Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 3,104 papers

Role of ethnopharmacologists in the conservation of endangered animal species.

  • François Chassagne‎
  • Journal of ethnopharmacology‎
  • 2017‎

No abstract available


Species distribution modelling for conservation of an endangered endemic orchid.

  • Hsiao-Hsuan Wang‎ et al.
  • AoB PLANTS‎
  • 2015‎

Concerns regarding the long-term viability of threatened and endangered plant species are increasingly warranted given the potential impacts of climate change and habitat fragmentation on unstable and isolated populations. Orchidaceae is the largest and most diverse family of flowering plants, but it is currently facing unprecedented risks of extinction. Despite substantial conservation emphasis on rare orchids, populations continue to decline. Spiranthes parksii (Navasota ladies' tresses) is a federally and state-listed endangered terrestrial orchid endemic to central Texas. Hence, we aimed to identify potential factors influencing the distribution of the species, quantify the relative importance of each factor and determine suitable habitat for future surveys and targeted conservation efforts. We analysed several geo-referenced variables describing climatic conditions and landscape features to identify potential factors influencing the likelihood of occurrence of S. parksii using boosted regression trees. Our model classified 97 % of the cells correctly with regard to species presence and absence, and indicated that probability of existence was correlated with climatic conditions and landscape features. The most influential variables were mean annual precipitation, mean elevation, mean annual minimum temperature and mean annual maximum temperature. The most likely suitable range for S. parksii was the eastern portions of Leon and Madison Counties, the southern portion of Brazos County, a portion of northern Grimes County and along the borders between Burleson and Washington Counties. Our model can assist in the development of an integrated conservation strategy through: (i) focussing future survey and research efforts on areas with a high likelihood of occurrence, (ii) aiding in selection of areas for conservation and restoration and (iii) framing future research questions including those necessary for predicting responses to climate change. Our model could also incorporate new information on S. parksii as it becomes available to improve prediction accuracy, and our methodology could be adapted to develop distribution maps for other rare species of conservation concern.


Complete chloroplast genome sequences of two endangered Phoebe (Lauraceae) species.

  • Yingang Li‎ et al.
  • Botanical studies‎
  • 2017‎

Phoebe (Lauraceae) comprises of evergreen trees or shrubs with approximately 100 species, distributed in tropical and subtropical Asia and Neotropical America. A total of 34 species and three varieties occur in China. Despite of economic and ecological value, only limited genomic resources are available for this genus.


A review on reproductive biotechnologies for conservation of endangered mammalian species.

  • S M H Andrabi‎ et al.
  • Animal reproduction science‎
  • 2007‎

This review describes the use of modern reproductive biotechnologies or assisted reproductive techniques (ART) including artificial insemination, embryo transfer/sexing, in vitro fertilization, gamete/embryo micromanipulation, semen sexing, genome resource banking, and somatic cell nuclear transfer (cloning) in conservation programs for endangered mammalian species. Such biotechnologies allow more offspring to be obtained from selected parents to ensure genetic diversity and may reduce the interval between generations. However, the application of reproductive biotechnologies for endangered free-living mammals is rarer than for endangered domestic breeds. Progress in ART for non-domestic species will continue at a slow pace due to limited resources, but also because the management and conservation of endangered species is biologically quite complex. In practice, current reproductive biotechnologies are species-specific or inefficient for many endangered animals because of insufficient knowledge on basic reproduction like estrous cycle, seasonality, structural anatomy, gamete physiology and site for semen deposition or embryo transfer of non-domestic species.


Identifying appropriate protected areas for endangered fern species under climate change.

  • Chun-Jing Wang‎ et al.
  • SpringerPlus‎
  • 2016‎

The management of protected areas (PAs) is widely used in the conservation of endangered plant species under climate change. However, studies that have identified appropriate PAs for endangered fern species are rare. To address this gap, we must develop a workflow to plan appropriate PAs for endangered fern species that will be further impacted by climate change. Here, we used endangered fern species in China as a case study, and we applied conservation planning software coupled with endangered fern species distribution data and distribution modeling to plan conservation areas with high priority protection needs under climate change. We identified appropriate PAs for endangered fern species under climate change based on the IUCN protected area categories (from Ia to VI) and planned additional PAs for endangered fern species. The high priority regions for protecting the endangered fern species were distributed throughout southern China. With decreasing temperature seasonality, the priority ranking of all endangered fern species is projected to increase in existing PAs. Accordingly, we need to establish conservation areas with low climate vulnerability in existing PAs and expand the conservation areas for endangered fern species in the high priority conservation regions.


Tigridiopalma exalata, a new and endangered species of Melastomataceae from China.

  • Si-Jin Zeng‎ et al.
  • PhytoKeys‎
  • 2021‎

A new species of the genus Tigridiopalma, formerly considered monotypic, is here described as T. exalata and illustrated based on molecular and morphological evidence. It is morphologically similar to T. magnifica in having a short stem, huge basal leaves, scorpioid cymes, and 5-merous flowers, but differs in having ribbed and pale yellow puberulent petioles, purple petals with a small white apical patch, connectives of longer stamens with a distinct dorsal short spur at their base, and wingless capsules. Due to the restricted distribution, small populations and horticultural potential of this new species, it should be categorized as an Endangered species (EN).


The complete chloroplast genome of an endangered species Apostasia ramifera (Orchidaceae).

  • Fang Zheng‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2021‎

Apostasia ramifera S. C. Chen & K. Y. Lang 1986 is a Chinese endemic and endangered orchid. Here, we report the complete chloroplast (cp) genome sequence and the cp genome features of A. ramifera. The cp genome was 157,518 bp in length with a typical quadripartite structure, which was comprised of one large single-copy region (LSC, 86,353 bp) and one small single-copy region (SSC, 16,445 bp) separated by two inverted repeat regions (IRs, 27,360 bp). The cp genome encoded 133 genes, which included 87 protein-coding genes, 38 tRNAs and eight rRNAs. The average GC content of the genome is 35.8%. The phylogenetic analysis showed that A. ramifera was sister with A. wallichii and then nested in the other Apostasia species.


Dipterisshenzhenensis, a new endangered species of Dipteridaceae from Shenzhen, southern China.

  • Zuo-Ying Wei‎ et al.
  • PhytoKeys‎
  • 2021‎

Dipterisshenzhenensis, a new species of ferns from Shenzhen, Guangdong, southern China, is identified and described. It closely resembles D.chinensis but possesses several unique traits, such as long rhizome scales, castaneous stipe, and abaxially pale fronds with two fan-shaped fronds connected by a broad wing. Molecular evidence showed that D.shenzhenensis is allied to D.conjugata, whereas it has morphologically significant differences (P < 0.05) on the basis of quantitative trait statistical analysis. Overall, the morphological evidence, taken together with the result of cpDNA indicated that D.shenzhenensis is a distinct species.


Improving the Design of a Conservation Reserve for a Critically Endangered Species.

  • Chris Taylor‎ et al.
  • PloS one‎
  • 2017‎

Setting aside protected areas is a key strategy for tackling biodiversity loss. Reserve effectiveness depends on the extent to which protected areas capture both known occurrences and areas likely to support the species. We assessed the effectiveness of the existing reserve network for Leadbeater's Possum (Gymnobelideus leadbeateri) and other forest-dependent species, and compared the existing reserve system to a set of plausible reserve expansion options based on area targets implied in a recent Population Viability Analysis (PVA). The existing Leadbeater's Reserve and surrounding reserve system captured 7.6% and 29.6% of cumulative habitat suitability, respectively, across the landscape. Expanded reserve scenarios captured 34% to 62% of cumulative habitat suitability. We found acute trade-offs between conserving Leadbeater's Possum habitat and conserving habitat of other forest-dependent species. Our analysis provides a template for systematically expanding and evaluating reserve expansion options in terms of trade-offs between priority species' needs.


The conservation value of admixed phenotypes in a critically endangered species complex.

  • Keren R Sadanandan‎ et al.
  • Scientific reports‎
  • 2020‎

In today's environmental crisis, conservationists are increasingly confronted with terminally endangered species whose last few surviving populations may be affected by allelic introgression from closely related species. Yet there is a worrying lack of evidence-based recommendations and solutions for this emerging problem. We analyzed genome-wide DNA markers and plumage variability in a critically endangered insular songbird, the Black-winged Myna (BWM, Acridotheres melanopterus). This species is highly threatened by the illegal wildlife trade, with its wild population numbering in the low hundreds, and its continued survival urgently depending on ex-situ breeding. Its three subspecies occur along a geographic gradient of melanism and are variably interpreted as three species. However, our integrative approach revealed that melanism poorly reflects the pattern of limited genomic differentiation across BWM subspecies. We also uncovered allelic introgression into the most melanistic subspecies, tertius, from the all-black congeneric Javan Myna (A. javanicus), which is native to the same islands. Based on our results, we recommend the establishment of three separate breeding programs to maintain subspecific traits that may confer local adaptation, but with the option of occasional cross-breeding between insurance populations in order to boost genetic diversity and increase overall viability prospects of each breeding program. Our results underscore the importance of evidence-based integrative approaches when determining appropriate conservation units. Given the rapid increase of terminally endangered organisms in need of ex-situ conservation, this study provides an important blueprint for similar programs dealing with phenotypically variable species.


Identification of potential light deficiency response regulators in endangered species Magnolia sinostellata.

  • Danying Lu‎ et al.
  • Scientific reports‎
  • 2022‎

Magnolia sinostellata is one of the endangered species in China and largely suffers light deficiency stress in the understory of forest. However, the weak light response molecular mechanism remains unclear. More importantly, hub genes in the molecular network have not been pinpointed. To explore potential regulators in the mechanism, weighted gene co-expression network analysis (WGCNA) was performed to analysis the trancriptome data of M. sinostellata leaves subjected to weak light with different time points. Gene co-expression analysis illustrated that module 1, 2 and 3 were closely associated with light deficiency treatment, which. Gene ontology and KEGG analyses showed that genes in module 1 mainly participated in amino and nucleotide metabolism, module 2 mostly involved in carbon fixation and module 3 mostly regulated photosynthesis related pathways, among which 6, 7 and 8 hub genes were identified, respectively. Hub genes isoform_107196 in module 1 and isoform_55976 in module 2 were unique to M. sinostellata. This study found that light deficiency inhibited photosynthesis and stress tolerance, while improved carbon metabolism and flowering related pathways in M. sinostellata, which can impact its accumulation reserves of growth and reproduction in the next season. In addition, key shade response regulators identified in this study have laid a firm foundation for further investigation of shade response molecular mechanism and protection of other shade sensitive plants.


Disentangling Species Delineation and Guiding Conservation of Endangered Magnolias in Veracruz, Mexico.

  • Fabián Augusto Aldaba Núñez‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

The Mexican state of Veracruz has suffered very high deforestation rates in the last few decades, and despite the establishment of protected areas and conservation projects, primary forest is now mainly persisting in mostly small, scattered, fragmented remnants. New species of Magnolia section Talauma in this state have been described with little to no reference to the already existing ones, potentially resulting in over-splitting, obscuring their taxonomic delineation and conservation status, and consequently conservation programs. To study the conservation units and their genetic diversity, we here employ 15 microsatellite markers on a highly representative sampling of 254 individuals of what are presumed to be five Magnolia species. The results support at least three species and maximum five main conservation units. We propose downgrading the latter to four, given morphological, ecological, demographical, and geographical considerations. Two out of the three sympatrically occurring species in the rainforest in the Los Tuxtlas volcanic area have weak genetic evidence to be considered separate species. Similarly, the individuals in the Sierra de Zongolica in central Veracruz, who bear a very high morphological and genetic similarity to Magnolia mexicana, have weak genetic evidence to be recognised as a separate species. Nonetheless, the individuals could be identified as Magnolia decastroi based on morphology, and further research including the full range of this species is recommended.


Climate-mediated population dynamics for the world's most endangered sea turtle species.

  • Michael D Arendt‎ et al.
  • Scientific reports‎
  • 2023‎

Restricted range, and subsequently small population size, render Kemp's ridley sea turtles (Lepidochelys kempii) the most globally endangered sea turtle species. For at least two decades preceding conservation, high egg harvest rates reduced annual cohort recruitment. Despite > 50 years of dedicated conservation, annual nest counts remain well below a landmark 1947 level. Prior studies attribute less robust than anticipated nest count rebound to multiple contemporary concerns; however, analyses herein convey optimistic interpretation. In objective 1, improved analysis of the ratio of hatchlings to nests since 1966 suggested age structure stabilization as a more likely basis for nest count trends after 2005 than density-dependent effects. In objective 2, multiple regression revealed a lagged (≤ 13 years prior) climate influence on nests (adj. r2 = 0.82) and hatchlings per nest (adj. r2 = 0.94) during 2006-2022. In objectives 3 and 4, a simulator modeled population response to changes in a suite of demographic rates including survival. Across 32 models, high survival and dynamic cohort sex ratio, sexual maturity age, and the ratio of clutch frequency to remigration interval best explained nesting trends during 1966-2022. These novel findings provide alternative perspective for evaluating species recovery criteria and in turn refine future nest trend expectations.


Whole-Genome Sequencing of Acer catalpifolium Reveals Evolutionary History of Endangered Species.

  • Tao Yu‎ et al.
  • Genome biology and evolution‎
  • 2021‎

Acer catalpifolium is an endangered species restricted to remote localities of West China. Understanding the genomic content and evolution of A. catalpifolium is essential to conservation efforts of this rare and ecologically valuable plant. Here, we report a high-quality genome of A. catalpifolium consisting of ∼654 Mbp and ∼35,132 protein-coding genes. We detected 969 positively selected genes in two Acer genomes compared with four other eudicots, 65 of which were transcription factors. We hypothesize that these positively selected mutations in transcription factors might affect their function and thus contribute to A. catalpifolium's decline-type population. We also identified 179 significantly expanded gene families compared with 12 other eudicots, some of which are involved in stress responses, such as the FRS-FRF family. We inferred that A. catalpifolium has experienced gene family expansions to cope with environmental stress in its evolutionary history. Finally, 109 candidate genes encoding key enzymes in the lignin biosynthesis pathway were identified in A. catalpifolium; of particular note were the large range and high copy number of cinnamyl alcohol dehydrogenase genes. The chromosome-level genome of A. catalpifolium presented here may serve as a fundamental genomic resource for better understanding endangered Acer species, informing future conservation efforts.


Keeping All the PIECES: Phylogenetically Informed Ex Situ Conservation of Endangered Species.

  • Daniel J Larkin‎ et al.
  • PloS one‎
  • 2016‎

Ex situ conservation in germplasm and living collections is a major focus of global plant conservation strategies. Prioritizing species for ex situ collection is a necessary component of this effort for which sound strategies are needed. Phylogenetic considerations can play an important role in prioritization. Collections that are more phylogenetically diverse are likely to encompass more ecological and trait variation, and thus provide stronger conservation insurance and richer resources for future restoration efforts. However, phylogenetic criteria need to be weighed against other, potentially competing objectives. We used ex situ collection and threat rank data for North American angiosperms to investigate gaps in ex situ coverage and phylogenetic diversity of collections and to develop a flexible framework for prioritizing species across multiple objectives. We found that ex situ coverage of 18,766 North American angiosperm taxa was low with respect to the most vulnerable taxa: just 43% of vulnerable to critically imperiled taxa were in ex situ collections, far short of a year-2020 goal of 75%. In addition, species held in ex situ collections were phylogenetically clustered (P < 0.001), i.e., collections comprised less phylogenetic diversity than would be expected had species been drawn at random. These patterns support incorporating phylogenetic considerations into ex situ prioritization in a manner balanced with other criteria, such as vulnerability. To meet this need, we present the 'PIECES' index (Phylogenetically Informed Ex situ Conservation of Endangered Species). PIECES integrates phylogenetic considerations into a flexible framework for prioritizing species across competing objectives using multi-criteria decision analysis. Applying PIECES to prioritizing ex situ conservation of North American angiosperms, we show strong return on investment across multiple objectives, some of which are negatively correlated with each other. A spreadsheet-based decision support tool for North American angiosperms is provided; this tool can be customized to align with different conservation objectives.


Three in One--Multiple Faunal Elements within an Endangered European Butterfly Species.

  • Marius Junker‎ et al.
  • PloS one‎
  • 2015‎

Ice ages within Europe forced many species to retreat to refugia, of which three major biogeographic basic types can be distinguished: "Mediterranean", "Continental" and "Alpine / Arctic" species. However, this classification often fails to explain the complex phylogeography of European species with a wide range of latitudinal and altitudinal distribution. Hence, we tested for the possibility that all three mentioned faunal elements are represented within one species. Our data was obtained by scoring 1,307 Euphydryas aurinia individuals (46 European locations) for 17 allozyme loci, and sequencing a subset of 492 individuals (21 sites) for a 626 base pairs COI fragment. Genetic diversity indices, F statistics, hierarchical analyses of molecular variance, individual-based clustering, and networks were used to explore the phylogeographic patterns. The COI fragment represented 18 haplotypes showing a strong geographic structure. All but one allozyme loci analysed were polymorphic with a mean FST of 0.20, supporting a pronounced among population structure. Interpretation of both genetic marker systems, using several analytical tools, calls for the recognition of twelve genetic groups. These analyses consistently distinguished different groups in Iberia (2), Italy, Provence, Alps (3), Slovenia, Carpathian Basin, the lowlands of West and Central Europe as well as Estonia, often with considerable additional substructures. The genetic data strongly support the hypothesis that E. aurinia survived the last glaciation in Mediterranean, extra-Mediterranean and perialpine refugia. It is thus a rare example of a model organism that combines attributes of faunal elements from all three of these sources. The observed differences between allozymes and mtDNA most likely result from recent introgression of mtDNA into nuclear allozyme groups. Our results indicate discrepancies with the morphologically-based subspecies models, underlining the need to revise the current taxonomy.


Comparative Proteomics Analyses of Pollination Response in Endangered Orchid Species Dendrobium Chrysanthum.

  • Wei Wang‎ et al.
  • International journal of molecular sciences‎
  • 2017‎

Pollination is a crucial stage in plant reproductive process. The self-compatibility (SC) and self-incompatibility (SI) mechanisms determined the plant genetic diversity and species survival. D. chrysanthum is a highly valued ornamental and traditional herbal orchid in Asia but has been declared endangered. The sexual reproduction in D. chrysanthum relies on the compatibility of pollination. To provide a better understanding of the mechanism of pollination, the differentially expressed proteins (DEP) between the self-pollination (SP) and cross-pollination (CP) pistil of D. chrysanthum were investigated using proteomic approaches-two-dimensional electrophoresis (2-DE) coupled with tandem mass spectrometry technique. A total of 54 DEP spots were identified in the two-dimensional electrophoresis (2-DE) maps between the SP and CP. Gene ontology analysis revealed an array of proteins belonging to following different functional categories: metabolic process (8.94%), response to stimulus (5.69%), biosynthetic process (4.07%), protein folding (3.25%) and transport (3.25%). Identification of these DEPs at the early response stage of pollination will hopefully provide new insights in the mechanism of pollination response and help for the conservation of the orchid species.


Genetic structure of colline and montane populations of an endangered plant species.

  • Tiphaine Maurice‎ et al.
  • AoB PLANTS‎
  • 2016‎

Due to land-use intensification, lowland and colline populations of many plants of nutrient-poor grasslands have been strongly fragmented in the last decades, with potentially negative consequences for their genetic diversity and persistence. Populations in mountains might represent a genetic reservoir for grassland plants, because they have been less affected by land-use changes. We studied the genetic structure and diversity of colline and montane Vosges populations of the threatened perennial plant Arnica montana in western central Europe using AFLP markers. Our results indicate that in contrast to our expectation even strongly fragmented colline populations of A. montana have conserved a considerable amount of genetic diversity. However, mean seed mass increased with the proportion of polymorphic loci, suggesting inbreeding effects in low diversity populations. At a similar small geographical scale there was a clear IBD pattern for the montane Vosges but not for the colline populations. However, there was a strong IBD-pattern for the colline populations at a large geographical scale suggesting that this pattern is a legacy of historical gene flow, as most of the colline populations are today strongly isolated from each other. Genetic differentiation between colline and montane Vosges populations was strong. Moreover, results of a genome scan study indicated differences in loci under selection, suggesting that plants from montane Vosges populations might be maladapted to conditions at colline sites. Our results suggest caution in using material from montane populations of rare plants for the reinforcement of small genetically depauperate lowland populations.


Predation on endangered species by human-subsidized domestic cats on Tokunoshima Island.

  • Tamao Maeda‎ et al.
  • Scientific reports‎
  • 2019‎

It is important to unravel how invasive species impact native ecosystems in order to control them effectively. The presence of abundant exotic prey promotes population growth of invasive predators, thereby enhancing the predation pressure on native prey (hyper-predation). Not only the exotic prey but also feeding by humans is likely to cause "hyper-predation". However, the contribution of artificial resources to this was underestimated in previous studies. Here, we combined fecal and stable isotope analyses to reveal short- and long-term food habits of free-ranging cats on Tokunoshima Island. Although 20.1% of the feral cat feces contained evidence of forest-living species, stable isotope analysis suggested that the cats were mostly dependent on artificial resources. In addition, a general linear model analysis showed that their diet was strongly correlated with landscape variables. These results indicate that the invasive free-ranging cats are aided by anthropogenic feeding, and they move from the human habituated area to natural areas with high biodiversity. These findings suggest the possibility of human feeding indirectly accelerates the effect of cat predation, and call for a further study on their demography. Cat management mainly involves trapping, but our findings show that educating local residents to stop feeding free-ranging cats and keeping pet cats indoors are also important.


The chloroplast genome of an Endangered orchid species, Gastrochilus calceolaris (Orchidaceae: Aeridinae).

  • Fengxia Tang‎ et al.
  • Mitochondrial DNA. Part B, Resources‎
  • 2018‎

This study reported the complete chloroplast genome of a critically Endangered Orchidaceae species Gastrochilus calceolaris and its phylogenetic position in subtribe Aeridinae based on 12 orchid species plastomes. The plastome of G. calceolaris, with a 148,428 bp size, consisted of a pair of inverted repeat regions of 25,950 bp, a small single copy region of 11,139 bp, and a large single copy region of 85,389 bp. G + C content was 36.8%. The phylogenetic analysis highly supported the sisterhood between Gastrochilus and Pelatantheria and a monophyletic Gastrochilus group comprising of G. calceolaris, G. fuscopunctatus, and G. japonicus.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: