, resulting in enhanced early in vivo engraftment compared with unexpanded cells. Overall, this work highlights a novel and effective treatment strategy for correcting the β-thalassemia phenotype by genome editing.


Parvovirus B19 integration into human CD36+ erythroid progenitor cells.

  • Tyler Janovitz‎ et al.
  • Virology‎
  • 2017‎

The pathogenic autonomous human parvovirus B19 (B19V) productively infects erythroid progenitor cells (EPCs). Functional similarities between B19V nonstructural protein (NS1), a DNA binding endonuclease, and the Rep proteins of Adeno-Associated Virus (AAV) led us to hypothesize that NS1 may facilitate targeted nicking of the human genome and B19 vDNA integration. We adapted an integration capture sequencing protocol (IC-Seq) to screen B19V infected human CD36+ EPCs for viral integrants, and discovered 40,000 unique B19V integration events distributed throughout the human genome. Computational analysis of integration patterns revealed strong correlations with gene intronic regions, H3K9me3 sites, and the identification of 41 base pair consensus sequence with an octanucleotide core motif. The octanucleotide core has homology to a single region of B19V, adjacent to the P6 promoter TATA box. We present the first direct evidence that B19V infection of erythroid progenitor cells disrupts the human genome and facilitates viral DNA integration.


Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate.

  • Amit Grover‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

The erythroid stress cytokine erythropoietin (Epo) supports the development of committed erythroid progenitors, but its ability to act on upstream, multipotent cells remains to be established. We observe that high systemic levels of Epo reprogram the transcriptomes of multi- and bipotent hematopoietic stem/progenitor cells in vivo. This induces erythroid lineage bias at all lineage bifurcations known to exist between hematopoietic stem cells (HSCs) and committed erythroid progenitors, leading to increased erythroid and decreased myeloid HSC output. Epo, therefore, has a lineage instructive role in vivo, through suppression of non-erythroid fate options, demonstrating the ability of a cytokine to systematically bias successive lineage choices in favor of the generation of a specific cell type.


Atypical chemokine receptor 1 on nucleated erythroid cells regulates hematopoiesis.

  • Johan Duchene‎ et al.
  • Nature immunology‎
  • 2017‎

Healthy individuals of African ancestry have neutropenia that has been linked with the variant rs2814778(G) of the gene encoding atypical chemokine receptor 1 (ACKR1). This polymorphism selectively abolishes the expression of ACKR1 in erythroid cells, causing a Duffy-negative phenotype. Here we describe an unexpected fundamental role for ACKR1 in hematopoiesis and provide the mechanism that links its absence with neutropenia. Nucleated erythroid cells had high expression of ACKR1, which facilitated their direct contact with hematopoietic stem cells. The absence of erythroid ACKR1 altered mouse hematopoiesis including stem and progenitor cells, which ultimately gave rise to phenotypically distinct neutrophils that readily left the circulation, causing neutropenia. Individuals with a Duffy-negative phenotype developed a distinct profile of neutrophil effector molecules that closely reflected the one observed in the ACKR1-deficient mice. Thus, alternative physiological patterns of hematopoiesis and bone marrow cell outputs depend on the expression of ACKR1 in the erythroid lineage, findings with major implications for the selection advantages that have resulted in the paramount fixation of the ACKR1 rs2814778(G) polymorphism in Africa.


Arsenic Primes Human Bone Marrow CD34+ Cells for Erythroid Differentiation.

  • Yuanyuan Zhang‎ et al.
  • Bioinorganic chemistry and applications‎
  • 2015‎

Arsenic trioxide exhibits therapeutic effects on certain blood malignancies, at least partly by modulating cell differentiation. Previous in vitro studies in human hematopoietic progenitor cells have suggested that arsenic may inhibit erythroid differentiation. However, these effects were all observed in the presence of arsenic compounds, while the concomitant cytostatic and cytotoxic actions of arsenic might mask a prodifferentiating activity. To eliminate the potential impacts of the cytostatic and cytotoxic actions of arsenic, we adopted a novel protocol by pretreating human bone marrow CD34+ cells with a low, noncytotoxic concentration of arsenic trioxide, followed by assaying the colony forming activities in the absence of the arsenic compound. Bone marrow specimens were obtained from chronic myeloid leukemia patients who achieved complete cytogenetic remission. CD34+ cells were isolated by magnetic-activated cell sorting. We discovered that arsenic trioxide enhanced the erythroid colony forming activity, which was accompanied by a decrease in the granulomonocytic differentiation function. Moreover, in erythroleukemic K562 cells, we showed that arsenic trioxide inhibited erythrocyte maturation, suggesting that arsenic might have biphasic effects on erythropoiesis. In conclusion, our data provided the first evidence showing that arsenic trioxide could prime human hematopoietic progenitor cells for enhanced erythroid differentiation.


MFSD2B is a sphingosine 1-phosphate transporter in erythroid cells.

  • Naoki Kobayashi‎ et al.
  • Scientific reports‎
  • 2018‎

Sphingosine 1-phosphate (S1P) is an intercellular signaling molecule present in blood. Erythrocytes have a central role in maintaining the S1P concentration in the blood stream. We previously demonstrated that S1P is exported from erythrocytes by a glyburide-sensitive S1P transporter. However, the gene encoding the S1P transporter in erythrocytes is unknown. In this study, we found that the mouse erythroid cell line, MEDEP-E14, has S1P export activity and exhibits properties that are consistent with those of erythrocytes. Using microarray analysis of MEDEP-E14 cells and its parental cell line, E14TG2a, we identified several candidate genes for S1P export activity. Of those genes, only one gene, Mfsd2b, showed S1P transport activity. The properties of S1P release by MFSD2B were similar to those in erythrocytes. Moreover, knockout of MFSD2B in MEDEP-E14 cells decreased S1P export from the cells. These results strongly suggest that MFSD2B is a novel S1P transporter in erythroid cells.


Extracellular glycine is necessary for optimal hemoglobinization of erythroid cells.

  • Daniel Garcia-Santos‎ et al.
  • Haematologica‎
  • 2017‎

Vertebrate heme synthesis requires three substrates: succinyl-CoA, which regenerates in the tricarboxylic acid cycle, iron and glycine. For each heme molecule synthesized, one atom of iron and eight molecules of glycine are needed. Inadequate delivery of iron to immature erythroid cells leads to a decreased production of heme, but virtually nothing is known about the consequence of an insufficient supply of extracellular glycine on the process of hemoglobinization. To address this issue, we exploited mice in which the gene encoding glycine transporter 1 (GlyT1) was disrupted. Primary erythroid cells isolated from fetal livers of GlyT1 knockout (GlyT1-/-) and GlyT1-haplodeficient (GlyT1+/-) embryos had decreased cellular uptake of [2-14C]glycine and heme synthesis as revealed by a considerable decrease in [2-14C]glycine and 59Fe incorporation into heme. Since GlyT1-/- mice die during the first postnatal day, we analyzed blood parameters of newborn pups and found that GlyT1-/- animals develop hypochromic microcytic anemia. Our finding that Glyt1-deficiency causes decreased heme synthesis in erythroblasts is unexpected, since glycine is a non-essential amino acid. It also suggests that GlyT1 represents a limiting step in heme and, consequently, hemoglobin production.


FoxO3a and nilotinib-induced erythroid differentiation of CML-BC cells.

  • Wei Wang‎ et al.
  • Leukemia research‎
  • 2013‎

We explored the potential involvement of FoxO3a activation in erythroid and granulocytic differentiation for Ph(+) cells of chronic myeloid leukemia blast crisis (CML BC). We demonstrate that FoxO3a activation in CML blast crisis (BC) cells by overexpressing FoxO3a leads to the maturation of CML BC cells. Hemoglobin production significantly increased upon FoxO3a activation in CML BC cells. FoxO3a activation upregulated erythroid surface protein (glycophorin A, GPA), but did not significantly modulate granulocytic markers (CD11b). Additionally, FoxO3a activation reduced the mRNA and protein expression of Tal1. Similar results were observed in cells that were given nilotinib. Our results indicate that FoxO3a activation may promote erythroid differentiation of BC cells via down-regulating Tal1 expression.


Parvovirus B19 Replication and Expression in Differentiating Erythroid Progenitor Cells.

  • Gloria Bua‎ et al.
  • PloS one‎
  • 2016‎

The pathogenic Parvovirus B19 (B19V) is characterized by a strict adaptation to erythroid progenitor cells (EPCs), a heterogeneous population of differentiating cells with diverse phenotypic and functional properties. In our work, we studied the dynamics of B19V infection in EPCs in dependence on the cell differentiation stage, in terms of distribution of infected cells, synthesis of viral nucleic acids and production of infectious virus. EPCs at early differentiation stage led to an abortive infection, without viral genome replication and a very low transcriptional activity. EPCs at later stages were permissive, with highest levels of viral replicative activity at day 9 (+3.0 Log from 2 to 48 hpi) and lower levels at day 18 (+1.5 Log from 2 to 48 hpi). B19V DNA increment was in accordance with the percentage of cells positive to flow-FISH assay (41.4% at day 9, 1.1% at day 18). Quantitation of total RNA indicated a close association of genome replication and transcription with viral RNA accumulation within infected cells related to viral DNA increase during the course of infection. Analysis of the different classes of mRNAs revealed two distinct pattern of genome expression profile with a fine regulation in the frequency utilization of RNA processing signals: an early phase, when cleavage at the proximal site leading to a higher relative production of mRNA for NS protein, and a late phase, when cleavage at the distal site was more frequent leading to higher relative abundance of mRNA for VP and 11 kDA proteins. Infectious virus was released from cells at day 6-15, but not at day 18. Our results, providing a detailed description of B19V replication and expression profile in differentiating EPCs, highlight the very tight adaptation of B19V to a specific cellular target defined both by its erythroid lineage and its differentiation stage.


CD71+ erythroid suppressor cells impair adaptive immunity against Bordetella pertussis.

  • Afshin Namdar‎ et al.
  • Scientific reports‎
  • 2017‎

Infant's immune system cannot control infection or respond to vaccination as efficiently as older individuals, a phenomenon that has been attributed to immunological immaturity. Recently, we challenged this notion and proposed the presence of actively immunosuppressive and physiologically enriched CD71+ erythroid cells in neonates. Here we utilized Bordetella pertussis, a common neonatal respiratory tract pathogen, as a proof of concept to investigate the role of these cells in adaptive immunity. We observed that CD71+ cells have distinctive immunosuppressive properties and prevent recruitment of immune cells to the mucosal site of infection. CD71+ cells ablation unleashed induction of B. pertussis-specific protective cytokines (IL-17 and IFN-γ) in the lungs and spleen upon re-infection or vaccination. We also found that CD71+ cells suppress systemic and mucosal B. pertussis-specific antibody responses. Enhanced antigen-specific adaptive immunity following CD71+ cells depletion increased resistance of mice to B. pertussis infection. Furthermore, we found that human cord blood CD71+ cells also suppress T and B cell functions in vitro. Collectively, these data provide important insight into the role of CD71+ erythroid cells in adaptive immunity. We anticipate our results will spark renewed investigation in modulating the function of these cells to enhance host defense to infections in newborns.


Murine Bone Marrow Erythroid Cells Have Two Branches of Differentiation Defined by the Presence of CD45 and a Different Immune Transcriptome Than Fetal Liver Erythroid Cells.

  • Olga Perik-Zavodskaia‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Mouse erythropoiesis is a multifaceted process involving the intricate interplay of proliferation, differentiation, and maturation of erythroid cells, leading to significant changes in their transcriptomic and proteomic profiles. While the immunoregulatory role of murine erythroid cells has been recognized historically, modern investigative techniques have been sparingly applied to decipher their functions. To address this gap, our study sought to comprehensively characterize mouse erythroid cells through contemporary transcriptomic and proteomic approaches. By evaluating CD71 and Ter-119 as sorting markers for murine erythroid cells and employing bulk NanoString transcriptomics, we discerned distinctive gene expression profiles between bone marrow and fetal liver-derived erythroid cells. Additionally, leveraging flow cytometry, we assessed the surface expression of CD44, CD45, CD71, and Ter-119 on normal and phenylhydrazine-induced hemolytic anemia mouse bone marrow and splenic erythroid cells. Key findings emerged: firstly, the utilization of CD71 for cell sorting yielded comparatively impure erythroid cell populations compared to Ter-119; secondly, discernible differences in immunoregulatory molecule expression were evident between erythroid cells from mouse bone marrow and fetal liver; thirdly, two discrete branches of mouse erythropoiesis were identified based on CD45 expression: CD45-negative and CD45-positive, which had been altered differently in response to phenylhydrazine. Our deductions underscore (1) Ter-119's superiority over CD71 as a murine erythroid cell sorting marker, (2) the potential of erythroid cells in murine antimicrobial immunity, and (3) the importance of investigating CD45-positive and CD45-negative murine erythroid cells separately and in further detail in future studies.


Stress granules contribute to α-globin homeostasis in differentiating erythroid cells.

  • Laura Ghisolfi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

Hemoglobin is the major biosynthetic product of developing erythroid cells. Assembly of hemoglobin requires the balanced production of globin proteins and the oxygen-carrying heme moiety. The heme-regulated inhibitor kinase (HRI) participates in this process by phosphorylating eIF2α and inhibiting the translation of globin proteins when levels of free heme are limiting. HRI is also activated in erythroid cells subjected to oxidative stress. Phospho-eIF2α-mediated translational repression induces the assembly of stress granules (SG), cytoplasmic foci that harbor untranslated mRNAs and promote the survival of cells subjected to adverse environmental conditions. We have found that differentiating erythroid, but not myelomonocytic or megakaryocytic, murine and human progenitor cells assemble SGs, in vitro and in vivo. Targeted knockdown of HRI or G3BP, a protein required for SG assembly, inhibits spontaneous and arsenite-induced assembly of SGs in erythroid progenitor cells. This is accompanied by reduced α-globin production and increased apoptosis suggesting that G3BP+ SGs facilitate the survival of developing erythroid cells.


The VP1u Receptor Restricts Parvovirus B19 Uptake to Permissive Erythroid Cells.

  • Remo Leisi‎ et al.
  • Viruses‎
  • 2016‎

Parvovirus B19 (B19V) is a small non-enveloped virus and known as the causative agent for the mild childhood disease erythema infectiosum. B19V has an extraordinary narrow tissue tropism, showing only productive infection in erythroid precursor cells in the bone marrow. We recently found that the viral protein 1 unique region (VP1u) contains an N-terminal receptor-binding domain (RBD), which mediates the uptake of the virus into cells of the erythroid lineage. To further investigate the role of the RBD in connection with a B19V-unrelated capsid, we chemically coupled the VP1u of B19V to the bacteriophage MS2 capsid and tested the internalization capacity of the bioconjugate on permissive cells. In comparison, we studied the cellular uptake and infection of B19V along the erythroid differentiation. The results showed that the MS2-VP1u bioconjugate mimicked the specific internalization of the native B19V into erythroid precursor cells, which further coincides with the restricted infection profile. The successful mimicry of B19V uptake demonstrates that the RBD in the VP1u is sufficient for the endocytosis of the viral capsid. Furthermore, the recombinant VP1u competed with B19V uptake into permissive cells, thus excluding a significant alternative uptake mechanism by other receptors. Strikingly, the VP1u receptor appeared to be expressed only on erythropoietin-dependent erythroid differentiation stages that also provide the necessary intracellular factors for a productive infection. Taken together, these findings suggest that the VP1u binds to a yet-unknown erythroid-specific cellular receptor and thus restricts the virus entry to permissive cells.


Mutant N-RAS induces erythroid lineage dysplasia in human CD34+ cells.

  • R L Darley‎ et al.
  • The Journal of experimental medicine‎
  • 1997‎

RAS mutations arise at high frequency (20-40%) in both acute myeloid leukemia and myelodysplastic syndrome (which is considered to be a manifestation of preleukemic disease). In each case, mutations arise predominantly at the N-RAS locus. These observations suggest a fundamental role for this oncogene in leukemogenesis. However, despite its obvious significance, little is known of how this key oncogene may subvert the process of hematopoiesis in human cells. Using CD34+ progenitor cells, we have modeled the preleukemic state by infecting these cells with amphotropic retrovirus expressing mutant N-RAS together with the selectable marker gene lacZ. Expression of the lacZ gene product, beta-galactosidase, allows direct identification and study of N-RAS-expressing cells by incubating infected cultures with a fluorogenic substrate for beta-galactosidase, which gives rise to a fluorescent signal within the infected cells. By using multiparameter flow cytometry, we have studied the ability of CD34+ cells expressing mutant N-RAS to undergo erythroid differentiation induced by erythropoietin. By this means, we have found that erythroid progenitor cells expressing mutant N-RAS exhibit a proliferative defect resulting in an increased cell doubling time and a decrease in the proportion of cells in S + G2M phase of the cell cycle. This is linked to a slowing in the rate of differentiation as determined by comparative cell-surface marker analysis and ultimate failure of the differentiation program at the late-erythroblast stage of development. The dyserythropoiesis was also linked to an increased tendency of the RAS-expressing cells to undergo programmed cell death during their differentiation program. This erythroid lineage dysplasia recapitulates one of the most common features of myelodysplastic syndrome, and for the first time provides a causative link between mutational activation of N-RAS and the pathogenesis of preleukemia.


MicroRNA-223 reversibly regulates erythroid and megakaryocytic differentiation of K562 cells.

  • Jin-Yun Yuan‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

MicroRNAs (miRNAs) are thought to modulate a variety of cellular events. Several studies have revealed the functions of miR-223 in granulopoiesis. Here we analysed miR-223 expression in various human tissues, blood and leukaemia cells, and focused on its role in K562 erythroid and megakaryocytic differentiation. MiR-223 was detected not only in granulocytes but also in erythroid cells. In K562 cells, expression of miR-223 was down-regulated during haemin-induced erythroid differentiation but up-regulated during phorbol myristate acetate (PMA)-induced megakaryocytic differentiation. The overexpression of miR-223 resulted in significant decrease of gamma-globin mRNA and the fraction of benzidine-positive cells in K562 cells, suggesting a suppressive effect of miR-223 on erythroid differentiation. Peaks corresponding to 4N cells in stable transfectants overexpressing miR-223 were higher than that in control K562 cells during megakaryocytic differentiation, indicating that miR-223 increases megakaryocytic differentiation. The expression of LIM domain only 2 (LMO2) reporter was suppressed in NIH-3T3 when the expression of miR-223 was enforced by both the luciferase and fluorescence system. Furthermore, LMO2 mRNA and protein levels were significantly decreased in stable K562 transfectants overexpressing miR-223. These results indicate that LMO2 is a direct target of miR-223. Thus, our results suggest that miR-223 reversibly regulates erythroid and megakaryocytic differentiation of K562 cells via down-modulation of LMO2.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: