Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 268 papers

The effect of spin polarization on double electron-electron resonance (DEER) spectroscopy.

  • Sarah R Sweger‎ et al.
  • Magnetic resonance (Gottingen, Germany)‎
  • 2022‎

Double electron-electron resonance (DEER) spectroscopy measures the distribution of distances between two electron spins in the nanometer range, often on doubly spin-labeled proteins, via the modulation of a refocused spin echo by the dipolar interaction between the spins. DEER is commonly conducted under conditions where the polarization of the spins is small. Here, we examine the DEER signal under conditions of high spin polarization, thermally obtainable at low temperatures and high magnetic fields, and show that the signal acquires a polarization-dependent out-of-phase component both for the intramolecular and intermolecular contributions. For the latter, this corresponds to a phase shift of the spin echo that is linear in the pump pulse position. We derive a compact analytical form of this phase shift and show experimental measurements using monoradical and biradical nitroxides at several fields and temperatures. The effect highlights a novel aspect of the fundamental spin physics underlying DEER spectroscopy.


Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy.

  • Norbert Weissmann‎ et al.
  • Respiratory research‎
  • 2005‎

The sources and measurement of reactive oxygen species (ROS) in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR) with spin trapping is a specific method for ROS detection, and may address some these technical problems.


Dance with spins: site-directed spin labeling coupled to electron paramagnetic resonance spectroscopy directly inside cells.

  • Annalisa Pierro‎ et al.
  • Chemical communications (Cambridge, England)‎
  • 2023‎

Depicting how biomolecules move and interact within their physiological environment is one of the hottest topics of structural biology. This Feature Article gives an overview of the most recent advances in Site-directed Spin Labeling coupled to Electron Paramagnetic Resonance spectroscopy (SDSL-EPR) to study biomolecules in living cells. The high sensitivity, the virtual absence of background, and the versatility of spin-labeling strategies make this approach one of the most promising techniques for the study of biomolecules in physiologically relevant environments. After presenting the milestones achieved in this field, we present a summary of the future goals and ambitions of this community.


Investigation of Various Organic Radicals Dispersed in Polymethylmethacrylate Matrices Using the Electron Spin Resonance Spectroscopy Technique.

  • Hirokazu Kobayashi‎ et al.
  • ACS omega‎
  • 2021‎

The electron spin resonance (ESR) spectroscopy technique was used to study various organic radicals, such as 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO), 4-hydroxy-TEMPO (TEMPOL), 2-X-nitronylnitroxide (2-X-NN, X = Ph, NO2Ph, or cyclohexyl), 4-Y-benzonitronylnitroxide (4-Y-PhBzNN, Y = Ph or NO2Ph), and 2-Z-iminonitroxide (2-Z-IN, Z = Ph or NO2Ph) dispersed in a polymethylmethacrylate (PMMA) matrix. The experiments were conducted at room temperature. The complex nature of the recorded ESR spectra could be attributed to the superposition of the rotational diffusion component of TEMPO (or TEMPOL) in the nanospace of the PMMA matrix with the rigid-limit component. A single component of the rigid-limit was observed for 2-X-NN and 4-Y-PhBzNN radicals dispersed in the PMMA matrix. The isotropic components of g and hyperfine ( A ) tensor, estimated by analyzing the solution spectra, were used to determine the g and A components of 4-Y-PhBzNN. Only the rotational diffusion component was observed for the 2-Z-IN radical. These results demonstrated that the PMMA matrix contains cylindrical nanospaces. Various radicals other than TEMPO derivatives could be used in the ESR spin probe technique as probe molecules for determining the structures, sizes, and shapes of the nanospaces.


Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap?

  • John P Gotham‎ et al.
  • Free radical biology & medicine‎
  • 2020‎

Electron Paramagnetic Resonance (EPR) spectroscopy coupled with spin traps/probes enables quantitative determination of reactive nitrogen and oxygen species (RNOS). Even with numerous studies using spin probes, the methodology has not been rigorously investigated. The autoxidation of spin probes has been commonly overlooked. Using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH), the present study has tested the effects of metal chelators, temperature, and oxygen content on the autoxidation of spin probes, where an optimized condition is refined for cell studies. The apparent rate of CMH autoxidation under this condition is 7.01 ± 1.60 nM/min, indicating low sensitivity and great variation of the CMH method and that CMH autoxidation rate should be subtracted from the generation rate of CMH-detectable oxidants (simplified as oxidants below) in samples. Oxidants in RAW264.7 cells are detected at an initial rate of 4.0 ± 0.7 pmol/min/106 cells, which is not considered as the rate of basal oxidants generation because the same method has failed to detect oxidant generation from the stimulation of phorbol-12-mysirate-13-acetate (PMA, 0.1 nmol/106 cells) in cells (2.5 ± 0.9 for PMA vs. 2.1 ± 1.5 pmol/min/106 cells for dimethyl sulfoxide (DMSO)-treated cells). In contrast, the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), which exhibits minimal autoxidation, reveals differences between PMA and DMSO treatment (0.26 ± 0.09 vs. -0.06 ± 0.12 pmol/min/106 cells), which challenges previous claims that spin probes are more sensitive than spin traps. We have also found that low temperature EPR measurements of frozen samples of CMH autoxidation provide lower signal intensity and greater variation compared to RT measurements of fresh samples. The current study establishes an example for method development of RNOS detection, where experimental details are rigorously considered and tested, and raises questions on the applications of spin probes and spin traps.


Spin labeling and Double Electron-Electron Resonance (DEER) to Deconstruct Conformational Ensembles of HIV Protease.

  • Thomas M Casey‎ et al.
  • Methods in enzymology‎
  • 2015‎

An understanding of macromolecular conformational equilibrium in biological systems is oftentimes essential to understand function, dysfunction, and disease. For the past few years, our lab has been utilizing site-directed spin labeling (SDSL), coupled with electron paramagnetic resonance (EPR) spectroscopy, to characterize the conformational ensemble and ligand-induced conformational shifts of HIV-1 protease (HIV-1PR). The biomedical importance of characterizing the fractional occupancy of states within the conformational ensemble critically impacts our hypothesis of a conformational selection mechanism of drug-resistance evolution in HIV-1PR. The purpose of the following chapter is to give a timeline perspective of our SDSL EPR approach to characterizing conformational sampling of HIV-1PR. We provide detailed instructions for the procedure utilized in analyzing distance profiles for HIV-1PR obtained from pulsed electron-electron double resonance (PELDOR). Specifically, we employ a version of PELDOR known as double electron-electron resonance (DEER). Data are processed with the software package "DeerAnalysis" (http://www.epr.ethz.ch/software), which implements Tikhonov regularization (TKR), to generate a distance profile from electron spin-echo amplitude modulations. We assign meaning to resultant distance profiles based upon a conformational sampling model, which is described herein. The TKR distance profiles are reconstructed with a linear combination of Gaussian functions, which is then statistically analyzed. In general, DEER has proven powerful for observing structural ensembles in proteins and, more recently, nucleic acids. Our goal is to present our advances in order to aid readers in similar applications.


Oxygen permeability of thylakoid membranes: electron paramagnetic resonance spin labeling study.

  • A Ligeza‎ et al.
  • Biochimica et biophysica acta‎
  • 1998‎

Oxygen transport in thylakoid membranes of spinach chloroplasts (Spinacia oleracea) has been studied by observing the collisions of molecular oxygen with spin labels, using line broadening electron paramagnetic resonance (EPR) spectroscopy. Stearic acid spin labels were used to probe the local oxygen diffusion-concentration product. The free radical moiety was located at various distances from the membrane surface, and collision rates were estimated from linewidths of the EPR spectra measured in the presence and absence of molecular oxygen. The profile of the local oxygen diffusion-concentration product across the membrane determined at 20 degrees C demonstrates that this product, at all membrane locations, is higher than the value measured in water. From the profile of the oxygen diffusion-concentration product, the membrane oxygen permeability coefficient has been estimated using the procedure developed earlier (W.K. Subczynski, J.S. Hyde, A. Kusumi, Proc. Natl. Acad. Sci. USA 86 (1989) 4474-4478). At 20 degrees C, the oxygen permeability coefficient for the lipid portion of the thylakoid membrane was found to be 39.5 cm s-1. This value is 20% higher than the oxygen permeability coefficient of a water layer of the same thickness as the thylakoid membrane. The high permeability coefficient implies that the oxygen concentration difference across the thylakoid membrane generated under the illumination of the leaf by saturating actinic light is negligible, smaller than 1 microM.


Direct assessment by electron spin resonance spectroscopy of the antioxidant effects of French maritime pine bark extract in the maxillofacial region of hairless mice.

  • Ayaka Yoshida‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2011‎

Flavangenol, one of extract of French maritime pine bark, is a complex mixture of bioflavonoids with oligometric proanthocyanidins as the major constituents. These constituents, catechin and procyanidin B(1), are water-soluble derivatives of flavangenol. In this study, we investigated the antioxidant effects of flavangenol on reactive oxygen species such as hydroxyl radical, superoxide anion and singlet oxygen using electron spin resonance and spin trapping. The effect of flavangenol on oxidative stress in the skin from the maxillofacial region of hairless mice was investigated using an in vivo L-band electron spin resonance imaging system. Flavangenol attenuated oxidative stress in the maxillofacial skin by acting as a reactive oxygen species scavenger, as demonstrated by in vitro and in vivo electron spin resonance imaging analysis. The absorption and metabolism of flavangenol were also examined. After oral administration of flavangenol in human and rat, most of the catechin in plasma was in the conjugated form, while 45% to 78% of procyanidin B(1) was unconjugated, indicating that non-conjugated procyanidin B(1) would be active in the circulation. The ability of flavangenol to reduce reactive oxygen species levels in the circulation of the maxillofacial region suggests that this extract may be beneficial for skin protection from exposure to ultraviolet irradiation.


Strategies to identify and suppress crosstalk signals in double electron-electron resonance (DEER) experiments with gadoliniumIII and nitroxide spin-labeled compounds.

  • Markus Teucher‎ et al.
  • Magnetic resonance (Gottingen, Germany)‎
  • 2020‎

Double electron-electron resonance (DEER) spectroscopy applied to orthogonally spin-labeled biomolecular complexes simplifies the assignment of intra- and intermolecular distances, thereby increasing the information content per sample. In fact, various spin labels can be addressed independently in DEER experiments due to spectroscopically nonoverlapping central transitions, distinct relaxation times, and/or transition moments; hence, they are referred to as spectroscopically orthogonal. Molecular complexes which are, for example, orthogonally spin-labeled with nitroxide (NO) and gadolinium (Gd) labels give access to three distinct DEER channels that are optimized to selectively probe NO-NO, NO-Gd, and Gd-Gd distances. Nevertheless, it has been previously recognized that crosstalk signals between individual DEER channels can occur, for example, when a Gd-Gd distance appears in a DEER channel optimized to detect NO-Gd distances. This is caused by residual spectral overlap between NO and Gd spins which, therefore, cannot be considered as perfectly orthogonal. Here, we present a systematic study on how to identify and suppress crosstalk signals that can appear in DEER experiments using mixtures of NO-NO, NO-Gd, and Gd-Gd molecular rulers characterized by distinct, nonoverlapping distance distributions. This study will help to correctly assign the distance peaks in homo- and heterocomplexes of biomolecules carrying not perfectly orthogonal spin labels.


Probing the Structure of Toxic Amyloid-β Oligomers with Electron Spin Resonance and Molecular Modeling.

  • Martina Banchelli‎ et al.
  • ACS chemical neuroscience‎
  • 2021‎

Structural models of the toxic species involved in the development of Alzheimer's disease are of utmost importance to understand the molecular mechanism and to describe early biomarkers of the disease. Among toxic species, soluble oligomers of amyloid-β (Aβ) peptides are particularly important, because they are responsible for spreading cell damages over brain regions, thus rapidly impairing brain functions. In this work we obtain structural information on a carefully prepared Aβ(1-42) sample, representing a toxic state for cell cultures, by combining electron spin resonance spectroscopy and computational models. We exploited the binding of Cu2+ to Aβ(1-42) and used copper as a probe for estimating Cu-Cu distances in the oligomers by applying double electron-electron resonance (DEER) pulse sequence. The DEER trace of this sample displays a unique feature that fits well with structural models of oligomers formed by Cu-cross-linked peptide dimers. Because Cu is bound to the Aβ(1-42) N-terminus, for the first time structural constraints that are missing in reported studies are provided at physiological conditions for the Aβ N-termini. These constraints suggest the Aβ(1-42) dimer as the building block of soluble oligomers, thus changing the scenario for any kinetic model of Aβ(1-42) aggregation.


X-Band Parallel-Mode and Multifrequency Electron Paramagnetic Resonance Spectroscopy of S = 1/2 Bismuth Centers.

  • Julia Haak‎ et al.
  • Inorganic chemistry‎
  • 2022‎

The recent successes in the isolation and characterization of several bismuth radicals inspire the development of new spectroscopic approaches for the in-depth analysis of their electronic structure. Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for the characterization of main group radicals. However, the large electron-nuclear hyperfine interactions of Bi (209Bi, I = 9/2) have presented difficult challenges to fully interpret the spectral properties for some of these radicals. Parallel-mode EPR (B1∥B0) is almost exclusively employed for the study of S > 1/2 systems but becomes feasible for S = 1/2 systems with large hyperfine couplings, offering a distinct EPR spectroscopic approach. Herein, we demonstrate the application of conventional X-band parallel-mode EPR for S = 1/2, I = 9/2 spin systems: Bi-doped crystalline silicon (Si:Bi) and the molecular Bi radicals [L(X)Ga]2Bi• (X = Cl or I) and [L(Cl)GaBi(MecAAC)]•+ (L = HC[MeCN(2,6-iPr2C6H3)]2). In combination with multifrequency perpendicular-mode EPR (X-, Q-, and W-band frequencies), we were able to fully refine both the anisotropic g- and A-tensors of these molecular radicals. The parallel-mode EPR experiments demonstrated and discussed here have the potential to enable the characterization of other S = 1/2 systems with large hyperfine couplings, which is often challenging by conventional perpendicular-mode EPR techniques. Considerations pertaining to the choice of microwave frequency are discussed for relevant spin-systems.


Investigation of the Hydration State of Self-Assembled Peptide Nanostructures with Advanced Electron Paramagnetic Resonance Spectroscopy.

  • Donghyuk Jeong‎ et al.
  • ACS omega‎
  • 2019‎

Probing the intermolecular interactions and local environments of self-assembled peptide nanostructures (SPNs) is crucial for a better understanding of the underlying molecular details of self-assembling phenomena. In particular, investigation of the hydration state is important to understand the nanoscale structural and functional characteristics of SPNs. In this report, we examined the local hydration environments of SPNs in detail to understand the driving force of the discrete geometric structural self-assembling phenomena for peptide nanostructures. Advanced electron paramagnetic resonance spectroscopy was used to probe the hydrogen bond formation and geometry as well as the hydrophobicity of the local environments at various spin-labeled sites in SPNs. The experimental results supplement the sparse experimental data regarding local structures of SPNs, such as the hydrogen bonding and the hydrophobicity of the local environment, providing important information on the formation of SPNs, which have immense potential for bioactive materials.


Exploring the dynamics and structure of PpiB in living Escherichia coli cells using electron paramagnetic resonance spectroscopy.

  • Yasmin Ben-Ishay‎ et al.
  • Protein science : a publication of the Protein Society‎
  • 2024‎

The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.


Ion-dependent mobility effects of the Fusobacterium nucleatum glycine riboswitch aptamer II via site-directed spin-labeling (SDSL) electron paramagnetic resonance (EPR).

  • Michelle A Ehrenberger‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Site-directed spin-labeling (SDSL) with continuous wave electron paramagnetic resonance (cw-EPR) spectroscopy was utilized to probe site-specific changes in backbone dynamics that accompany folding of the isolated 84 nucleotide aptamer II domain of the Fusobacterium nucleatum (FN) glycine riboswitch. Spin-labels were incorporated using splinted ligation strategies. Results show differential dynamics for spin-labels incorporated into the backbone at a base-paired and loop region. Additionally, the addition of a biologically relevant concentration of 5 mM  Mg2+, to an RNA solution with 100 mM K+, folds and compacts the structure, inferred by a reduction in spin-label mobility. Furthermore, when controlling for ionic strength, Mg2+ added to the RNA induces more folding/less flexibility at the two sites than RNA with K+ alone. Addition of glycine does not alter the dynamics of this singlet aptamer II, indicating that the full length riboswitch construct may be needed for glycine binding and induced conformational changes. This work adds to our growing understanding of how splinted-ligation SDSL can be utilized to interrogate differential dynamics in large dynamic RNAs, providing insights into how RNA folding and structure is differentially stabilized by monovalent versus divalent cations.


Measuring distances by pulsed dipolar ESR spectroscopy: spin-labeled histidine kinases.

  • Peter P Borbat‎ et al.
  • Methods in enzymology‎
  • 2007‎

Applications of dipolar ESR spectroscopy to structural biology are rapidly expanding, and it has become a useful method that is aimed at resolving protein structure and functional mechanisms. The method of pulsed dipolar ESR spectroscopy (PDS) is outlined in the first half of the chapter, and it illustrates the simplicity and potential of this developing technology with applications to various biological systems. A more detailed description is presented of the implementation of PDS to reconstruct the ternary structure of a large dimeric protein complex from Thermotoga maritima, formed by the histidine kinase CheA and the coupling protein CheW. This protein complex is a building block of an extensive array composed of coupled supramolecular structures assembled from CheA/CheW proteins and transmembrane signaling chemoreceptors, which make up a sensor that is key to controlling the motility in bacterial chemotaxis. The reconstruction of the CheA/CheW complex has employed several techniques, including X-ray crystallography and pulsed ESR. Emphasis is on the role of PDS, which is part of a larger effort to reconstruct the entire signaling complex, including chemoreceptor, by means of PDS structural mapping. In order to precisely establish the mode of coupling of CheW to CheA and to globally map the complex, approximately 70 distances have already been determined and processed into molecular coordinates by readily available methods of distance geometry constraints.


On the Track of Long-Range Electron Transfer in B-Type Dye-Decolorizing Peroxidases: Identification of a Tyrosyl Radical by Computational Prediction and Electron Paramagnetic Resonance Spectroscopy.

  • Kevin Nys‎ et al.
  • Biochemistry‎
  • 2021‎

The catalytic activity of dye-decolorizing peroxidases (DyPs) toward bulky substrates, including anthraquinone dyes, phenolic lignin model compounds, or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), is in strong contrast to their sterically restrictive active site. In two of the three known subfamilies (A- and C/D-type DyPs), catalytic protein radicals at surface-exposed sites, which are connected to the heme cofactor by electron transfer path(s), have been identified. So far in B-type DyPs, there has been no evidence for protein radical formation after activation by hydrogen peroxide. Interestingly, B-type Klebsiella pneumoniae dye-decolorizing peroxidase (KpDyP) displays a persistent organic radical in the resting state composed of two species that can be distinguished by W-band electron spin echo electron paramagnetic resonance (EPR) spectroscopy. Here, on the basis of a comprehensive mutational and EPR study of computationally predicted tyrosine and tryptophan variants of KpDyP, we demonstrate the formation of tyrosyl radicals (Y247 and Y92) and a radical-stabilizing Y-W dyad between Y247 and W18 in KpDyP, which are unique to enterobacterial B-type DyPs. Y247 is connected to Y92 by a hydrogen bonding network, is solvent accessible in simulations, and is involved in ABTS oxidation. This suggests the existence of long-range electron path(s) in B-type DyPs. The mechanistic and physiological relevance of the reaction mechanism of B-type DyPs is discussed.


Blood free Radicals Concentration Determined by Electron Paramagnetic Resonance Spectroscopy and Delayed Cerebral Ischemia Occurrence in Patients with Aneurysmal Subarachnoid Hemorrhage.

  • Grzywna Ewelina‎ et al.
  • Cell biochemistry and biophysics‎
  • 2017‎

Pathophysiology of delayed cerebral ischemia and cerebral vasospasm following aneurysmal subarachnoid hemorrhage is still poorly recognized, however free radicals are postulated as one of the crucial players. This study was designed to scrutinize whether the concentration of free radicals in the peripheral venous blood is related to the occurrence of delayed cerebral ischemia associated with cerebral vasospasm. Twenty-four aneurysmal subarachnoid hemorrhage patients and seven patients with unruptured intracranial aneurysm (control group) have been studied. Free radicals in patients' blood have been detected by the electron paramagnetic resonance (CMH.HCl spin probe, 150 K, ELEXSYS E500 spectrometer) on admission and at least 72 h from disease onset. Delayed cerebral ischemia monitoring was performed by daily neurological follow-up and transcranial color coded Doppler. Delayed cerebral ischemia observed in six aneurysmal subarachnoid hemorrhage patients was accompanied by cerebral vasospasm in all six cases. No statistically significant difference in average free radicals concentration between controls and study subgroups was noticed on admission (p = .3; Kruskal-Wallis test). After 72 h free radicals concentration in delayed cerebral ischemia patients (3.19 ± 1.52 mmol/l) differed significantly from the concentration in aneurysmal subarachnoid hemorrhage patients without delayed cerebral ischemia (0.65 ± 0.37 mmol/l) (p = .012; Mann-Whitney test). These findings are consistent with our assumptions and seem to confirm the role of free radicals in delayed cerebral ischemia development. Preliminary results presented above are promising and we need perform further investigation to establish whether blood free radicals concentration may serve as the biomarker of delayed cerebral ischemia associated with cerebral vasospasm.


Anomalous chemically induced electron spin polarization in proton-coupled electron transfer reactions: insight into radical pair dynamics.

  • Alexander M Brugh‎ et al.
  • Chemical science‎
  • 2020‎

Time-resolved electron paramagnetic resonance (TREPR) spectroscopy has been used to study the proton coupled electron transfer (PCET) reaction between a ruthenium complex (Ru(bpz)(bpy)2) and several substituted hydroquinones (HQ). After excitation at 355 nm, the HQ moiety forms a strong hydrogen bond to the exposed N atoms in the bpz heterocycle. At some point afterwards, a PCET reaction takes place in which an electron from the O atom of the hydrogen bond transfers to the metal center, and the proton forming the hydrogen bond remains on the bpz ligand N atom. The result is a semiquinone radical (HQ˙), whose TREPR spectrum is strongly polarized by the triplet mechanism (TM) of chemically induced dynamic electron spin polarization (CIDEP). Closer examination of the CIDEP pattern reveals, in some cases, a small amount of radical pair mechanism (RPM) polarization. We hypothesize that when the HQ moiety has electron donating groups (EDGs) substituted on the ring, S-T- RPM polarization is observed in HQ˙. These anomalous intensities are accounted for by spectral simulation using polarization from S-T- mixing. The generation of S-T- RPM is attributed to slow radical separation after PCET due to stabilization of the positive charge on the ring by EDGs. Results from a temperature dependence support the hypothesis.


Location and dynamics of basic peptides at the membrane interface: electron paramagnetic resonance spectroscopy of tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid-labeled peptides.

  • K G Victor‎ et al.
  • Biophysical journal‎
  • 2001‎

The attractive interaction between basic protein domains and membranes containing acidic lipids is critical to the membrane attachment of many proteins involved in cell signaling. In this study, a series of charged model peptides containing lysine, phenylalanine, and the spin-labeled amino acid tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid (TOAC) were synthesized, and electron paramagnetic resonance (EPR) spectroscopy was used to determine their position on the membrane interface and free energy of binding. When membrane-bound, peptides containing only lysine and TOAC assume an equilibrium position within the aqueous double layer at a distance of approximately 5 A from the membrane interface, a result that is consistent with recent computational work. Substitution of two or more lysine residues by phenylalanine dramatically slows the backbone diffusion of these peptides and shifts their equilibrium position by 13-15 A so that the backbone lies several angstroms below the level of the lipid phosphate. These results are consistent with the hypothesis that the position and free energy of basic peptides when bound to membranes are determined by a long-range Coulombic attraction, the hydrophobic effect, and a short-range desolvation force. The differences in binding free energy within this set of charged peptides is not well accounted for by the simple addition of free energies based upon accepted side chain partition free energies, a result that appears to be in part due to differences in membrane localization of these peptides.


Dimerization interface and dynamic properties of yeast IF1 revealed by Site-Directed Spin Labeling EPR spectroscopy.

  • Nolwenn Le Breton‎ et al.
  • Biochimica et biophysica acta‎
  • 2016‎

The mitochondrial ATPase inhibitor, IF1, regulates the activity of the mitochondrial ATP synthase. The oligomeric state of IF1 related to pH is crucial for its inhibitory activity. Although extensive structural studies have been performed to characterize the oligomeric states of bovine IF1, only little is known concerning those of yeast IF1. While bovine IF1 can be found as an inhibitory dimer at low pH and a non-inhibitory tetramer at high pH, a monomer/dimer equilibrium has been described for yeast IF1, high pH values favoring the monomeric state. Combining different strategies involving the grafting of nitroxide spin labels combined with Electron Paramagnetic Resonance (EPR) spectroscopy, the present study brings the first structural characterization, at the residue level, of yeast IF1 in its dimeric form. The results show that the dimerization interface involves the central region of the peptide revealing that the dimer corresponds to a non-inhibitory state. Moreover, we demonstrate that the C-terminal region of the peptide is highly dynamic and that this segment is probably folded back onto the central region. Finally, the pH-dependence of the inter-label distance distribution has been observed indicating a conformational change between two structural states in the dimer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: