Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 749 papers

Insights into Ergosterol Peroxide's Trypanocidal Activity.

  • Thuluz Meza-Menchaca‎ et al.
  • Biomolecules‎
  • 2019‎

Trypanosoma cruzi, which causes Chagas disease, is a significant health threat in many countries and affects millions of people. Given the magnitude of this disease, a broader understanding of trypanocidal mechanisms is needed to prevent and treat infection. Natural endoperoxides, such as ergosterol peroxide, have been shown to be toxic to parasites without causing harm to human cells or tissues. Although prior studies have demonstrated the trypanocidal activity of ergosterol peroxide, the cellular and molecular mechanisms remain unknown. The results of this study indicate that a free-radical reaction occurs in T. cruzi following ergosterol peroxide exposure, leading to cell death. Using a combination of biochemical, microscopic and in silico experimental approaches, we have identified, for the first time, the cellular and molecular cytotoxic mechanism of an ergosterol peroxide obtained from Pleurotus ostreatus (Jacq) P. Kumm. f. sp. Florida.


Ergosterol-induced sesquiterpenoid synthesis in tobacco cells.

  • Fidele Tugizimana‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2012‎

Plants have the ability to continuously respond to microbial signals in their environment. One of these stimuli is a steroid from fungal membranes, ergosterol, which does not occur in plants, but acts as a pathogen-associated molecular pattern molecule to trigger defence mechanisms. Here we investigated the effect of ergosterol on the secondary metabolites in tobacco (Nicotiana tabacum) cells by profiling the induced sesquiterpenoids. Suspensions of tobacco cells were treated with different concentrations (0-1,000 nM) of ergosterol and incubated for different time periods (0-24 h). Metabolites were extracted with a selective dispersive liquid-liquid micro-extraction method. Thin layer chromatography was used as a screening method for identification of sesquiterpenoids in tobacco extracts. Liquid chromatography coupled to mass spectrometry was used for quantitative and qualitative analyses. The results showed that ergosterol triggered differential changes in the metabolome of tobacco cells, leading to variation in the biosynthesis of secondary metabolites. Metabolomic analysis through principal component analysis-scores plots revealed clusters of sample replicates for ergosterol treatments of 0, 50, 150, 300 and 1,000 nM and time-dependent variation at 0, 6, 12, 18 and 24 h. Five bicyclic sesquiterpenoid phytoalexins, capsidiol, lubimin, rishitin, solavetivone and phytuberin, were identified as being ergosterol-induced, contributing to the altered metabolome.


Ergosterol Is Critical for Sporogenesis in Cryptococcus neoformans.

  • Amber R Matha‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2024‎

Microbes, both bacteria and fungi, produce spores to survive stressful conditions. Spores produced by the environmental fungal pathogen Cryptococcus neoformans serve as both surviving and infectious propagules. Because of their importance in disease transmission and pathogenesis, factors necessary for cryptococcal spore germination are being actively investigated. However, little is known about nutrients critical for sporogenesis in this pathogen. Here, we found that ergosterol, the main sterol in fungal membranes, is enriched in spores relative to yeasts and hyphae. In C. neoformans, the ergosterol biosynthesis pathway (EBP) is upregulated by the transcription factor Sre1 in response to conditions that demand elevated ergosterol biosynthesis. Although the deletion of SRE1 enhances the production of mating hyphae, the sre1Δ strain is deficient at producing spores even when crossed with a wild-type partner. We found that the defect of the sre1Δ strain is specific to sporogenesis, not meiosis or basidium maturation preceding sporulation. Consistent with the idea that sporulation demands heightened ergosterol biosynthesis, EBP mutants are also defective in sporulation. We discovered that the overexpression of some EBP genes can largely rescue the sporulation defect of the sre1Δ strain. Collectively, we demonstrate that ergosterol is a critical component in cryptococcal preparation for sporulation.


Abnormal Ergosterol Biosynthesis Activates Transcriptional Responses to Antifungal Azoles.

  • Chengcheng Hu‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Fungi transcriptionally upregulate expression of azole efflux pumps and ergosterol biosynthesis pathway genes when exposed to antifungal agents that target ergosterol biosynthesis. To date, these transcriptional responses have been shown to be dependent on the presence of the azoles and/or depletion of ergosterol. Using an inducible promoter to regulate Neurospora crassa erg11, which encodes the major azole target, sterol 14α-demethylase, we were able to demonstrate that the CDR4 azole efflux pump can be transcriptionally activated by ergosterol biosynthesis inhibition even in the absence of azoles. By analyzing ergosterol deficient mutants, we demonstrate that the transcriptional responses by cdr4 and, unexpectedly, genes encoding ergosterol biosynthesis enzymes (erg genes) that are responsive to azoles, are not dependent on ergosterol depletion. Nonetheless, deletion of erg2, which encodes C-8 sterol isomerase, also induced expression of cdr4. Deletion of erg2 also induced the expression of erg24, the gene encoding C-14 sterol reductase, but not other tested erg genes which were responsive to erg11 inactivation. This indicates that inhibition of specific steps of ergosterol biosynthesis can result in different transcriptional responses, which is further supported by our results obtained using different ergosterol biosynthesis inhibitors. Together with the sterol profiles, these results suggest that the transcriptional responses by cdr4 and erg genes are associated with accumulation of specific sterol intermediate(s). This was further supported by the fact that when the erg2 mutant was treated with ketoconazole, upstream inhibition overrode the effects by downstream inhibition on ergosterol biosynthesis pathway. Even though cdr4 expression is associated with the accumulation of sterol intermediates, intra- and extracellular sterol analysis by HPLC-MS indicated that the transcriptional induction of cdr4 did not result in efflux of the accumulated intermediate(s). This study demonstrates, by detailed genetic and chemical analysis, that transcriptional responses by a major efflux pump and genes of the ergosterol biosynthesis pathway to ergosterol biosynthesis inhibitors can be independent of the presence of the drugs and are linked with the accumulation of ergosterol intermediate(s).


Limosilactobacillus fermentum Limits Candida glabrata Growth by Ergosterol Depletion.

  • Isabella Zangl‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Candida glabrata is a human-associated opportunistic fungal pathogen. It shares its niche with Lactobacillus spp. in the gastrointestinal and vaginal tract. In fact, Lactobacillus species are thought to competitively prevent Candida overgrowth. We investigated the molecular aspects of this antifungal effect by analyzing the interaction of C. glabrata strains with Limosilactobacillus fermentum. From a collection of clinical C. glabrata isolates, we identified strains with different sensitivities to L. fermentum in coculture. We analyzed the variation of their expression pattern to isolate the specific response to L. fermentum. C. glabrata-L. fermentum coculture induced genes associated with ergosterol biosynthesis, weak acid stress, and drug/chemical stress. L. fermentum coculture depleted C. glabrata ergosterol. The reduction of ergosterol was dependent on the Lactobacillus species, even in coculture with different Candida species. We found a similar ergosterol-depleting effect with other lactobacillus strains (Lactobacillus crispatus and Lactobacillus rhamosus) on Candida albicans, Candida tropicalis, and Candida krusei. The addition of ergosterol improved C. glabrata growth in the coculture. Blocking ergosterol synthesis with fluconazole increased the susceptibility against L. fermentum, which was again mitigated by the addition of ergosterol. In accordance, a C. glabrata Δerg11 mutant, defective in ergosterol biosynthesis, was highly sensitive to L. fermentum. In conclusion, our analysis indicates an unexpected direct function of ergosterol for C. glabrata proliferation in coculture with L. fermentum. IMPORTANCE The yeast Candida glabrata, an opportunistic fungal pathogen, and the bacterium Limosilactobacillus fermentum both inhabit the human gastrointestinal and vaginal tract. Lactobacillus species, belonging to the healthy human microbiome, are thought to prevent C. glabrata infections. We investigated the antifungal effect of Limosilactobacillus fermentum on C. glabrata strains quantitively in vitro. The interaction between C. glabrata and L. fermentum evokes an upregulation of genes required for the synthesis of ergosterol, a sterol constituent of the fungal plasma membrane. We found a dramatic reduction of ergosterol in C. glabrata when it was exposed to L. fermentum. This effect extended to other Candida species and other Lactobacillus species. Furthermore, fungal growth was efficiently suppressed by a combination of L. fermentum and fluconazole, an antifungal drug which inhibits ergosterol synthesis. Thus, fungal ergosterol is a key metabolite for the suppression of C. glabrata by L. fermentum.


Ergosterol reduction impairs mitochondrial DNA maintenance in S. cerevisiae.

  • Angela Cirigliano‎ et al.
  • Biochimica et biophysica acta. Molecular and cell biology of lipids‎
  • 2019‎

Sterols are essential lipids, involved in many biological processes. In Saccharomyces cerevisiae, the enzymes of the ergosterol biosynthetic pathway (Erg proteins) are localized in different cellular compartments. With the aim of studying organelle interactions, we discovered that Erg27p resides mainly in Lipid Droplets (LDs) in respiratory competent cells, while in absence of respiration, is found mostly in the ER. The results presented in this paper demonstrate an interplay between the mitochondrial respiration and ergosterol production: on the one hand, rho° cells show lower ergosterol content when compared with wild type respiratory competent cells, on the other hand, the ergosterol biosynthetic pathway influences the mitochondrial status, since treatment with ketoconazole, which blocks the ergosterol pathway, or the absence of the ERG27 gene, induced rho° production in S. cerevisiae. The loss of mitochondrial DNA in the ∆erg27 strain is fully suppressed by exogenous addition of ergosterol. These data suggest the notion that ergosterol is essential for maintaining the mitochondrial DNA attached to the inner mitochondrial membrane.


Ergosterol distribution controls surface structure formation and fungal pathogenicity.

  • Hau Lam Choy‎ et al.
  • mBio‎
  • 2023‎

Ergosterol, the major sterol in fungal membranes, is critical for defining membrane fluidity and regulating cellular processes. Although ergosterol synthesis has been well defined in model yeast, little is known about sterol organization in the context of fungal pathogenesis. We identified a retrograde sterol transporter, Ysp2, in the opportunistic fungal pathogen Cryptococcus neoformans. We found that the lack of Ysp2 under host-mimicking conditions leads to abnormal accumulation of ergosterol at the plasma membrane, invagination of the plasma membrane, and malformation of the cell wall, which can be functionally rescued by inhibiting ergosterol synthesis with the antifungal drug fluconazole. We also observed that cells lacking Ysp2 mislocalize the cell surface protein Pma1 and have abnormally thin and permeable capsules. As a result of perturbed ergosterol distribution and its consequences, ysp2∆ cells cannot survive in physiologically relevant environments such as host phagocytes and are dramatically attenuated in virulence. These findings expand our knowledge of cryptococcal biology and underscore the importance of sterol homeostasis in fungal pathogenesis. IMPORTANCE Cryptococcus neoformans is an opportunistic fungal pathogen that kills over 100,000 people worldwide each year. Only three drugs are available to treat cryptococcosis, and these are variously limited by toxicity, availability, cost, and resistance. Ergosterol is the most abundant sterol in fungi and a key component in modulating membrane behavior. Two of the drugs used for cryptococcal infection, amphotericin B and fluconazole, target this lipid and its synthesis, highlighting its importance as a therapeutic target. We discovered a cryptococcal ergosterol transporter, Ysp2, and demonstrated its key roles in multiple aspects of cryptococcal biology and pathogenesis. These studies demonstrate the role of ergosterol homeostasis in C. neoformans virulence, deepen our understanding of a pathway with proven therapeutic importance, and open a new area of study.


Ergosterol distribution controls surface structure formation and fungal pathogenicity.

  • Hau Lam Choy‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Ergosterol, the major sterol in fungal membranes, is critical for defining membrane fluidity and regulating cellular processes. Although ergosterol synthesis has been well defined in model yeast, little is known about sterol organization in the context of fungal pathogenesis. We identified a retrograde sterol transporter, Ysp2, in the opportunistic fungal pathogen Cryptococcus neoformans . We found that the lack of Ysp2 under host-mimicking conditions leads to abnormal accumulation of ergosterol at the plasma membrane, invagination of the plasma membrane, and malformation of the cell wall, which can be functionally rescued by inhibiting ergosterol synthesis with the antifungal drug fluconazole. We also observed that cells lacking Ysp2 mislocalize the cell surface protein Pma1 and have thinner and more permeable capsules. As a result of perturbed ergosterol distribution and its consequences, ysp2 Î" cells cannot survive in physiologically-rele-vant environments such as host phagocytes and are dramatically attenuated in virulence. These findings expand our knowledge of cryptococcal biology and underscore the importance of sterol homeostasis in fungal pathogenesis.


Natamycin interferes with ergosterol-dependent lipid phases in model membranes.

  • Vibeke Akkerman‎ et al.
  • BBA advances‎
  • 2023‎

Natamycin is an antifungal polyene macrolide that is used as a food preservative but also to treat fungal keratitis and other yeast infections. In contrast to other polyene antimycotics, natamycin does not form ion pores in the plasma membrane, but its mode of action is poorly understood. Using nuclear magnetic resonance (NMR) spectroscopy of deuterated sterols, we find that natamycin slows the mobility of ergosterol and cholesterol in liquid-ordered (Lo) membranes to a similar extent. This is supported by molecular dynamics (MD) simulations, which additionally reveal a strong impact of natamycin dimers on sterol dynamics and water permeability. Interference with sterol-dependent lipid packing is also reflected in a natamycin-mediated increase in membrane accessibility for dithionite, particularly in bilayers containing ergosterol. NMR experiments with deuterated sphingomyelin (SM) in sterol-containing membranes reveal that natamycin reduces phase separation and increases lipid exchange in bilayers with ergosterol. In ternary lipid mixtures containing monounsaturated phosphatidylcholine, saturated SM, and either ergosterol or cholesterol, natamycin interferes with phase separation into Lo and liquid-disordered (Ld) domains, as shown by NMR spectroscopy. Employing the intrinsic fluorescence of natamycin in ultraviolet-sensitive microscopy, we can visualize the binding of natamycin to giant unilamellar vesicles (GUVs) and find that it has the highest affinity for the Lo phase in GUVs containing ergosterol. Our results suggest that natamycin specifically interacts with the sterol-induced ordered phase, in which it disrupts lipid packing and increases solvent accessibility. This property is particularly pronounced in ergosterol containing membranes, which could underlie the selective antifungal activity of natamycin.


Ergosterol peroxide inhibits ovarian cancer cell growth through multiple pathways.

  • Weiwei Tan‎ et al.
  • OncoTargets and therapy‎
  • 2017‎

Ergosterol peroxide (EP), a sterol derived from medicinal mushrooms, has been reported to exert antitumor activity in several tumor types. However, the role of EP toward ovarian cancer cells has not been investigated. In this study, we analyzed the cytotoxicity of EP in various cell lines representing high-grade serous ovarian cancer and low-grade serous ovarian cancer, respectively. Although EP showed no significant inhibition of the viability of normal ovarian surface epithelial cells, it impaired the proliferation and invasion capacities of tumor cells in a dose-dependent manner. We further figured out key modulators involved in its antitumor effects by quantitative reverse transcription polymerase chain reaction, ELISA, and Western blot. The nuclear β-catenin was down-regulated upon EP treatment, subsequently reducing the Cyclin D1 and c-Myc expression levels. Meanwhile, the protein level of protein tyrosine phosphatase SHP2 was up-regulated in EP treated cells, whereas Src kinase activity was inhibited. Both activation of SHP2 phosphatase and inhibition of Src kinase decreased the phosphorylation level of transducer and activator of STAT3 protein, which was implicated in oncogenesis. On the other hand, EP remarkably inhibited the expression and secretion of VEGF-C, implying its involvement in counteracting tumor angiogenesis. Moreover, EP treatment showed comparable cytotoxic effect with β-catenin knock-down or STAT3 inhibition. Taken together, our results demonstrated that EP showed antitumor effects toward ovarian cancer cells through both β-catenin and STAT3 signaling pathways, making it a promising candidate for drug development.


Evaluation of ergosterol content in the air of various environments.

  • Beata Gutarowska‎ et al.
  • Aerobiologia‎
  • 2015‎

The aim of the study was to compare the content of ergosterol in different microorganisms (bacteria, yeasts and moulds) isolated from the air as well as in six species of moulds in their different morphological forms-live mycelium, dead mycelium, and spores. Evaluation of the level of mould contamination of the air in various places using culture method and ergosterol determination was also performed. The analysis of ergosterol was carried out by gas chromatography equipped with flame ionisation detector. For evaluation of the results, analysis of variance and multiple comparison test were used. The quantity of ergosterol in the spores of various species of mould was in the range 1.9-9.4 pg/spore. The presence of yeasts and bacteria in the air does not significantly affect ergosterol concentration, in view of the low content of that sterol in their cells (max. 0.009 pg/cell for bacteria and 0.39 pg/cell for yeast). An ergosterol concentration above 1 ng per m3 can be considered an indicator of excessive mould contamination of indoor air. Based on determination of ergosterol in the air of mouldy rooms the result obtained may be compared with the culture method, due to the 1,000 times higher concentration of ergosterol in the mycelium compared with spores. However, in the analysis of outdoor air, in view of the presence of mould mainly in the form of spores and the degradation of ergosterol by UV radiation, analysis of that compound may indicate a lower level of contamination compared with the culture method.


A New Method for the Isolation of Ergosterol and Peroxyergosterol as Active Compounds of Hygrophoropsis aurantiaca and in Vitro Antiproliferative Activity of Isolated Ergosterol Peroxide.

  • Renata Nowak‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

In the present study, ergosterol peroxide and ergosterol were isolated for the first time from fresh fruit bodies of Hygrophoropsis aurantiaca (False Chanterelle). The substances were characterized mainly by spectroscopic methods (¹H-NMR, (13)C-NMR, DEPT-45, DEPT-90, DEPT-135, 2D-NMR). In our study, a new specific thin layer chromatographic method was developed for determination of ergosterol and ergosterol peroxide in H. aurantiaca extract. The method is based on the separation of n-hexane extract on silica gel (Silica Gel G) TLC plates using the optimized solvent system toluene/ethyl acetate (3:1; v/v). The main advantages of the developed method are the simplicity of operation and the low cost. The in vitro study results revealed the antiproliferative properties of ergosterol peroxide against LS180 human colon cancer cells. The described effect was attributed both to altered mitochondrial activity and decreased DNA synthesis. Additionally, in the same concentration range the investigated compound was not toxic to CCD 841 CoTr human colon epithelial cells. The present study suggests that fruit bodies of H. aurantiaca have great potential for producing substances and extracts with potential applications in medicine.


Transcriptional regulation of ergosterol biosynthesis genes in response to iron deficiency.

  • Tania Jordá‎ et al.
  • Environmental microbiology‎
  • 2022‎

Iron participates as an essential cofactor in the biosynthesis of critical cellular components, including DNA, proteins and lipids. The ergosterol biosynthetic pathway, which is an important target of antifungal treatments, depends on iron in four enzymatic steps. Our results in the model yeast Saccharomyces cerevisiae show that the expression of ergosterol biosynthesis (ERG) genes is tightly modulated by iron availability probably through the iron-dependent variation of sterol and heme levels. Whereas the transcription factors Upc2 and Ecm22 are responsible for the activation of ERG genes upon iron deficiency, the heme-dependent factor Hap1 triggers their Tup1-mediated transcriptional repression. The combined regulation by both activating and repressing regulatory factors allows for the fine-tuning of ERG transcript levels along the progress of iron deficiency, avoiding the accumulation of toxic sterol intermediates and enabling efficient adaptation to rapidly changing conditions. The lack of these regulatory factors leads to changes in the yeast sterol profile upon iron-deficient conditions. Both environmental iron availability and specific regulatory factors should be considered in ergosterol antifungal treatments.


Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol.

  • K I R Teixeira‎ et al.
  • Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]‎
  • 2012‎

Chlorhexidine (Cx) augmented with beta-cyclodextrin (β-cd) inclusion compounds, termed Cx:β-cd complexes, have been developed for use as antiseptic agents. The aim of this study was to examine the interactions of Cx:β-cd complexes, prepared at different molecular ratios, with sterol and yeast membranes. The Minimal Inhibitory Concentration (MIC) against the yeast Candida albicans (C.a.) was determined for each complex; the MICs were found to range from 0.5 to 2 μg/mL. To confirm the MIC data, quantitative analysis of viable cells was performed using trypan blue staining. Mechanistic characterization of the interactions that the Cx:β-cd complexes have with the yeast membrane and assessment of membrane morphology following exposure to Cx:β-cd complexes were performed using Sterol Quantification Method analysis (SQM) and scanning electron microscopy (SEM). SQM revealed that sterol extraction increased with increasing β-cd concentrations (1.71 ×10(3); 1.4 ×10(3); 3.45 ×10(3), and 3.74 ×10(3) CFU for 1:1, 1:2, 1:3, and 1:4, respectively), likely as a consequence of membrane ergosterol solubilization. SEM images demonstrated that cell membrane damage is a visible and significant mechanism that contributes to the antimicrobial effects of Cx:β-cd complexes. Cell disorganization increased significantly as the proportion of β-cyclodextrin present in the complex increased. Morphology of cells exposed to complexes with 1:3 and 1:4 molar ratios of Cx:β-cd were observed to have large aggregates mixed with yeast remains, representing more membrane disruption than that observed in cells treated with Cx alone. In conclusion, nanoaggregates of Cx:β-cd complexes block yeast growth via ergosterol extraction, permeabilizing the membrane by creating cluster-like structures within the cell membrane, possibly due to high amounts of hydrogen bonding.


Glycyrrhizic acid attenuates growth of Leishmania donovani by depleting ergosterol levels.

  • Neeradi Dinesh‎ et al.
  • Experimental parasitology‎
  • 2017‎

In the present study, glycyrrhizic acid (GA) the main component of Glycyrrhiza glabra was evaluated for its efficacy as antileishmanial agent and its mode of action explored. GA inhibits promastigotes and intracellular amastigotes in a dose dependent manner at an IC50 value of 34 ± 3.0 μM and 20 ± 4.2 μM respectively. GA was non-toxic against THP-1 macrophage host cell line. GA was found to inhibit recombinant Leishmania donovani HMG-CoA reductase (LdHMGR) enzyme at the half-maximum inhibitory concentration of 24 ± 4.3 μM indicating the sensitivity and specificity of GA towards the enzyme. However, GA could cause only 30% reduction in HMGR activity when measured in Leishmania promastigotes treated with 34 μM of GA. Interestingly western blot analysis revealed fivefold reduced HMGR expression in GLA treated promastigotes. To further study the mode of action of GA, we used transgenic parasites overexpressing LdHMGR. Results indicated that ∼2 fold resistance was exhibited by LdHMGR overexpressing promastigotes to GA with an IC50 value of 74 μM compared to the wild type parasite. This explained the specific binding of GA to LdHMGR enzyme. There was ∼2 fold depletion in ergosterol levels in wild type promastigotes compared to the HMGR overexpressors. This data was further validated by exogenous supplementation of GA treated cells with ergosterol and 40% reversal of growth inhibition was observed. The results obtained suggested that GA kills the parasite by affecting sterol biosynthetic pathway, especially by inhibiting the L. donovani HMGR and altering ergosterol levels. The finding from the current study shows that GA is a potential antileishmanial chemotherapeutic agent.


Lipid Rafts, Sphingolipids, and Ergosterol in Yeast Vacuole Fusion and Maturation.

  • Logan R Hurst‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

The Saccharomyces cerevisiae lysosome-like vacuole is a useful model for studying membrane fusion events and organelle maturation processes utilized by all eukaryotes. The vacuolar membrane is capable of forming micrometer and nanometer scale domains that can be visualized using microscopic techniques and segregate into regions with surprisingly distinct lipid and protein compositions. These lipid raft domains are liquid-ordered (L o ) like regions that are rich in sphingolipids, phospholipids with saturated acyl chains, and ergosterol. Recent studies have shown that these lipid rafts contain an enrichment of many different proteins that function in essential activities such as nutrient transport, organelle contact, membrane trafficking, and homotypic fusion, suggesting that they are biologically relevant regions within the vacuole membrane. Here, we discuss recent developments and the current understanding of sphingolipid and ergosterol function at the vacuole, the composition and function of lipid rafts at this organelle and how the distinct lipid and protein composition of these regions facilitates the biological processes outlined above.


Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast.

  • Hui Jin‎ et al.
  • The Journal of cell biology‎
  • 2008‎

Ergosterol depletion independently inhibits two aspects of yeast mating: pheromone signaling and plasma membrane fusion. In signaling, ergosterol participates in the recruitment of Ste5 to a polarized site on the plasma membrane. Ergosterol is thought to form microdomains within the membrane by interacting with the long acyl chains of sphingolipids. We find that although sphingolipid-free ergosterol is concentrated at sites of cell-cell contact, transmission of the pheromone signal at contact sites depends on a balanced ratio of ergosterol to sphingolipids. If a mating pair forms between ergosterol-depleted cells despite the attenuated pheromone response, the subsequent process of membrane fusion is retarded. Prm1 also participates in membrane fusion. However, ergosterol and Prm1 have independent functions and only prm1 mutant mating pairs are susceptible to contact-dependent lysis. In contrast to signaling, plasma membrane fusion is relatively insensitive to sphingolipid depletion. Thus, the sphingolipid-free pool of ergosterol promotes plasma membrane fusion.


Quantifying Isoprenoids in the Ergosterol Biosynthesis by Gas Chromatography-Mass Spectrometry.

  • Maximilian Liebl‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

The ergosterol pathway is a promising target for the development of new antifungals since its enzymes are essential for fungal cell growth. Appropriate screening assays are therefore needed that allow the identification of potential inhibitors. We developed a whole-cell screening method, which can be used to identify compounds interacting with the enzymes of isoprenoid biosynthesis, an important part of the ergosterol biosynthesis pathway. The method was validated according to the EMEA guideline on bioanalytical method validation. Aspergillus fumigatus hyphae and Saccharomyces cerevisiae cells were lysed mechanically in an aqueous buffer optimized for the enzymatic deconjugation of isoprenoid pyrophosphates. The residual alcohols were extracted, silylated and analyzed by GC-MS. The obtained isoprenoid pattern provides an indication of the inhibited enzyme, due to the accumulation of specific substrates. By analyzing terbinafine-treated A. fumigatus and mutant strains containing tunable gene copies of erg9 or erg1, respectively, the method was verified. Downregulation of erg9 resulted in a high accumulation of intracellular farnesol as well as elevated levels of geranylgeraniol and isoprenol. The decreased expression of erg1 as well as terbinafine treatment led to an increased squalene content. Additional analysis of growth medium revealed high farnesyl pyrophosphate levels extruded during erg9 downregulation.


Targeting Ergosterol biosynthesis in Leishmania donovani: essentiality of sterol 14 alpha-demethylase.

  • Laura-Isobel McCall‎ et al.
  • PLoS neglected tropical diseases‎
  • 2015‎

Leishmania protozoan parasites (Trypanosomatidae family) are the causative agents of cutaneous, mucocutaneous and visceral leishmaniasis worldwide. While these diseases are associated with significant morbidity and mortality, there are few adequate treatments available. Sterol 14alpha-demethylase (CYP51) in the parasite sterol biosynthesis pathway has been the focus of considerable interest as a novel drug target in Leishmania. However, its essentiality in Leishmania donovani has yet to be determined. Here, we use a dual biological and pharmacological approach to demonstrate that CYP51 is indispensable in L. donovani. We show via a facilitated knockout approach that chromosomal CYP51 genes can only be knocked out in the presence of episomal complementation and that this episome cannot be lost from the parasite even under negative selection. In addition, we treated wild-type L. donovani and CYP51-deficient strains with 4-aminopyridyl-based inhibitors designed specifically for Trypanosoma cruzi CYP51. While potency was lower than in T. cruzi, these inhibitors had increased efficacy in parasites lacking a CYP51 allele compared to complemented parasites, indicating inhibition of parasite growth via a CYP51-specific mechanism and confirming essentiality of CYP51 in L. donovani. Overall, these results provide support for further development of CYP51 inhibitors for the treatment of visceral leishmaniasis.


Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs.

  • Yong-Qiang Zhang‎ et al.
  • PLoS pathogens‎
  • 2010‎

Ergosterol is an important constituent of fungal membranes. Azoles inhibit ergosterol biosynthesis, although the cellular basis for their antifungal activity is not understood. We used multiple approaches to demonstrate a critical requirement for ergosterol in vacuolar H(+)-ATPase function, which is known to be essential for fungal virulence. Ergosterol biosynthesis mutants of S. cerevisiae failed to acidify the vacuole and exhibited multiple vma(-) phenotypes. Extraction of ergosterol from vacuolar membranes also inactivated V-ATPase without disrupting membrane association of its subdomains. In both S. cerevisiae and the fungal pathogen C. albicans, fluconazole impaired vacuolar acidification, whereas concomitant ergosterol feeding restored V-ATPase function and cell growth. Furthermore, fluconazole exacerbated cytosolic Ca(2+) and H(+) surges triggered by the antimicrobial agent amiodarone, and impaired Ca(2+) sequestration in purified vacuolar vesicles. These findings provide a mechanistic basis for the synergy between azoles and amiodarone observed in vitro. Moreover, we show the clinical potential of this synergy in treatment of systemic fungal infections using a murine model of Candidiasis. In summary, we demonstrate a new regulatory component in fungal V-ATPase function, a novel role for ergosterol in vacuolar ion homeostasis, a plausible cellular mechanism for azole toxicity in fungi, and preliminary in vivo evidence for synergism between two antifungal agents. New insights into the cellular basis of azole toxicity in fungi may broaden therapeutic regimens for patient populations afflicted with systemic fungal infections.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: