Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 843 papers

Human Endogenous Retroviruses in Glioblastoma Multiforme.

  • Zihao Yuan‎ et al.
  • Microorganisms‎
  • 2021‎

Glioblastoma multiforme (GBM) is the most aggressive and deadly brain tumor. It is primarily diagnosed in the elderly and has a 5-year survival rate of less than 6% even with the most aggressive therapies. The lack of biomarkers has made the development of immunotherapy for GBM challenging. Human endogenous retroviruses (HERVs) are a group of viruses with long terminal repeat (LTR) elements, which are believed to be relics from ancient viral infections. Recent studies have found that those repetitive elements play important roles in regulating various biological processes. The differentially expressed LTR elements from HERVs are potential biomarkers for immunotherapy to treat GBM. However, the understanding of the LTR element expression in GBM is greatly lacking.


Endogenous retroviruses in the human genome sequence.

  • D J Griffiths‎
  • Genome biology‎
  • 2001‎

The human genome contains many endogenous retroviral sequences, and these have been suggested to play important roles in a number of physiological and pathological processes. Can the draft human genome sequences help us to define the role of these elements more closely?


A large number of the human microRNAs target lentiviruses, retroviruses, and endogenous retroviruses.

  • Shazia T Hakim‎ et al.
  • Biochemical and biophysical research communications‎
  • 2008‎

Retroelements (including transposons, retrotransposons, retroviruses, and lentiviruses) make up a significant portion of eukaryotic genomes. Given their ability to mutate genes these mobile elements always present a threat to the integrity of the host genomes. Recent studies have revealed complex molecular mechanisms that silence the mutagenic ability of these RE as well strategically express the pieces of the incorporated RE that are utilized to silence human endogenous retroviruses (HERVs) or invading exogenous retroviruses (IERV). We have hypothesized that small endogenous RNA originally evolved to quell "foreign" IERV-genes and subsequently emerged into elaborate silencing systems that include RNA interference, miRNA-based gene regulation and other gene silencing mechanisms. Here, we present evidence that the replication of complex RE are most likely silenced or regulated by homologous miRNA that are found as a part of the cellular repertoire. We analyzed Homo sapiens miRNAs for possible target genetic sequences in selected HERVs and IERV found in humans and other large primates. We identified several miRNAs that have >80% sequence homology with human HERVs; -L, -W, and -K, and IERV like SIVcpz, HTLV-1, and HTLV-2. We found an inverse correlation between the numbers and relative degree of homology of miRNAs to the relative replication capacity of a specific RE. Therefore, larger numbers of miRNAs with greater degree of homology are found against the least active RE and the least numbers of miRNAs with smaller degree of homology are found against the most active RE (i.e. HERV-K). Implications of these observations in RE disease and therapy are discussed.


Reactivated endogenous retroviruses promote protein aggregate spreading.

  • Shu Liu‎ et al.
  • Nature communications‎
  • 2023‎

Prion-like spreading of protein misfolding is a characteristic of neurodegenerative diseases, but the exact mechanisms of intercellular protein aggregate dissemination remain unresolved. Evidence accumulates that endogenous retroviruses, remnants of viral germline infections that are normally epigenetically silenced, become upregulated in neurodegenerative diseases such as amyotrophic lateral sclerosis and tauopathies. Here we uncover that activation of endogenous retroviruses affects prion-like spreading of proteopathic seeds. We show that upregulation of endogenous retroviruses drastically increases the dissemination of protein aggregates between cells in culture, a process that can be inhibited by targeting the viral envelope protein or viral protein processing. Human endogenous retrovirus envelopes of four different clades also elevate intercellular spreading of proteopathic seeds, including pathological Tau. Our data support a role of endogenous retroviruses in protein misfolding diseases and suggest that antiviral drugs could represent promising candidates for inhibiting protein aggregate spreading.


Evolution and phylogeny of insect endogenous retroviruses.

  • C Terzian‎ et al.
  • BMC evolutionary biology‎
  • 2001‎

The genome of invertebrates is rich in retroelements which are structurally reminiscent of the retroviruses of vertebrates. Those containing three open reading frames (ORFs), including an env-like gene, may well be considered as endogenous retroviruses. Further support to this similarity has been provided by the ability of the env-like gene of DmeGypV (the Gypsy endogenous retrovirus of Drosophila melanogaster) to promote infection of Drosophila cells by a pseudotyped vertebrate retrovirus vector.


Human Endogenous Retroviruses and Type 1 Diabetes.

  • Sandrine Levet‎ et al.
  • Current diabetes reports‎
  • 2019‎

The aim of this review is to discuss recent data pointing at an involvement of human endogenous retroviruses (HERVs) in type 1 diabetes (T1D) onset and progression.


Hijacking of transcriptional condensates by endogenous retroviruses.

  • Vahid Asimi‎ et al.
  • Nature genetics‎
  • 2022‎

Most endogenous retroviruses (ERVs) in mammals are incapable of retrotransposition; therefore, why ERV derepression is associated with lethality during early development has been a mystery. Here, we report that rapid and selective degradation of the heterochromatin adapter protein TRIM28 triggers dissociation of transcriptional condensates from loci encoding super-enhancer (SE)-driven pluripotency genes and their association with transcribed ERV loci in murine embryonic stem cells. Knockdown of ERV RNAs or forced expression of SE-enriched transcription factors rescued condensate localization at SEs in TRIM28-degraded cells. In a biochemical reconstitution system, ERV RNA facilitated partitioning of RNA polymerase II and the Mediator coactivator into phase-separated droplets. In TRIM28 knockout mouse embryos, single-cell RNA-seq analysis revealed specific depletion of pluripotent lineages. We propose that coding and noncoding nascent RNAs, including those produced by retrotransposons, may facilitate 'hijacking' of transcriptional condensates in various developmental and disease contexts.


Unexpected diversity and expression of avian endogenous retroviruses.

  • Mohan Bolisetty‎ et al.
  • mBio‎
  • 2012‎

Endogenous retroviruses (ERVs) were identified and characterized in three avian genomes to gain insight into early retroviral evolution. Using the computer program RetroTector to detect relatively intact ERVs, we identified 500 ERVs in the chicken genome, 150 in the turkey genome, and 1,200 in the zebra finch genome. Previous studies suggested that endogenous alpharetroviruses were present in chicken genomes. In this analysis, a small number of alpharetroviruses were seen in the chicken and turkey genomes; however, these were greatly outnumbered by beta-like, gamma-like, and alphabeta proviruses. While the avian ERVs belonged to the same major groups as mammalian ERVs, they were more heterogeneous. In particular, the beta-like viruses revealed an evolutionary continuum with the gradual acquisition and loss of betaretroviral markers and a transition from beta to alphabeta and then to alpharetroviruses. Thus, it appears that birds may resemble a melting pot for early ERV evolution. Many of the ERVs were integrated in clusters on chromosomes, often near centromeres. About 25% of the chicken ERVs were in or near cellular transcription units; this is nearly random. The majority of these integrations were in the sense orientation in introns. A higher-than-random number of integrations were >100 kb from the nearest gene. Deep-sequencing studies of chicken embryo fibroblasts revealed that about 20% of the 500 ERVs were transcribed and translated. A subset of these were also transcribed in vivo in chickens, showing tissue-specific patterns of expression. IMPORTANCE Studies of avian endogenous retroviruses (ERVs) have given us a glimpse of an earlier retroviral world. Three different classes of ERVs were observed with many features of mammalian retroviruses, as well as some important differences. Many avian ERVs were transcribed and translated.


Antibodies against endogenous retroviruses promote lung cancer immunotherapy.

  • Kevin W Ng‎ et al.
  • Nature‎
  • 2023‎

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Endogenous retroviruses of non-avian/mammalian vertebrates illuminate diversity and deep history of retroviruses.

  • Xiaoyu Xu‎ et al.
  • PLoS pathogens‎
  • 2018‎

The deep history and early diversification of retroviruses remains elusive, largely because few retroviruses have been characterized in vertebrates other than mammals and birds. Endogenous retroviruses (ERVs) documented past retroviral infections and thus provide 'molecular fossils' for studying the deep history of retroviruses. Here we perform a comprehensive phylogenomic analysis of ERVs within the genomes of 92 non-avian/mammalian vertebrates, including 72 fishes, 4 amphibians, and 16 reptiles. We find that ERVs are present in all the genomes of jawed vertebrates, revealing the ubiquitous presence of ERVs in jawed vertebrates. We identify a total of >8,000 ERVs and reconstruct ~450 complete or partial ERV genomes, which dramatically expands the phylogenetic diversity of retroviruses and suggests that the diversity of exogenous retroviruses might be much underestimated in non-avian/mammalian vertebrates. Phylogenetic analyses show that retroviruses cluster into five major groups with different host distributions, providing important insights into the classification and diversification of retroviruses. Moreover, we find retroviruses mainly underwent frequent host switches in non-avian/mammalian vertebrates, with exception of spumavirus-related viruses that codiverged with their ray-finned fish hosts. Interestingly, ray-finned fishes and turtles appear to serve as unappreciated hubs for the transmission of retroviruses. Finally, we find retroviruses underwent many independent water-land transmissions, indicating the water-land interface is not a strict barrier for retrovirus transmission. Our analyses provide unprecedented insights into and valuable resources for studying the diversification, key evolutionary transitions, and macroevolution of retroviruses.


Resurrection of endogenous retroviruses during aging reinforces senescence.

  • Xiaoqian Liu‎ et al.
  • Cell‎
  • 2023‎

Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.


Resurrection of endogenous retroviruses in antibody-deficient mice.

  • George R Young‎ et al.
  • Nature‎
  • 2012‎

The mammalian host has developed a long-standing symbiotic relationship with a considerable number of microbial species. These include the microbiota on environmental surfaces, such as the respiratory and gastrointestinal tracts, and also endogenous retroviruses (ERVs), comprising a substantial fraction of the mammalian genome. The long-term consequences for the host of interactions with these microbial species can range from mutualism to parasitism and are not always completely understood. The potential effect of one microbial symbiont on another is even less clear. Here we study the control of ERVs in the commonly used C57BL/6 (B6) mouse strain, which lacks endogenous murine leukaemia viruses (MLVs) able to replicate in murine cells. We demonstrate the spontaneous emergence of fully infectious ecotropic MLV in B6 mice with a range of distinct immune deficiencies affecting antibody production. These recombinant retroviruses establish infection of immunodeficient mouse colonies, and ultimately result in retrovirus-induced lymphomas. Notably, ERV activation in immunodeficient mice is prevented in husbandry conditions associated with reduced or absent intestinal microbiota. Our results shed light onto a previously unappreciated role for immunity in the control of ERVs and provide a potential mechanistic link between immune activation by microbial triggers and a range of pathologies associated with ERVs, including cancer.


Epigenetic interplay between mouse endogenous retroviruses and host genes.

  • Rita Rebollo‎ et al.
  • Genome biology‎
  • 2012‎

Transposable elements are often the targets of repressive epigenetic modifications such as DNA methylation that, in theory, have the potential to spread toward nearby genes and induce epigenetic silencing. To better understand the role of DNA methylation in the relationship between transposable elements and genes, we assessed the methylation state of mouse endogenous retroviruses (ERVs) located near genes.


Identification, characterization and comparative genomics of chimpanzee endogenous retroviruses.

  • Nalini Polavarapu‎ et al.
  • Genome biology‎
  • 2006‎

Retrotransposons, the most abundant and widespread class of eukaryotic transposable elements, are believed to play a significant role in mutation and disease and to have contributed significantly to the evolution of genome structure and function. The recent sequencing of the chimpanzee genome is providing an unprecedented opportunity to study the functional significance of these elements in two closely related primate species and to better evaluate their role in primate evolution.


Locus specific human endogenous retroviruses reveal new lymphoma subtypes.

  • Bhavya Singh‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The heterogeneity of cancers are driven by diverse mechanisms underlying oncogenesis such as differential 'cell-of-origin' (COO) progenitors, mutagenesis, and viral infections. Classification of B-cell lymphomas have been defined by considering these characteristics. However, the expression and contribution of transposable elements (TEs) to B cell lymphoma oncogenesis or classification have been overlooked. We hypothesized that incorporating TE signatures would increase the resolution of B-cell identity during healthy and malignant conditions. Here, we present the first comprehensive, locus-specific characterization of TE expression in benign germinal center (GC) B-cells, diffuse large B-cell lymphoma (DLBCL), Epstein-Barr virus (EBV)-positive and EBV-negative Burkitt lymphoma (BL), and follicular lymphoma (FL). Our findings demonstrate unique human endogenous retrovirus (HERV) signatures in the GC and lymphoma subtypes whose activity can be used in combination with gene expression to define B-cell lineage in lymphoid malignancies, highlighting the potential of retrotranscriptomic analyses as a tool in lymphoma classification, diagnosis, and the identification of novel treatment groups.


Endogenous retroviruses mobilized during friend murine leukemia virus infection.

  • Stefano Boi‎ et al.
  • Virology‎
  • 2016‎

We have demonstrated in a mouse model that infection with a retrovirus can lead not only to the generation of recombinants between exogenous and endogenous gammaretrovirus, but also to the mobilization of endogenous proviruses by pseudotyping entire polytropic proviral transcripts and facilitating their infectious spread to new cells. However, the frequency of this occurrence, the kinetics, and the identity of mobilized endogenous proviruses was unclear. Here we find that these mobilized transcripts are detected after only one day of infection. They predominate over recombinant polytropic viruses early in infection, persist throughout the course of disease and are comprised of multiple different polytropic proviruses. Other endogenous retroviral elements such as intracisternal A particles (IAPs) were not detected. The integration of the endogenous transcripts into new cells could result in loss of transcriptional control and elevated expression which may facilitate pathogenesis, perhaps by contributing to the generation of polytropic recombinant viruses.


Endogenous retroviruses drive species-specific germline transcriptomes in mammals.

  • Akihiko Sakashita‎ et al.
  • Nature structural & molecular biology‎
  • 2020‎

Gene regulation in the germline ensures the production of high-quality gametes, long-term maintenance of the species and speciation. Male germline transcriptomes undergo dynamic changes after the mitosis-to-meiosis transition and have been subject to evolutionary divergence among mammals. However, the mechanisms underlying germline regulatory divergence remain undetermined. Here, we show that endogenous retroviruses (ERVs) influence species-specific germline transcriptomes. After the mitosis-to-meiosis transition in male mice, specific ERVs function as active enhancers to drive germline genes, including a mouse-specific gene set, and bear binding motifs for critical regulators of spermatogenesis, such as A-MYB. This raises the possibility that a genome-wide transposition of ERVs rewired germline gene expression in a species-specific manner. Of note, independently evolved ERVs are associated with the expression of human-specific germline genes, demonstrating the prevalence of ERV-driven mechanisms in mammals. Together, we propose that ERVs fine-tune species-specific transcriptomes in the mammalian germline.


Endogenous retroviruses are associated with hippocampus-based memory impairment.

  • Roman Sankowski‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Retrotransposons compose a staggering 40% of the mammalian genome. Among them, endogenous retroviruses (ERV) represent sequences that closely resemble the proviruses created from exogenous retroviral infection. ERVs make up 8 to 10% of human and mouse genomes and range from evolutionarily ancient sequences to recent acquisitions. Studies in Drosophila have provided a causal link between genomic retroviral elements and cognitive decline; however, in mammals, the role of ERVs in learning and memory remains unclear. Here we studied 2 independent murine models for ERV activation: muMT strain (lacking B cells and antibody production) and intracerebroventricular injection of streptozotocin (ICVI-STZ). We conducted behavioral assessments (contextual fear memory and spatial learning), as well as gene and protein analysis (RNA sequencing, PCR, immunohistochemistry, and western blot assays). Mice lacking mitochondrial antiviral-signaling protein (MAVS) and mice lacking stimulator of IFN genes protein (STING), 2 downstream sensors of ERV activation, provided confirmation of ERV impact. We found that muMT mice and ICVI-STZ mice induced hippocampal ERV activation, as shown by increased gene and protein expression of the Gag sequence of the transposable element intracisternal A-particle. ERV activation was accompanied by significant hippocampus-related memory impairment in both models. Notably, the deficiency of the MAVS pathway was protective against ICVI-STZ-induced cognitive pathology. Overall, our results demonstrate that ERV activation is associated with cognitive impairment in mice. Moreover, they provide a molecular target for strategies aimed at attenuating retroviral element sensing, via MAVS, to treat dementia and neuropsychiatric disorders.


Endogenous Retroviruses Provide Protection Against Vaginal HSV-2 Disease.

  • Radeesha Jayewickreme‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Endogenous retroviruses (ERVs) are genomic sequences that originated from retroviruses and are present in most eukaryotic genomes. Both beneficial and detrimental functions are attributed to ERVs, but whether ERVs contribute to antiviral immunity is not well understood. Here, we used herpes simplex virus type 2 (HSV-2) infection as a model and found that Toll-like receptor 7 (Tlr7-/-) deficient mice that have high systemic levels of infectious ERVs are protected from intravaginal HSV-2 infection and disease, compared to wildtype C57BL/6 mice. We deleted the endogenous ecotropic murine leukemia virus (Emv2) locus on the Tlr7-/- background (Emv2-/-Tlr7-/-) and found that Emv2-/-Tlr7-/- mice lose protection against HSV-2 infection. Intravaginal application of purified ERVs from Tlr7-/- mice prior to HSV-2 infection delays disease in both wildtype and highly susceptible interferon-alpha receptor-deficient (Ifnar1-/-) mice. However, intravaginal ERV treatment did not protect Emv2-/-Tlr7-/- mice from HSV-2 disease, suggesting that the protective mechanism mediated by exogenous ERV treatment may differ from that of constitutively and systemically expressed ERVs in Tlr7-/- mice. We did not observe enhanced type I interferon (IFN-I) signaling in the vaginal tissues from Tlr7-/- mice, and instead found enrichment in genes associated with extracellular matrix organization. Together, our results revealed that constitutive and/or systemic expression of ERVs protect mice against vaginal HSV-2 infection and delay disease.


The decline of human endogenous retroviruses: extinction and survival.

  • Gkikas Magiorkinis‎ et al.
  • Retrovirology‎
  • 2015‎

Endogenous Retroviruses (ERVs) are retroviruses that over the course of evolution have integrated into germline cells and eventually become part of the host genome. They proliferate within the germline of their host, making up ~5% of the human and mouse genome sequences. Several lines of evidence have suggested a decline in the rate of ERV integration into the human genome in recent evolutionary history but this has not been investigated quantitatively or possible causes explored.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: