Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 62 papers

[Erythrocyte deformability in patients with acute cerebral circulatory disorders].

  • E E Mkheian‎ et al.
  • Zhurnal nevropatologii i psikhiatrii imeni S.S. Korsakova (Moscow, Russia : 1952)‎
  • 1980‎

The capacity of erythrocytes to deformation was examined in patients with acute disturbances of the cerebral circulation. It was shown that in patients with transient cerebral circulation disturbances and brain infarctions this capacity of erythrocytes was sharply lowered. It was accompanied by a greater capacity of erythrocytes to aggregation and by a lability of weakly linked proteins of the erythrocytic membranes. It was also shown that in patients with brain infarction the lipid fraction of the erythrocytic membranes was more viscous.


cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

  • Ghania Ramdani‎ et al.
  • PLoS pathogens‎
  • 2015‎

Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites.


Shear Stress Ameliorates Superoxide Impairment to Erythrocyte Deformability With Concurrent Nitric Oxide Synthase Activation.

  • Lennart Kuck‎ et al.
  • Frontiers in physiology‎
  • 2019‎

The cellular deformability of red blood cells (RBC) is exceptional among mammalian cells and facilitates nutrient delivery throughout the microcirculation; however, this physical property is negatively impacted by oxidative stress. It remains unresolved whether the molecular determinants of cellular deformability - which in the contemporary model of RBC are increasingly recognized - are sensitive to free radicals. Moreover, given cellular deformability has recently been demonstrated to increase following exposure to specific doses of mechanical stimulation, the potential for using shear "conditioning" as a novel method to reverse free-radical induced impairment of cell mechanics is of interest. We thus designed a series of experiments that explored the effects of intracellular superoxide (O2 -) generation on the deformability of RBC and also activation of pivotal molecular pathways known to regulate cell mechanics - i.e., PI3K/Akt kinase and RBC nitric oxide synthase (NOS). In addition, RBC exposed to O2 - were conditioned with specific shear stresses, prior to evaluation of cellular deformability and activation of PI3K/Akt kinase and RBC-NOS. Intracellular generation of O2 - decreased phosphorylation of RBC-NOS at its primary activation site (Ser1177) (p < 0.001), while phosphorylation of Akt kinase at its active residue (Ser473) was also diminished (p < 0.001). Inactivation of these enzymes following O2 - exposure occurred in tandem with decreased RBC deformability. Shear conditioning significantly improved cellular deformability, even in RBC previously exposed to O2 -. The improvement in cellular deformability may have been the result of enhanced molecular signaling, given RBC-NOS phosphorylation in RBC exposed to O2 - was restored following shear conditioning. Impaired RBC deformability induced by intracellular O2 - may be due, in part, to impaired activation of PI3K/Akt, and downstream signaling with RBC-NOS. These findings may shed light on improved circulatory health with targeted promotion of blood flow (e.g., exercise training), and may prove fruitful in future development of blood-contacting devices.


Study of individual erythrocyte deformability susceptibility to INFeD and ethanol using a microfluidic chip.

  • Lihong Liu‎ et al.
  • Scientific reports‎
  • 2016‎

Human red blood cells (RBCs) deformability in vitro was assessed during iron dextran (INFeD) loading and/or ethanol co-administration using microfluidic deformability screening. The results showed donor-specific variations in dose dependent deformability shift were revealed below 500 μg/mL iron dextran. Two out of nine blood samples exhibited significant cell stiffening at 500 μg/mL iron dextran loading concentration (p < 0.05, Tukey test). More interestingly, co-administration of moderate amount of ethanol was identified to have significant protective effects on RBC deformability. We also noted that ethanol can reverse the deformability of impaired RBCs. Meanwhile obvious donor dependent response to ethanol administration on RBC deformability was noted using our biomimetic microfluidic chip.


Dexmedetomidine protects against lipid peroxidation and erythrocyte deformability alterations in experimental hepatic ischemia reperfusion injury.

  • Mustafa Arslan‎ et al.
  • The Libyan journal of medicine‎
  • 2012‎

Hepatic ischemia-reperfusion injury is a common clinical problem in hepatic surgery and transplantation. Several cellular and tissue structural and functional alterations are observed in such injury. The aim of this study was to evaluate the effect of dexmedetomidine on lipid peroxidation and erythrocyte deformability during ischemia-reperfusion injury in rats.


Effects of lornoxicam and intravenous ibuprofen on erythrocyte deformability and hepatic and renal blood flow in rats.

  • Hande Arpacı‎ et al.
  • Drug design, development and therapy‎
  • 2016‎

Change in blood supply is held responsible for anesthesia-related abnormal tissue and organ perfusion. Decreased erythrocyte deformability and increased aggregation may be detected after surgery performed under general anesthesia. It was shown that nonsteroidal anti-inflammatory drugs decrease erythrocyte deformability. Lornoxicam and/or intravenous (iv) ibuprofen are commonly preferred analgesic agents for postoperative pain management. In this study, we aimed to investigate the effects of lornoxicam (2 mg/kg, iv) and ibuprofen (30 mg/kg, iv) on erythrocyte deformability, as well as hepatic and renal blood flows, in male rats.


The effects of in vivo and ex vivo various degrees of cold exposure on erythrocyte deformability and aggregation.

  • Gülten Erken‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2011‎

This study aimed to investigate alterations in hemorheology by cold exposure, in vivo and ex vivo, and to determine their relationship to oxidative stress.


Effects of Glutamine and Omega-3 Fatty Acids on Erythrocyte Deformability and Oxidative Damage in Rat Model of Enterocolitis.

  • Ruksan Cehreli‎ et al.
  • Gastroenterology research‎
  • 2015‎

The aim of the study was to investigate preventive effects of glutamine (Gln), omega-3 fatty acids (FA) on erythrocyte deformability (EDEF) in rat model of indomethacin-induced enterocolitis.


Effect of picroside II on erythrocyte deformability and lipid peroxidation in rats subjected to hind limb ischemia reperfusion injury.

  • Faruk Metin Çomu‎ et al.
  • Drug design, development and therapy‎
  • 2016‎

Ischemia reperfusion injury (I/R) in hind limb is a frequent and important clinical phenomenon. Many structural and functional damages are observed in cells and tissues in these kinds of injuries. In this study, we aimed to evaluate the effect of picroside II on lipid peroxidation and erythrocyte deformability during I/R in rats.


Anti-erythrocyte antibodies may contribute to anaemia in Plasmodium vivax malaria by decreasing red blood cell deformability and increasing erythrophagocytosis.

  • Luiza Carvalho Mourão‎ et al.
  • Malaria journal‎
  • 2016‎

Plasmodium vivax accounts for the majority of human malaria infections outside Africa and is being increasingly associated in fatal outcomes with anaemia as one of the major complications. One of the causes of malarial anaemia is the augmented removal of circulating non-infected red blood cells (nRBCs), an issue not yet fully understood. High levels of auto-antibodies against RBCs have been associated with severe anaemia and reduced survival of nRBCs in patients with falciparum malaria. Since there are no substantial data about the role of those antibodies in vivax malaria, this study was designed to determine whether or not auto-antibodies against erythrocytes are involved in nRBC clearance. Moreover, the possible immune mechanisms elicited by them that may be associated to induce anaemia in P. vivax infection was investigated.


Effects of N-Acetylcysteine and N-Acetylcysteine Amide on Erythrocyte Deformability and Oxidative Stress in a Rat Model of Lower Extremity Ischemia-Reperfusion Injury.

  • Gokhan Erol‎ et al.
  • Cardiology research and practice‎
  • 2020‎

N-acetylcysteine (NAC) is an antioxidant which works as a free radical scavenger and antiapoptotic agent. N-acetylcysteine-amide (NACA) is a modified form of NAC containing an amide group instead of a carboxyl group of NAC. Our study aims to investigate the effectiveness of these two substances on erythrocyte deformability and oxidative stress in muscle tissue. Materials and Methods. A total of 24 Wistar albino rats were used in our study. The animals were randomly divided into five groups as control (n: 6), ischemia (n: 6), NAC (n: 6), and NACA (n: 6). In the ischemia, NAC, and NACA groups, 120 min of ischemia and 120 min of reperfusion were achieved by placing nontraumatic vascular clamps across the abdominal aorta. The NAC and NACA groups were administered an injection 30 min before ischemia (100 mg/kg NAC; 100 mg/kg NACA; intravenous). Blood samples were taken from the animals at the end of the ischemic period. The lower extremity gastrocnemius muscle was isolated and stored at -80 degrees to assess the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) values and was analyzed. Results. The erythrocyte deformability index was found to be statistically significantly lower in rats treated with NAC and NACA before ischemia-reperfusion compared to the groups that received only ischemia-reperfusion. In addition, no statistically significant difference was found between the control group and the NAC and NACA groups. The groups receiving NAC and NACA before ischemia exhibited higher total antioxidative status and lower total oxidative status while the oxidative stress index was also lower. Conclusion. The results of our study demonstrated the protective effects of NAC and NACA on erythrocyte deformability and oxidative damage in skeletal muscle in lower extremity ischemia-reperfusion. NAC and NACA exhibited similar protective effects on oxidative damage and erythrocyte deformability.


Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion.

  • Xavier Sisquella‎ et al.
  • eLife‎
  • 2017‎

The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in the deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in the deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion.


αI-spectrin represents evolutionary optimization of spectrin for red blood cell deformability.

  • John Hale‎ et al.
  • Biophysical journal‎
  • 2021‎

Spectrin tetramers of the membranes of enucleated mammalian erythrocytes play a critical role in red blood cell survival in circulation. One of the spectrins, αI, emerged in mammals with enucleated red cells after duplication of the ancestral α-spectrin gene common to all animals. The neofunctionalized αI-spectrin has moderate affinity for βI-spectrin, whereas αII-spectrin, expressed in nonerythroid cells, retains ancestral characteristics and has a 10-fold higher affinity for βI-spectrin. It has been hypothesized that this adaptation allows for rapid make and break of tetramers to accommodate membrane deformation. We have tested this hypothesis by generating mice with high-affinity spectrin tetramers formed by exchanging the site of tetramer formation in αI-spectrin (segments R0 and R1) for that of αII-spectrin. Erythrocytes with αIIβI presented normal hematologic parameters yet showed increased thermostability, and their membranes were significantly less deformable; under low shear forces, they displayed tumbling behavior rather than tank treading. The membrane skeleton is more stable with αIIβI and shows significantly less remodeling under deformation than red cell membranes of wild-type mice. These data demonstrate that spectrin tetramers undergo remodeling in intact erythrocytes and that this is required for the normal deformability of the erythrocyte membrane. We conclude that αI-spectrin represents evolutionary optimization of tetramer formation: neither higher-affinity tetramers (as shown here) nor lower affinity (as seen in hemolytic disease) can support the membrane properties required for effective tissue oxygenation in circulation.


Impaired deformability of circulating erythrocytes obtained from nondiabetic hypertensive patients: investigation by a nickel mesh filtration technique.

  • Keita Odashiro‎ et al.
  • Clinical hypertension‎
  • 2015‎

Hypertension is associated with microcirculatory disturbance, and erythrocyte deformability is a major determinant of the microcirculation. However, impairment of erythrocyte deformability in hypertensive patients in relation to antihypertensive treatment is unclear. The present study aimed to investigate this impairment in hypertensive patients under treatment using a highly sensitive and quantitative nickel mesh filtration technique.


Distribution of malaria parasite-derived phosphatidylcholine in the infected erythrocyte.

  • Tansy Vallintine‎ et al.
  • mSphere‎
  • 2023‎

Malaria parasites modify their host erythrocyte in multiple ways, leading to changes in the deformability, adhesiveness, and permeability of the host erythrocyte. Most of these changes are mediated by proteins exported from the parasite to the host erythrocyte, where these proteins interact with the host cell cytoskeleton or form complexes in the plasma membrane of the infected erythrocyte. In addition, malaria parasites induce the formation of membranous compartments-the parasitophorous vacuole, the tubovesicular network (TVN), the Maurer's clefts and small vesicles-within the infected erythrocyte, a cell that is normally devoid of internal membranes. After infection, changes also occur in the composition and asymmetry of the erythrocyte plasma membrane. Although many aspects of the mechanism of export of parasite proteins have become clear, the mechanism by which these membranous compartments are formed and expanded is almost entirely unknown. To determine whether parasite-derived phospholipids play a part in these processes, we applied a metabolic labeling technique that allows phosphatidylcholine to be labeled with a fluorophore. As the host erythrocyte cannot synthesize phospholipids, within infected erythrocytes, only parasite-derived phosphatidylcholine will be labeled with this technique. The results revealed that phosphatidylcholine produced by the parasite is distributed throughout the infected erythrocyte, including the TVN and the erythrocyte plasma membrane, but not Maurer's clefts. Interestingly, labeled phospholipids were also detected in the erythrocyte plasma membrane very soon after invasion of the parasites, indicating that the parasite may add phospholipids to the host erythrocyte during invasion. IMPORTANCE Here, we describe a previously unappreciated way in which the malaria parasite interacts with the host erythrocyte, namely, by the transfer of parasite phospholipids to the erythrocyte plasma membrane. This likely has important consequences for the survival of the parasite in the host cell and the host organism. We show that parasite-derived phospholipids are transferred from the parasite to the host erythrocyte plasma membrane and that other internal membranes that are produced after the parasite has invaded the cell are produced, at least in part, using parasite-derived phospholipids. The one exception to this is the Maurer's cleft, a membranous organelle that is involved in the transport of parasite proteins to the surface of the erythrocyte. This reveals that the Maurer's cleft is produced in a different manner than the other parasite-induced membranes. Overall, these findings provide a platform for the study of a new aspect of the host-parasite interaction.


Erythrocyte CD55 mediates the internalization of Plasmodium falciparum parasites.

  • Bikash Shakya‎ et al.
  • eLife‎
  • 2021‎

Invasion of human erythrocytes by the malaria parasite Plasmodium falciparum is a multi-step process. Previously, a forward genetic screen for P. falciparum host factors identified erythrocyte CD55 as essential for invasion, but its specific role and how it interfaces with the other factors that mediate this complex process are unknown. Using CRISPR-Cas9 editing, antibody-based inhibition, and live cell imaging, here we show that CD55 is specifically required for parasite internalization. Pre-invasion kinetics, erythrocyte deformability, and echinocytosis were not influenced by CD55, but entry was inhibited when CD55 was blocked or absent. Visualization of parasites attached to CD55-null erythrocytes points to a role for CD55 in stability and/or progression of the moving junction. Our findings demonstrate that CD55 acts after discharge of the parasite's rhoptry organelles, and plays a unique role relative to all other invasion receptors. As the requirement for CD55 is strain-transcendent, these results suggest that CD55 or its interacting partners may hold potential as therapeutic targets for malaria.


Kindlin-3 deficiency leads to impaired erythropoiesis and erythrocyte cytoskeleton.

  • Dorota Szpak‎ et al.
  • Blood advances‎
  • 2023‎

Kindlin-3 (K3) is critical for the activation of integrin adhesion receptors in hematopoietic cells. In humans and mice, K3 deficiency is associated with impaired immunity and bone development, bleeding, and aberrant erythrocyte shape. To delineate how K3 deficiency (K3KO) contributes to anemia and misshaped erythrocytes, mice deficient in erythroid (K3KO∖EpoR-cre) or myeloid cell K3 (K3KO∖Lyz2cre), knockin mice expressing mutant K3 (Q597W598 to AA) with reduced integrin-activation function (K3KI), and control wild-type (WT) K3 mice were studied. Both K3-deficient strains and K3KI mice showed anemia at baseline, reduced response to erythropoietin stimulation, and compromised recovery after phenylhydrazine (PHZ)-induced hemolytic anemia as compared with K3WT. Erythroid K3KO and K3 (Q597W598 to AA) showed arrested erythroid differentiation at proerythroblast stage, whereas macrophage K3KO showed decreased erythroblast numbers at all developmental stages of terminal erythroid differentiation because of reduced erythroblastic island (EBI) formation attributable to decreased expression and activation of erythroblast integrin α4β1 and macrophage αVβ3. Peripheral blood smears of K3KO∖EpoR-cre mice, but not of the other mouse strains, showed numerous aberrant tear drop-shaped erythrocytes. K3 deficiency in these erythrocytes led to disorganized actin cytoskeleton, reduced deformability, and increased osmotic fragility. Mechanistically, K3 directly interacted with F-actin through an actin-binding site K3-LK48. Taken together, these findings document that erythroid and macrophage K3 are critical contributors to erythropoiesis in an integrin-dependent manner, whereas F-actin binding to K3 maintains the membrane cytoskeletal integrity and erythrocyte biconcave shape. The dual function of K3 in erythrocytes and in EBIs establish an important functional role for K3 in normal erythroid function.


Beneficial Effect of Quercetin on Erythrocyte Properties in Type 2 Diabetic Rats.

  • Tomas Jasenovec‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Diabetes mellitus is characterized by tissue oxidative damage and impaired microcirculation, as well as worsened erythrocyte properties. Measurements of erythrocyte deformability together with determination of nitric oxide (NO) production and osmotic resistance were used for the characterization of erythrocyte functionality in lean (control) and obese Zucker diabetic fatty (ZDF) rats of two age categories. Obese ZDF rats correspond to prediabetic (younger) and diabetic (older) animals. As antioxidants were suggested to protect erythrocytes, we also investigated the potential effect of quercetin (20 mg/kg/day for 6 weeks). Erythrocyte deformability was determined by the filtration method and NO production using DAF-2DA fluorescence. For erythrocyte osmotic resistance, we used hemolytic assay. Erythrocyte deformability and NO production deteriorated during aging-both were lower in older ZDF rats than in younger ones. Three-way ANOVA indicates improved erythrocyte deformability after quercetin treatment in older obese ZDF rats only, as it was not modified or deteriorated in both (lean and obese) younger and older lean animals. NO production by erythrocytes increased post treatment in all experimental groups. Our study indicates the potential benefit of quercetin treatment on erythrocyte properties in condition of diabetes mellitus. In addition, our results suggest potential age-dependency of quercetin effects in diabetes that deserve additional research.


Plasmodium falciparum exploits CD44 as a coreceptor for erythrocyte invasion.

  • Barbara Baro‎ et al.
  • Blood‎
  • 2023‎

The malaria parasite Plasmodium falciparum invades and replicates asexually within human erythrocytes. CD44 expressed on erythrocytes was previously identified as an important host factor for P falciparum infection through a forward genetic screen, but little is known about its regulation or function in these cells, nor how it may be used by the parasite. We found that CD44 can be efficiently deleted from primary human hematopoietic stem cells using CRISPR/Cas9 genome editing, and that the efficiency of ex vivo erythropoiesis to enucleated cultured red blood cells (cRBCs) is not affected by lack of CD44. However, the rate of P falciparum invasion was reduced in CD44-null cRBCs relative to isogenic wild-type control cells, validating CD44 as an important host factor for this parasite. We identified 2 P falciparum invasion ligands as binding partners for CD44, erythrocyte binding antigen 175 (EBA-175) and EBA-140 and demonstrated that their ability to bind to human erythrocytes relies primarily on their canonical receptors, glycophorin A and glycophorin C, respectively. We further show that EBA-175 induces phosphorylation of erythrocyte cytoskeletal proteins in a CD44-dependent manner. Our findings support a model in which P falciparum exploits CD44 as a coreceptor during invasion of human erythrocytes, stimulating CD44-dependent phosphorylation of host cytoskeletal proteins that alter host cell deformability and facilitate parasite entry.


Significance of two transmembrane ion gradients for human erythrocyte volume stabilization.

  • F I Ataullakhanov‎ et al.
  • PloS one‎
  • 2022‎

Functional effectiveness of erythrocytes depends on their high deformability that allows them to pass through narrow tissue capillaries. The erythrocytes can deform easily due to discoid shape provided by the stabilization of an optimal cell volume at a given cell surface area. We used mathematical simulation to study the role of transport Na/K-ATPase and transmembrane Na+ and K+ gradients in human erythrocyte volume stabilization at non-selective increase in cell membrane permeability to cations. The model included Na/K-ATPase activated by intracellular Na+, Na+ and K+ transmembrane gradients, and took into account contribution of glycolytic metabolites and adenine nucleotides to cytoplasm osmotic pressure. We found that this model provides the best stabilization of the erythrocyte volume at non-selective increase in the permeability of the cell membrane, which can be caused by an oxidation of the membrane components or mechanical stress during circulation. The volume of the erythrocyte deviates from the optimal value by no more than 10% with a change in the non-selective permeability of the cell membrane to cations from 50 to 200% of the normal value. If only one transmembrane ion gradient is present (Na+), the cell loses the ability to stabilize volume and even small changes in membrane permeability cause dramatic changes in the cell volume. Our results reveal that the presence of two oppositely directed transmembrane ion gradients is fundamentally important for robust stabilization of cellular volume in human erythrocytes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: