Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 3,314 papers

Social ecology of children's vulnerability to environmental pollutants.

  • Bernard Weiss‎ et al.
  • Environmental health perspectives‎
  • 2006‎

The outcomes of exposure to neurotoxic chemicals early in life depend on the properties of both the chemical and the host's environment. When our questions focus on the toxicant, the environmental properties tend to be regarded as marginal and designated as covariates or confounders. Such approaches blur the reality of how the early environment establishes enduring biologic substrates.


Environmental pollutants and their effects on human health.

  • Shilpa S Shetty‎ et al.
  • Heliyon‎
  • 2023‎

Numerous environmental contaminants significantly contribute to human disease, affecting climate change and public and individual health, resulting in increased mortality and morbidity. Because of the scarcity of information regarding pollution exposure from less developed nations with inadequate waste management, higher levels of poverty, and limited adoption of new technology, the relationship between pollutants and health effects needs to be investigated more. A similar situation is present in many developed countries, where solutions are only discovered after the harm has already been done and the necessity for safeguards has subsided. The connection between environmental toxins and health needs to be better understood due to difficulties in quantifying exposure levels and a lack of systematic monitoring. Different pollutants are to blame for both chronic and acute disorders. Additionally, research becomes challenging when disease problems are seen after prolonged exposure. This review aims to discuss the present understanding of the association between environmental toxins and human health in bridging this knowledge gap. The genesis of cancer and the impact of various environmental pollutants on the human body's cardiovascular, respiratory, reproductive, prenatal, and neural health are discussed in this overview.


Insulin resistance and environmental pollutants: experimental evidence and future perspectives.

  • Tine L M Hectors‎ et al.
  • Environmental health perspectives‎
  • 2013‎

The metabolic disruptor hypothesis postulates that environmental pollutants may be risk factors for metabolic diseases. Because insulin resistance is involved in most metabolic diseases and current health care prevention programs predominantly target insulin resistance or risk factors thereof, a critical analysis of the role of pollutants in insulin resistance might be important for future management of metabolic diseases.


Environmental Impact of Pharmaceutical Pollutants: Synergistic Toxicity of Ivermectin and Cypermethrin.

  • Davide Di Paola‎ et al.
  • Toxics‎
  • 2022‎

Veterinary antiparasitic pharmaceuticals as well as pesticides have been detected in surface waters, and they may cause several toxic effects in this environmental compartment. In the present study, we evaluated the toxicity after exposure of different concentration of ivermectin (IVM; 50, 100, and 200 μg L-1) and cypermethrin (CYP; 5, 10, and 25 μg L-1) and the combination of these two compounds at non-toxic concentration (IVM 100 + CYP 5 μg L-1) in zebrafish embryos. Combination of IVM at 100 μg L-1 with CYP at 5 μg L-1 exposure induced hatching delay and malformations at 96 hpf in zebrafish larvae as well as significant induction of cell death in zebrafish larvae. At the same time, the two single concentrations of IVM and CYP did not show a toxic effect on zebrafish development. In conclusion, our study suggests that IVM and CYP show a synergistic effect at common, ineffective concentrations, promoting malformation and cell death in fish development.


Assessing microbial manipulation and environmental pollutants in the pathogenesis of psoriasis.

  • Portia Gough‎ et al.
  • Frontiers in immunology‎
  • 2022‎

The cutaneous microbiome is increasingly recognized as a contributor to skin diseases like atopic dermatitis (AD) and psoriasis. Although traditionally AD and psoriasis have been viewed as having opposing immunologic findings, recent evidence suggests an overlap in ceramide-family lipid production in the protection against symptoms. We recently identified that specific environmental pollutants may drive dysbiosis through direct suppression of ceramide-family lipids produced by health-associated skin bacteria in atopic dermatitis (AD). We further demonstrated that one such bacteria, Roseomonas mucosa, generated significant clinical improvement in AD lasting beyond active treatment via lipid-mediated modulation of tumor necrosis factor (TNF) signaling. To assess the potential preclinical benefit of R. mucosa in psoriasis we assessed for direct effects on surface TNF signaling in cell cultures and identified direct effects on the TNF axis. We also identified preclinical efficacy of R. mucosa treatment in the imiquimod mouse model of psoriasis. Finally, we expanded our previous environmental assessment for psoriasis to include more traditional markers of air quality and found a strong association between disease rates and ambient carbon monoxide (CO), nitrogen dioxide (NO2), and particulate matter (PM). At the current stage this work is speculative but does support consideration of further preclinical models and/or clinical assessments to evaluate any potential for therapeutic benefit through microbial manipulation and/or environmental mitigation.


The environmental fate of organic pollutants through the global microbial metabolism.

  • Manuel J Gómez‎ et al.
  • Molecular systems biology‎
  • 2007‎

The production of new chemicals for industrial or therapeutic applications exceeds our ability to generate experimental data on their biological fate once they are released into the environment. Typically, mixtures of organic pollutants are freed into a variety of sites inhabited by diverse microorganisms, which structure complex multispecies metabolic networks. A machine learning approach has been instrumental to expose a correlation between the frequency of 149 atomic triads (chemotopes) common in organo-chemical compounds and the global capacity of microorganisms to metabolise them. Depending on the type of environmental fate defined, the system can correctly predict the biodegradative outcome for 73-87% of compounds. This system is available to the community as a web server (http://www.pdg.cnb.uam.es/BDPSERVER). The application of this predictive tool to chemical species released into the environment provides an early instrument for tentatively classifying the compounds as biodegradable or recalcitrant. Automated surveys of lists of industrial chemicals currently employed in large quantities revealed that herbicides are the group of functional molecules more difficult to recycle into the biosphere through the inclusive microbial metabolism.


Inhibition of endocytic lipid antigen presentation by common lipophilic environmental pollutants.

  • Manju Sharma‎ et al.
  • Scientific reports‎
  • 2017‎

Environmental pollutants as non-heritable factors are now recognized as triggers for multiple human inflammatory diseases involving T cells. We postulated that lipid antigen presentation mediated by cluster of differentiation 1 (CD1) proteins for T cell activation is susceptible to lipophilic environmental pollutants. To test this notion, we determined whether the common lipophilic pollutants benzo[a]pyrene and diesel exhaust particles impact on the activation of lipid-specific T cells. Our results demonstrated that the expression of CD1a and CD1d proteins, and the activation of CD1a- and CD1d-restricted T cells were sensitively inhibited by benzo[a]pyrene even at the low concentrations detectable in exposed human populations. Similarly, diesel exhaust particles showed a marginal inhibitory effect. Using transcriptomic profiling, we discovered that the gene expression for regulating endocytic and lipid metabolic pathways was perturbed by benzo[a]pyrene. Imaging flow cytometry also showed that CD1a and CD1d proteins were retained in early and late endosomal compartments, respectively, supporting an impaired endocytic lipid antigen presentation for T cell activation upon benzo[a]pyrene exposure. This work conceptually demonstrates that lipid antigen presentation for T cell activation is inhibited by lipophilic pollutants through profound interference with gene expression and endocytic function, likely further disrupting regulatory cytokine secretion and ultimately exacerbating inflammatory diseases.


Influence of agro-environmental pollutants on a biocontrol strain of Bacillus velezensis.

  • Mónika Vörös‎ et al.
  • MicrobiologyOpen‎
  • 2019‎

Metal- and pesticide-tolerant biocontrol agents are preferred in integrated pest management, as such strains can be applied in combination with different pesticides. The Bacillus velezensis strain SZMC 6161J proved to be sensitive to copper, nickel, zinc, and cadmium, while manganese elevated its growth. At concentrations higher than 1 mmol L-1 , zinc and iron inhibited the chymotrypsin-like activity of this strain. In addition, trypsin-like protease and palmitoyl esterase activities were insensitive to all tested heavy metals in the applied concentration range. We studied the effects of some widely used herbicides and fungicides on the growth of this strain. The presence of sulfonylurea herbicides, like bensulfuron-methyl, cinosulfuron, chlorsulfuron, ethoxysulfuron, triasulfuron, and primisulfuron-methyl strongly inhibited the biomass production of the strain even at the concentration of 6.25 mg L-1 . Glyphosate also inhibited the growth above 30 mg L-1 . Similarly, contact fungicides like captan, maneb, mancozeb, and thiram resulted in total inhibition at the concentration as low as 6.25 mg L-1 . Interestingly, the sterol-biosynthesis-inhibiting fungicides imazalil, fenarimol, penconazole, and tebuconazole also proved to be potent inhibitors. Heavy metal- and fungicide-tolerant strains were isolated from the parental strain and their antagonistic abilities were evaluated. There was no substantial difference between the antagonism capability of wild-type strain and the resistant mutants.


Amine Modification of Silica Aerogels/Xerogels for Removal of Relevant Environmental Pollutants.

  • Alyne Lamy-Mendes‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Serious environmental and health problems arise from the everyday release of industrial wastewater effluents. A wide range of pollutants, such as volatile organic compounds, heavy metals or textile dyes, may be efficiently removed by silica materials advanced solutions such as aerogels. This option is related to their exceptional characteristics that favors the adsorption of different contaminants. The aerogels performance can be selectively tuned by an appropriate chemical or physical modification of the aerogel's surface. Therefore, the introduction of amine groups enhances the affinity between different organic and inorganic contaminants and the silica aerogels. In this work, different case studies are reported to investigate and better understand the role of these functional groups in the adsorption process, since the properties of the synthesized aerogels were significantly affected, regarding their microstructure and surface area. In general, an improvement of the removal efficiency after functionalization of aerogels with amine groups was found, with removal efficiencies higher than 90% for lead and Rubi Levafix CA. To explain the adsorption mechanism, both Langmuir and Freundlich models were applied; chemisorption is most likely the sorption type taking place in the studied cases.


Influence of the environmental relative humidity on the inflammatory response of skin model after exposure to various environmental pollutants.

  • Emeline Seurat‎ et al.
  • Environmental research‎
  • 2021‎

The skin is an essential barrier, protecting the body against the environment and its numerous pollutants. Several environmental pollutants are known to affect the skin, inducing premature aging through mechanisms including oxidative stress, inflammation, and impairment of skin functions. Even climate conditions can impact the skin. Therefore, using a Reconstructed Human Epidermis (RHE), we tested the effect of two samples of fine particulate matters (PM0.3-2.5 - one metals-rich sample and the other organic compounds-rich), two Volatile Organic Compounds mixtures (VOCs - from a solvent-based paint and a water-based paint) and Tobacco Smoke (TS). All pollutants affected cellular functionality, but to a lesser extent for the water-based paint VOC. This effect was enhanced when RHE were preconditioned for 2 h by a semi-dry airflow (45% relative humidity) before pollutants application, compared to preconditioning by a humid airflow (90% relative humidity). In the absence of preconditioning, IL-1α, IL-6, IL-8, and RANTES were almost systematically induced by pollutants. When RHE were preconditioned by a semi-dry or humid airflow before being subjected to pollutants, the increase of IL-1α, IL-8, and RANTES falls into two groups. Similarly to RHE not treated with pollutants, RHE treated with VOCs after preconditioning by a semi-dry airflow showed increased IL-1α, IL-8, and RANTES release. On the contrary, RHE treated with PM or TS after preconditioning by a semi-dry airflow show a lower increase in IL-1α, IL-8, and RANTES compared to preconditioning by a humid airflow. The effect of real environmental relative humidity conditions of the air, combined with acute exposure to various environmental pollutants, seemed to relate mainly to structural changes of the skin, determining the outcome of the inflammatory response depending on the physicochemical characteristics of pollutants.


Independent Maternal and Fetal Genetic Effects on Midgestational Circulating Levels of Environmental Pollutants.

  • Michela Traglia‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2017‎

Maternal exposure to environmental pollutants could affect fetal brain development and increase autism spectrum disorder (ASD) risk in conjunction with differential genetic susceptibility. Organohalogen congeners measured in maternal midpregnancy blood samples have recently shown significant, but negative associations with offspring ASD outcome. We report the first large-scale maternal and fetal genetic study of the midpregnancy serum levels of a set of 21 organohalogens in a subset of 790 genotyped women and 764 children collected in California by the Early Markers for Autism (EMA) Project. Levels of PCB (polychlorinated biphenyl) and PBDE (polybrominated diphenyl ether) congeners showed high maternal and fetal estimated SNP-based heritability (h2g ) accounting for 39-99% of the total variance. Genome-wide association analyses identified significant maternal loci for p,p'-DDE (P = 7.8 × 10-11) in the CYP2B6 gene and for BDE-28 (P = 3.2 × 10-8) near the SH3GL2 gene, both involved in xenobiotic and lipid metabolism. Fetal genetic loci contributed to the levels of BDE-100 (P = 4.6 × 10-8) and PCB187 (P = 2.8 × 10-8), near the potential metabolic genes LOXHD1 and PTPRD, previously implicated in neurodevelopment. Negative associations were observed for BDE-100, BDE153, and the sum of PBDEs with ASD, partly explained by genome-wide additive genetic effects that predicted PBDE levels. Our results support genetic control of midgestational biomarkers for environmental exposures by nonoverlapping maternal and fetal genetic determinants, suggesting that future studies of environmental risk factors should take genetic variation into consideration. The independent influence of fetal genetics supports previous hypotheses that fetal genotypes expressed in placenta can influence maternal physiology and the transplacental transfer of organohalogens.


Degradation and Extraction of Organochlorine Pollutants from Environmental Solids under Subcritical Water Conditions.

  • Aaryn D Jones‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

A subcritical water degradation and extraction method was developed to remediate environmental soils contaminated by highly recalcitrant organochlorine pollutants. Hydrogen peroxide was used to effectively decompose organochlorine pollutants under subcritical water conditions. As a method optimization study, the static wet oxidation of chlorophenols was first performed in subcritical water with and without added hydrogen peroxide. Complete oxidation was achieved using an added oxidant, and thus, the oxidation and extraction of chlorophenols from a sand matrix was then attempted. Complete oxidation and extraction with added oxidant were achieved within 30 min at 100 °C. We then investigated the subcritical water degradation and extraction of dieldrin, mirex, and p,p'-DDD. These organochlorine pesticides were not as easily oxidized as the chlorophenols, and the benefit of adding hydrogen peroxide was only clearly observed at 200 °C. Approximately a 20% increase in degradation was noted for each pesticide and insecticide at this temperature. Unfortunately, this difference was not observed with an increase in temperature to 250 °C, except in some cases, where the amount of degradation byproducts was reduced. Dieldrin and p,p'-DDD were essentially destroyed at 250 °C, while all the pesticides and the insecticides were completely removed from the sand at this temperature. The proposed method was then used to remediate a soil sample highly contaminated with DDT. The soil was obtained from the grounds of an old DDT mixing facility in Virginia and has been aging for several decades. Not only was 100% removal of DDT from this soil achieved using the proposed method at 250 °C, but also, the extracted DDT was completely destroyed during the process. The proposed remediation method, therefore, demonstrates a high potential as an efficient and environmentally sound technique for the detoxification of soils.


Global marine pollutants inhibit P-glycoprotein: Environmental levels, inhibitory effects, and cocrystal structure.

  • Sascha C T Nicklisch‎ et al.
  • Science advances‎
  • 2016‎

The world's oceans are a global reservoir of persistent organic pollutants to which humans and other animals are exposed. Although it is well known that these pollutants are potentially hazardous to human and environmental health, their impacts remain incompletely understood. We examined how persistent organic pollutants interact with the drug efflux transporter P-glycoprotein (P-gp), an evolutionarily conserved defense protein that is essential for protection against environmental toxicants. We identified specific congeners of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers that inhibit mouse and human P-gp, and determined their environmental levels in yellowfin tuna from the Gulf of Mexico. In addition, we solved the cocrystal structure of P-gp bound to one of these inhibitory pollutants, PBDE (polybrominated diphenyl ether)-100, providing the first view of pollutant binding to a drug transporter. The results demonstrate the potential for specific binding and inhibition of mammalian P-gp by ubiquitous congeners of persistent organic pollutants present in fish and other foods, and argue for further consideration of transporter inhibition in the assessment of the risk of exposure to these chemicals.


Persistent organic pollutants-environmental risk factors for diabetes mellitus? - A population-based study.

  • Sudha Ramalingam‎ et al.
  • Indian journal of occupational and environmental medicine‎
  • 2021‎

Globally, type-2 diabetes mellitus is increasing in epidemic proportions. A major cause of concern in India is the increasing incidence of cases, especially troubling is the observed increase in younger age groups with no risk factors. New evidence suggests that many environmental factors, such as air pollution, persistent organic pollutants (POPs), and environmental estrogens are implicated as risk factors for type-2 diabetes mellitus. Animal and human epidemiological studies have shown ubiquitous lipophilic substances, including POPs, are frequently associated with type-2 diabetes mellitus. Such studies have not been undertaken in Indian youth.


Cohnella sp. A01 laccase: thermostable, detergent resistant, anti-environmental and industrial pollutants enzyme.

  • Masoomeh Shafiei‎ et al.
  • Heliyon‎
  • 2019‎

Laccase (EC 1.10.3.2; benzenediol; oxygen oxidoreductases) is a multi-copper oxidase that catalyzes the oxidation of phenols, polyphenols, aromatic amines, and different non-phenolic substrates with concomitant reduction of O2 to H2O. Enzymatic oxidation techniques have the potential of implementation in different areas of industrial fields. In this study, the Cohnella sp. A01 laccase gene was cloned into pET-26 (b+) vector and was transformed to E. coli BL21. Then it was purified using His tag affinity (Ni sepharose resin) chromatography. The estimated molecular weight was approximately 60 kDa using SDS-PAGE. The highest enzyme activity and best pH for 2,6-dimethoxyphenol (DMP) oxidation were recorded as 8 at 90 °C respectively. The calculated half-life and kinetic values including Km, Vmax, turn over number (kcat), and catalytic efficiency (kcat/Km) of the enzyme were 106 min at 90 °C and 686 μM, 10.69 U/ml, 20.3 S-, and 0.029 s-1 μM-1, respectively. The DMP was available as the substrate in all the calculations. Enzyme activity enhanced in the presence of Cu2+, NaCl, SDS, n-hexane, Triton X-100, tween 20, and tween 80, significantly. The binding residues were predicted and mapped upon the modeled tertiary structure of identified laccase. The remaining activity and structural properties of Cohnella sp. A01 laccase in extreme conditions such as high temperatures and presence of metals, detergents, and organic solvents suggest the potential of this enzyme in biotechnological and industrial applications. This process has been patented in Iranian Intellectual Property Centre under License No: 91325.


Acrylic Paints: An Atomistic View of Polymer Structure and Effects of Environmental Pollutants.

  • Aysenur Iscen‎ et al.
  • The journal of physical chemistry. B‎
  • 2021‎

Most of the artwork and cultural heritage objects are stored in museums under conditions that are difficult to monitor. While advanced technologies aim to control and prevent the degradation of cultural heritage objects in line with preventive conservation measures, there is much to be learned in terms of the physical processes that lead to the degradation of the synthetic polymers that form the basis of acrylic paints largely used in contemporary art. In museums, stored objects are often exposed to temperature and relative humidity fluctuations as well as airborne pollutants such as volatile organic compounds (VOCs). The glass transition of acrylic paints is below room temperature; while low temperatures may cause cracking, at high temperatures the sticky surface of the paint becomes vulnerable to pollutants. Here we develop fully atomistic models to understand the structure of two types of acrylic copolymers and their interactions with VOCs and water. The structure and properties of acrylic copolymers are slighlty modified by incorporation of a monomer with a longer side chain. With favorable solvation free energies, once absorbed, VOCs and water interact with the polymer side chains to form hydrogen bonds. The cagelike structure of the polymers prevents the VOCs and water to diffuse freely below the glass transition temperature. In addition, our model forms the foundation for developing mesoscopic and continuum models that will allow us to access longer time and length scales to further our understanding of the degradation of artwork.


Influence of prenatal exposure to environmental pollutants on human cord blood levels of glutamate.

  • Aina Palou-Serra‎ et al.
  • Neurotoxicology‎
  • 2014‎

Some chemicals released into the environment, including mercury and some organochlorine compounds (OCs), are suspected to have a key role on subclinical brain dysfunction in childhood. Alteration of the glutamatergic system may be one mechanistic pathway. We aimed to determine whether mercury and seven OCs, including PCBs 138, 153, and 180, DDT and DDE, hexachlorobenzene (HCB), and beta-hexachlorocyclohexane (β-HCH) influence the cord levels of two excitatory amino acids, glutamate and aspartate. Second, we evaluated if this association was mediated by glutamate uptake measured in human placental membranes. The study sample included 40 newborns from a Spanish cohort selected according to cord mercury levels. We determined the content of both amino acids in cord blood samples by means of HPLC and assessed their associations with the contaminants using linear regression analyses, and the effect of the contaminants on glutamate uptake by means of [(3)H]-aspartate binding in human placenta samples. PCB138, β-HCH, and the sum of the three PCBs and seven OCs showed a significant negative association with glutamate levels (decrease of 51, 24, 56 and 54%, respectively, in glutamate levels for each 10-fold increase in the contaminant concentration). Mercury did not show a significant correlation neither with glutamate nor aspartate levels in cord blood, however a compensatory effect between T-Hg and both PCB138, and 4,4'-DDE was observed. The organo-metallic derivative methylmercury completely inhibited glutamate uptake in placenta while PCB138 and β-HCH partially inhibited it (IC50 values: 4.9±0.8 μM, 14.2±1.2 nM and 6.9±2.9 nM, respectively). We conclude that some environmental toxicants may alter the glutamate content in the umbilical cord blood, which might underlie alterations in human development.


In utero exposures to environmental organic pollutants disrupt epigenetic marks linked to fetoplacental development.

  • Maya A Kappil‎ et al.
  • Environmental epigenetics‎
  • 2016‎

While the developing fetus is largely shielded from the external environment through the protective barrier provided by the placenta, it is increasingly appreciated that environmental agents are able to cross and even accumulate in this vital organ for fetal development. To examine the potential influence of environmental pollutants on the placenta, we assessed the relationship between polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) and several epigenetic marks linked to fetoplacental development. We measured IGF2/H19 imprint control region methylation, IGF2 and H19 expression, IGF2 loss of imprinting (LOI) and global DNA methylation levels in placenta (n = 116) collected in a formative research project of the National Children's Study to explore the relationship between these epigenetic marks and the selected organic environmental pollutants. A positive association was observed between global DNA methylation and total PBDE levels (P <0.01) and between H19 expression and total PCB levels (P = 0.04). These findings suggest that differences in specific epigenetic marks linked to fetoplacental development occur in association with some, but not all, measured environmental exposures.


Environmental Remediation of Toxic Organic Pollutants Using Visible-Light-Activated Cu/La/CeO2/GO Nanocomposites.

  • Dhanapal Vasu‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2021‎

Environmental pollution is a major threat that increases day by day due to various activities. A wide variety of organic pollutants enter the environment due to petrochemical activities. Organic contamination can be unsafe, oncogenic, and lethal. Due to environmental issues worldwide, scientists and research communities are focusing their research efforts on this area. For the removal of toxic organic pollutants from the environment, photocatalysis-assisted degradation processes have gained more attention than other advanced oxidation processes (AOPs). In this manuscript, we report a novel photocatalysis of copper and lanthanum incorporating cerium oxide (CeO2) loaded on graphene oxide (Cu/La/CeO2/GO) nanocomposites successfully synthesized by hydrothermal techniques. XRD results showed the presence of dopant ions and a crystalline structure. FESEM images showed that the surface morphology of the synthesized nanocomposites formed a rod-like structure. The highlight of this study is the in-situ synthesis of the novel Cu/La/CeO2/GO nanocomposites, which manifest higher photodegradation of harmful organic dyes (Rhodamine B (RhB), Sunset Yellow (SY), and Cibacron Red (CR)). In Cu/La/CeO2/GO nanocomposites, the dopant materials restrict the rapid recombination of photoinduced electron-hole pairs and enhance the photocatalytic activity. The degradation percentages of RhB, SY, and CR dye solution are 80%, 60%, and 95%, respectively. In summary, the synthesized nanocomposites degrade toxic organic dyes with the help of visible light and are suitable for future industrial applications.


Nutrition can modulate the toxicity of environmental pollutants: implications in risk assessment and human health.

  • Bernhard Hennig‎ et al.
  • Environmental health perspectives‎
  • 2012‎

The paradigm of human risk assessment includes many variables that must be viewed collectively in order to improve human health and prevent chronic disease. The pathology of chronic diseases is complex, however, and may be influenced by exposure to environmental pollutants, a sedentary lifestyle, and poor dietary habits. Much of the emerging evidence suggests that nutrition can modulate the toxicity of environmental pollutants, which may alter human risks associated with toxicant exposures.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: