Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,620 papers

Fan cells in lateral entorhinal cortex directly influence medial entorhinal cortex through synaptic connections in layer 1.

  • Brianna Vandrey‎ et al.
  • eLife‎
  • 2022‎

Standard models for spatial and episodic memory suggest that the lateral entorhinal cortex (LEC) and medial entorhinal cortex (MEC) send parallel independent inputs to the hippocampus, each carrying different types of information. Here, we evaluate the possibility that information is integrated between divisions of the entorhinal cortex prior to reaching the hippocampus. We demonstrate that, in mice, fan cells in layer 2 (L2) of LEC that receive neocortical inputs, and that project to the hippocampal dentate gyrus, also send axon collaterals to layer 1 (L1) of the MEC. Activation of inputs from fan cells evokes monosynaptic glutamatergic excitation of stellate and pyramidal cells in L2 of the MEC, typically followed by inhibition that contains fast and slow components mediated by GABAA and GABAB receptors, respectively. Inputs from fan cells also directly activate interneurons in L1 and L2 of MEC, with synaptic connections from L1 interneurons accounting for slow feedforward inhibition of L2 principal cell populations. The relative strength of excitation and inhibition following fan cell activation differs substantially between neurons and is largely independent of anatomical location. Our results demonstrate that the LEC, in addition to directly influencing the hippocampus, can activate or inhibit major hippocampal inputs arising from the MEC. Thus, local circuits in the superficial MEC may combine spatial information with sensory and higher order signals from the LEC, providing a substrate for integration of 'what' and 'where' components of episodic memories.


Entorhinal Cortex Volume in Antipsychotic-naïve Schizophrenia.

  • Sam P Jose‎ et al.
  • Indian journal of psychological medicine‎
  • 2012‎

Entorhinal cortex (ERC), a multimodal sensory relay station for the hippocampus, is critically involved in learning, emotion, and novelty detection. One of the pathogenetic mechanistic bases in schizophrenia is proposed to involve aberrant information processing in the ERC. Several studies have looked at cytoarchitectural and morphometric changes in the ERC, but results have been inconsistent possibly due to the potential confounding effects of antipsychotic treatment.


Modular Network between Postrhinal Visual Cortex, Amygdala, and Entorhinal Cortex.

  • Andrew M Meier‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2021‎

The postrhinal area (POR) is a known center for integrating spatial with nonspatial visual information and a possible hub for influencing landmark navigation by affective input from the amygdala. This may involve specific circuits within muscarinic acetylcholine receptor 2 (M2)-positive (M2+) or M2- modules of POR that associate inputs from the thalamus, cortex, and amygdala, and send outputs to the entorhinal cortex. Using anterograde and retrograde labeling with conventional and viral tracers in male and female mice, we found that all higher visual areas of the ventral cortical stream project to the amygdala, while such inputs are absent from primary visual cortex and dorsal stream areas. Unexpectedly for the presumed salt-and-pepper organization of mouse extrastriate cortex, tracing results show that inputs from the dorsal lateral geniculate nucleus and lateral posterior nucleus were spatially clustered in layer 1 (L1) and overlapped with M2+ patches of POR. In contrast, input from the amygdala to L1 of POR terminated in M2- interpatches. Importantly, the amygdalocortical input to M2- interpatches in L1 overlapped preferentially with spatially clustered apical dendrites of POR neurons projecting to amygdala and entorhinal area lateral, medial (ENTm). The results suggest that subnetworks in POR, used to build spatial maps for navigation, do not receive direct thalamocortical M2+ patch-targeting inputs. Instead, they involve local networks of M2- interpatches, which are influenced by affective information from the amygdala and project to ENTm, whose cells respond to visual landmark cues for navigation.SIGNIFICANCE STATEMENT A central purpose of visual object recognition is identifying the salience of objects and approaching or avoiding them. However, it is not currently known how the visual cortex integrates the multiple streams of information, including affective and navigational cues, which are required to accomplish this task. We find that in a higher visual area, the postrhinal cortex, the cortical sheet is divided into interdigitating modules receiving distinct inputs from visual and emotion-related sources. One of these modules is preferentially connected with the amygdala and provides outputs to entorhinal cortex, constituting a processing stream that may assign emotional salience to objects and landmarks for the guidance of goal-directed navigation.


Minute-scale oscillatory sequences in medial entorhinal cortex.

  • Soledad Gonzalo Cogno‎ et al.
  • Nature‎
  • 2024‎

The medial entorhinal cortex (MEC) hosts many of the brain's circuit elements for spatial navigation and episodic memory, operations that require neural activity to be organized across long durations of experience1. Whereas location is known to be encoded by spatially tuned cell types in this brain region2,3, little is known about how the activity of entorhinal cells is tied together over time at behaviourally relevant time scales, in the second-to-minute regime. Here we show that MEC neuronal activity has the capacity to be organized into ultraslow oscillations, with periods ranging from tens of seconds to minutes. During these oscillations, the activity is further organized into periodic sequences. Oscillatory sequences manifested while mice ran at free pace on a rotating wheel in darkness, with no change in location or running direction and no scheduled rewards. The sequences involved nearly the entire cell population, and transcended epochs of immobility. Similar sequences were not observed in neighbouring parasubiculum or in visual cortex. Ultraslow oscillatory sequences in MEC may have the potential to couple neurons and circuits across extended time scales and serve as a template for new sequence formation during navigation and episodic memory formation.


Functional topography of the human entorhinal cortex.

  • Tobias Navarro Schröder‎ et al.
  • eLife‎
  • 2015‎

Despite extensive research on the role of the rodent medial and lateral entorhinal cortex (MEC/LEC) in spatial navigation, memory and related disease, their human homologues remain elusive. Here, we combine high-field functional magnetic resonance imaging at 7 T with novel data-driven and model-based analyses to identify corresponding subregions in humans based on the well-known global connectivity fingerprints in rodents and sensitivity to spatial and non-spatial information. We provide evidence for a functional division primarily along the anteroposterior axis. Localising the human homologue of the rodent MEC and LEC has important implications for translating studies on the hippocampo-entorhinal memory system from rodents to humans.


Functional subregions of the human entorhinal cortex.

  • Anne Maass‎ et al.
  • eLife‎
  • 2015‎

The entorhinal cortex (EC) is the primary site of interactions between the neocortex and hippocampus. Studies in rodents and nonhuman primates suggest that EC can be divided into subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC) and with hippocampal subfields along the proximo-distal axis. Here, we used high-resolution functional magnetic resonance imaging at 7 Tesla to identify functional subdivisions of the human EC. In two independent datasets, PRC showed preferential intrinsic functional connectivity with anterior-lateral EC and PHC with posterior-medial EC. These EC subregions, in turn, exhibited differential connectivity with proximal and distal subiculum. In contrast, connectivity of PRC and PHC with subiculum followed not only a proximal-distal but also an anterior-posterior gradient. Our data provide the first evidence that the human EC can be divided into functional subdivisions whose functional connectivity closely parallels the known anatomical connectivity patterns of the rodent and nonhuman primate EC.


Prenatal development of the human entorhinal cortex.

  • Goran Šimić‎ et al.
  • The Journal of comparative neurology‎
  • 2022‎

Little is known about the development of the human entorhinal cortex (EC), a major hub in a widespread network for learning and memory, spatial navigation, high-order processing of object information, multimodal integration, attention and awareness, emotion, motivation, and perception of time. We analyzed a series of 20 fetal and two adult human brains using Nissl stain, acetylcholinesterase (AChE) histochemistry, and immunocytochemistry for myelin basic protein (MBP), neuronal nuclei antigen (NeuN), a pan-axonal neurofilament marker, and synaptophysin, as well as postmortem 3T MRI. In comparison with other parts of the cerebral cortex, the cytoarchitectural differentiation of the EC begins remarkably early, in the 10th week of gestation (w.g.). The differentiation occurs in a superficial magnocellular layer in the deep part of the marginal zone, accompanied by cortical plate (CP) condensation and multilayering of the deep part of CP. These processes last until the 13-14th w.g. At 14 w.g., the superficial lamina dissecans (LD) is visible, which divides the CP into the lamina principalis externa (LPE) and interna (LPI). Simultaneously, the rostral LPE separates into vertical cell-dense islands, whereas in the LPI, the deep LD emerges as a clear acellular layer. In the 16th w.g., the LPE remodels into vertical cell-dense and cell-sparse zones with a caudorostral gradient. At 20 w.g., NeuN immunoreactivity is most pronounced in the islands of layer II cells, whereas migration and differentiation inside-out gradients are seen simultaneously in both the upper (LPE) and the lower (LPI) pyramidal layers. At this stage, the EC adopts for the first time an adult-like cytoarchitectural organization, the superficial LD becomes discernible by 3T MRI, MBP-expressing oligodendrocytes first appear in the fimbria and the perforant path (PP) penetrates the subiculum to reach its molecular layer and travels along through the Cornu Ammonis fields to reach the suprapyramidal blade of the dentate gyrus, whereas the entorhinal-dentate branch perforates the hippocampal sulcus about 2-3 weeks later. The first AChE reactivity appears as longitudinal stripes at 23 w.g. in layers I and II of the rostrolateral EC and then also as AChE-positive in-growing fibers in islands of superficial layer III and layer II neurons. At 40 w.g., myelination of the PP starts as patchy MBP-immunoreactive oligodendrocytes and their processes. Our results refute the possibility of an inside-out pattern of the EC development and support the key role of layer II prospective stellate cells in the EC lamination. As the early cytoarchitectural differentiation of the EC is paralleled by the neurochemical development, these developmental milestones in EC structure and connectivity have implications for understanding its normal function, including its puzzling modular organization and potential contribution to consciousness content (awareness), as well as for its insufficiently explored deficits in developmental, psychiatric, and degenerative brain disorders.


Entorhinal cortex of the monkey: VII. intrinsic connections.

  • James J Chrobak‎ et al.
  • The Journal of comparative neurology‎
  • 2007‎

The organization of intrinsic connections within the entorhinal cortex was investigated in Macaca fascicularis monkeys. Anterograde tracers ((3)H-amino acids, Phaseolus vulgaris-leucoagglutinin, biotinylated dextran amine, or Fluoro-Ruby) were injected into the deep or superficial layers of the entorhinal cortex in 24 animals. These injections labeled extensive intrinsic projections that terminated throughout all layers of the entorhinal cortex. Labeling was typically continuous i.e., there was no evidence of a patchy or columnar organization. Each injection produced a rostrocaudally oriented band of labeled fibers and terminals that extended for one-third to one-half of the length of the entorhinal cortex. The more extensive distributions of labeled fibers were more typical of caudally placed injection sites. Taken together, the projections identified at least two mediolaterally differentiated bands: a lateral band that encompasses fields Elr, Elc, and the most lateral aspect of fields Ec and Ecl and a wider, medially situated band that encompasses much of fields Er, Ei, Ec, and Ecl. We obtained some evidence that field Eo constitutes a third, very medially placed band. The rostrocaudal organization of labeled fibers and the extent of labeling within the deep and superficial layers were unrelated to the laminar position of the injection. These data suggest that intrinsic associatonal connections in the monkey entorhinal cortex are organized into separate associational networks. Our findings are discussed with reference to the role of interlaminar connections in mediating physiological interactions between the neocortex and the hippocampus.


Excitatory actions of NMDA receptor antagonists in rat entorhinal cortex and cultured entorhinal cortical neurons.

  • J Väisänen‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 1999‎

We have characterized excitatory effects of non-competitive NMDA receptor antagonists MK-801, PCP, and ketamine in the rat entorhinal cortex and in cultured primary entorhinal cortical neurons using expression of immediate early gene c-fos as an indicator. NMDA receptor antagonists produced a strong and dose-dependent increase in c-fos mRNA and protein expression confined to neurons in the layer III of the caudal entorhinal cortex. Induction of c-fos mRNA is delayed and it is inhibited by antipsychotic drugs. Cultured entorhinal neurons are killed by high doses of MK-801 and PCP but c-fos expression is not induced in these neurons indicating that this in vitro model does not fully replicate the in vivo effects of PCP-like drugs in the entorhinal cortex. Excitatory effects of the NMDA receptor antagonists may be connected with the psychotropic side effects of these drugs and might become a useful model system to investigate neurobiology of psychosis.


Stereological analysis of the rhesus monkey entorhinal cortex.

  • Olivia Piguet‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

The entorhinal cortex is a prominent structure of the medial temporal lobe, which plays a pivotal role in the interaction between the neocortex and the hippocampal formation in support of declarative and spatial memory functions. We implemented design-based stereological techniques to provide estimates of neuron numbers, neuronal soma size, and volume of different layers and subdivisions of the entorhinal cortex in adult rhesus monkeys (Macaca mulatta; 5-9 years of age). These data corroborate the structural differences between different subdivisions of the entorhinal cortex, which were shown in previous connectional and cytoarchitectonic studies. In particular, differences in the number of neurons contributing to distinct afferent and efferent hippocampal pathways suggest not only that different types of information may be more or less segregated between caudal and rostral subdivisions, but also, and perhaps most importantly, that the nature of the interaction between the entorhinal cortex and the rest of the hippocampal formation may vary between different subdivisions. We compare our quantitative data in monkeys with previously published stereological data for the rat and human, in order to provide a perspective on the relative development and structural organization of the main subdivisions of the entorhinal cortex in two model organisms widely used to decipher the basic functional principles of the human medial temporal lobe memory system. Altogether, these data provide fundamental information on the number of functional units that comprise the entorhinal-hippocampal circuits and should be considered in order to build realistic models of the medial temporal lobe memory system.


Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex.

  • Xiao Li‎ et al.
  • Cell research‎
  • 2014‎

Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex.


Does the entorhinal cortex use the Fourier transform?

  • Jeff Orchard‎ et al.
  • Frontiers in computational neuroscience‎
  • 2013‎

Some neurons in the entorhinal cortex (EC) fire bursts when the animal occupies locations organized in a hexagonal grid pattern in their spatial environment. Place cells have also been observed, firing bursts only when the animal occupies a particular region of the environment. Both of these types of cells exhibit theta-cycle modulation, firing bursts in the 4-12 Hz range. Grid cells fire bursts of action potentials that precess with respect to the theta cycle, a phenomenon dubbed "theta precession." Various models have been proposed to explain these phenomena, and how they relate to navigation. Among the most promising are the oscillator interference models. The bank-of-oscillators model proposed by Welday et al. (2011) exhibits all these features. However, their simulations are based on theoretical oscillators, and not implemented entirely with spiking neurons. We extend their work in a number of ways. First, we place the oscillators in a frequency domain and reformulate the model in terms of Fourier theory. Second, this perspective suggests a division of labor for implementing spatial maps: position vs. map layout. The animal's position is encoded in the phases of the oscillators, while the spatial map shape is encoded implicitly in the weights of the connections between the oscillators and the read-out nodes. Third, it reveals that the oscillator phases all need to conform to a linear relationship across the frequency domain. Fourth, we implement a partial model of the EC using spiking leaky integrate-and-fire (LIF) neurons. Fifth, we devise new coupling mechanisms, enlightened by the global phase constraint, and show they are capable of keeping spiking neural oscillators in consistent formation. Our model demonstrates place cells, grid cells, and phase precession. The Fourier model also gives direction for future investigations, such as integrating sensory feedback to combat drift, or explaining why grid cells exist at all.


Lateral Entorhinal Cortex Lesions Impair Local Spatial Frameworks.

  • Maneesh V Kuruvilla‎ et al.
  • Frontiers in systems neuroscience‎
  • 2017‎

A prominent theory in the neurobiology of memory processing is that episodic memory is supported by contextually gated spatial representations in the hippocampus formed by combining spatial information from medial entorhinal cortex (MEC) with non-spatial information from lateral entorhinal cortex (LEC). However, there is a growing body of evidence from lesion and single-unit recording studies in rodents suggesting that LEC might have a role in encoding space, particularly the current and previous locations of objects within the local environment. Landmarks, both local and global, have been shown to control the spatial representations hypothesized to underlie cognitive maps. Consequently, it has recently been suggested that information processing within this network might be organized with reference to spatial scale with LEC and MEC providing information about local and global spatial frameworks respectively. In the present study, we trained animals to search for food using either a local or global spatial framework. Animals were re-tested on both tasks after receiving excitotoxic lesions of either the MEC or LEC. LEC lesioned animals were impaired in their ability to learn a local spatial framework task. LEC lesioned animals were also impaired on an object recognition (OR) task involving multiple local features but unimpaired at recognizing a single familiar object. Together, this suggests that LEC is involved in associating features of the local environment. However, neither LEC nor MEC lesions impaired performance on the global spatial framework task.


Functional network topography of the medial entorhinal cortex.

  • Horst A Obenhaus‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

The medial entorhinal cortex (MEC) creates a map of local space, based on the firing patterns of grid, head-direction (HD), border, and object-vector (OV) cells. How these cell types are organized anatomically is debated. In-depth analysis of this question requires collection of precise anatomical and activity data across large populations of neurons during unrestrained behavior, which neither electrophysiological nor previous imaging methods fully afford. Here, we examined the topographic arrangement of spatially modulated neurons in the superficial layers of MEC and adjacent parasubiculum using miniaturized, portable two-photon microscopes, which allow mice to roam freely in open fields. Grid cells exhibited low levels of co-occurrence with OV cells and clustered anatomically, while border, HD, and OV cells tended to intermingle. These data suggest that grid cell networks might be largely distinct from those of border, HD, and OV cells and that grid cells exhibit strong coupling among themselves but weaker links to other cell types.


Stimulation of entorhinal cortex-dentate gyrus circuitry is antidepressive.

  • Sanghee Yun‎ et al.
  • Nature medicine‎
  • 2018‎

Major depressive disorder (MDD) is considered a 'circuitopathy', and brain stimulation therapies hold promise for ameliorating MDD symptoms, including hippocampal dysfunction. It is unknown whether stimulation of upstream hippocampal circuitry, such as the entorhinal cortex (Ent), is antidepressive, although Ent stimulation improves learning and memory in mice and humans. Here we show that molecular targeting (Ent-specific knockdown of a psychosocial stress-induced protein) and chemogenetic stimulation of Ent neurons induce antidepressive-like effects in mice. Mechanistically, we show that Ent-stimulation-induced antidepressive-like behavior relies on the generation of new hippocampal neurons. Thus, controlled stimulation of Ent hippocampal afferents is antidepressive via increased hippocampal neurogenesis. These findings emphasize the power and potential of Ent glutamatergic afferent stimulation-previously well-known for its ability to influence learning and memory-for MDD treatment.


Phase precession in the human hippocampus and entorhinal cortex.

  • Salman E Qasim‎ et al.
  • Cell‎
  • 2021‎

Knowing where we are, where we have been, and where we are going is critical to many behaviors, including navigation and memory. One potential neuronal mechanism underlying this ability is phase precession, in which spatially tuned neurons represent sequences of positions by activating at progressively earlier phases of local network theta oscillations. Based on studies in rodents, researchers have hypothesized that phase precession may be a general neural pattern for representing sequential events for learning and memory. By recording human single-neuron activity during spatial navigation, we show that spatially tuned neurons in the human hippocampus and entorhinal cortex exhibit phase precession. Furthermore, beyond the neural representation of locations, we show evidence for phase precession related to specific goal states. Our findings thus extend theta phase precession to humans and suggest that this phenomenon has a broad functional role for the neural representation of both spatial and non-spatial information.


Entorhinal cortex directs learning-related changes in CA1 representations.

  • Christine Grienberger‎ et al.
  • Nature‎
  • 2022‎

Learning-related changes in brain activity are thought to underlie adaptive behaviours1,2. For instance, the learning of a reward site by rodents requires the development of an over-representation of that location in the hippocampus3-6. How this learning-related change occurs remains unknown. Here we recorded hippocampal CA1 population activity as mice learned a reward location on a linear treadmill. Physiological and pharmacological evidence suggests that the adaptive over-representation required behavioural timescale synaptic plasticity (BTSP)7. BTSP is known to be driven by dendritic voltage signals that we proposed were initiated by input from entorhinal cortex layer 3 (EC3). Accordingly, the CA1 over-representation was largely removed by optogenetic inhibition of EC3 activity. Recordings from EC3 neurons revealed an activity pattern that could provide an instructive signal directing BTSP to generate the over-representation. Consistent with this function, our observations show that exposure to a second environment possessing a prominent reward-predictive cue resulted in both EC3 activity and CA1 place field density that were more elevated at the cue than at the reward. These data indicate that learning-related changes in the hippocampus are produced by synaptic plasticity directed by an instructive signal from the EC3 that seems to be specifically adapted to the behaviourally relevant features of the environment.


Mapping sequence structure in the human lateral entorhinal cortex.

  • Jacob Ls Bellmund‎ et al.
  • eLife‎
  • 2019‎

Remembering event sequences is central to episodic memory and presumably supported by the hippocampal-entorhinal region. We previously demonstrated that the hippocampus maps spatial and temporal distances between events encountered along a route through a virtual city (Deuker et al., 2016), but the content of entorhinal mnemonic representations remains unclear. Here, we demonstrate that multi-voxel representations in the anterior-lateral entorhinal cortex (alEC) - the human homologue of the rodent lateral entorhinal cortex - specifically reflect the temporal event structure after learning. Holistic representations of the sequence structure related to memory recall and the timeline of events could be reconstructed from entorhinal multi-voxel patterns. Our findings demonstrate representations of temporal structure in the alEC; dovetailing with temporal information carried by population signals in the lateral entorhinal cortex of navigating rodents and alEC activations during temporal memory retrieval. Our results provide novel evidence for the role of the alEC in representing time for episodic memory.


Lateral entorhinal cortex subpopulations represent experiential epochs surrounding reward.

  • John B Issa‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

During goal-directed navigation, "what" information, which describes the experiences occurring in periods surrounding a reward, can be combined with spatial "where" information to guide behavior and form episodic memories1,2. This integrative process is thought to occur in the hippocampus3, which receives spatial information from the medial entorhinal cortex (MEC)4; however, the source of the "what" information and how it is represented is largely unknown. Here, by establishing a novel imaging method, we show that the lateral entorhinal cortex (LEC) of mice represents key experiential epochs during a reward-based navigation task. We discover a population of neurons that signals goal approach and a separate population of neurons that signals goal departure. A third population of neurons signals reward consumption. When reward location is moved, these populations immediately shift their respective representations of each experiential epoch relative to reward, while optogenetic inhibition of LEC disrupts learning of the new reward location. Together, these results indicate the LEC provides a stable code of experiential epochs surrounding and including reward consumption, providing reward-centric information to contextualize the spatial information carried by the MEC. Such parallel representations are well-suited for generating episodic memories of rewarding experiences and guiding flexible and efficient goal-directed navigation5-7.


Interneurons spark seizure-like activity in the entorhinal cortex.

  • Maxime Lévesque‎ et al.
  • Neurobiology of disease‎
  • 2016‎

Excessive neuronal synchronization is presumably involved in epileptiform synchronization. However, the respective roles played by interneurons (GABAergic) and principal (glutamatergic) cells during interictal and ictal discharges remain unclear. Here, we employed tetrode wire recordings to establish the involvement of these two cell types in 4-aminopyridine-induced interictal- and low-voltage fast (LVF) onset ictal-like discharges in the rat entorhinal cortex in an in vitro slice preparation. We recorded a total of 90 single units (69 putative interneurons, 17 putative principal and 4 unclassified cells) from 36 slices, and found that: (i) interneurons (66.7%) were more likely to fire during interictal discharges than principal cells (35.3%); (ii) interneuron activity increased shortly before LVF ictal onset, whereas principal cell activity did not change; (iii) interneurons and principal cells fired at high rates throughout the tonic phase of the ictal discharge; however, (iv) only interneurons showed phase-locked relationship with LVF activity at 5-15Hz during the tonic phase. Finally, the association of interneuron firing with interictal discharges was maintained during blockade of ionotropic glutamatergic transmission. Our findings demonstrate the prominent involvement of interneurons in interictal discharge generation and in the transition to LVF ictal activity in this in vitro model of epileptiform synchronization.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: