Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 710 papers

Integrating proteomics with electrochemistry for identifying kinase biomarkers.

  • Einav Amit‎ et al.
  • Chemical science‎
  • 2015‎

We present an integrated approach for highly sensitive identification and validation of substrate-specific kinases as cancer biomarkers. Our approach combines phosphoproteomics for high throughput cancer-related biomarker discovery from patient tissues and an impedimetric kinase activity biosensor for sensitive validation. Using non-small-cell lung cancer (NSCLC) as a proof-of-concept study, label-free quantitative phosphoproteomic analysis of a pair of cancerous and its adjacent normal tissues revealed 198 phosphoproteins that are over-phosphorylated in NSCLC. Among the differentially regulated phosphorylation sites, the most significant alteration was in residue S165 in the Hepatoma Derived Growth Factor (HDGF) protein. Hence, HDGF was selected as a model system for the electrochemical studies. Further motif-based analysis of this altered phosphorylation site revealed that extracellular-signal-regulated kinase 1/2 (ERK1/2) are most likely to be the corresponding kinases. For validation of the kinase-substrate pair, densely packed peptide monolayers corresponding to the HDGF phosphorylation site were coupled to a gold electrode. Phosphorylation of the monolayer by ERK2 and dephosphorylation by alkaline phosphatase (AP) were detected by electrochemical impedance spectroscopy (EIS) and surface roughness analysis. Compared to other methods for quantification of kinase concentration, this label-free electrochemical assay offers the advantages of ultra-sensitivity as well as higher specificity for the detection of cancer-related kinase-substrate pair. With implementation of multiple kinase-substrate biomarker pairs, we expect this integrated approach to become a high throughput platform for discovery and validation of phosphorylation-mediated biomarkers.


Electrochemistry of Thin Films and Nanostructured Materials.

  • Grzegorz Dariusz Sulka‎
  • Molecules (Basel, Switzerland)‎
  • 2023‎

In the last few decades, the development and use of thin films and nanostructured materials to enhance physical and chemical properties of materials has been common practice in the field of materials science and engineering. The progress which has recently been made in tailoring the unique properties of thin films and nanostructured materials, such as a high surface area to volume ratio, surface charge, structure, anisotropic nature, and tunable functionalities, allow expanding the range of their possible applications from mechanical, structural, and protective coatings to electronics, energy storage systems, sensing, optoelectronics, catalysis, and biomedicine. Recent advances have also focused on the importance of electrochemistry in the fabrication and characterization of functional thin films and nanostructured materials, as well as various systems and devices based on these materials. Both cathodic and anodic processes are being extensively developed in order to elaborate new procedures and possibilities for the synthesis and characterization of thin films and nanostructured materials.


Dynamically imaging collision electrochemistry of single electrochemiluminescence nano-emitters.

  • Cheng Ma‎ et al.
  • Chemical science‎
  • 2018‎

The quest for new techniques to measure single nanomaterials is a great impetus to research efforts to understand individual behaviours. Here, we develop an electrochemiluminescence (ECL) microscopy for visualization of stochastic collision electrochemistry of single nano-emitters without the interference of current and optical background. This design uses a water-immersion objective to capture the ECL emission of nanoparticles near the specular electrode surface for enhancing light collection efficiency. The approach enables us to trace the collision trajectory of multiple nanoparticles and spatially distinguish simultaneous collisions. Results reveal that collision types, frequencies and ECL intensities significantly depend on surface natures, particle concentrations, and diffusion fluxes. By recording successive collisions, we develop a "relay probe" sensing platform for long-term research. This imaging technique displays great potential for applications in single-particle electrochemical and analytical research.


Geodesic-Planar Conjugates: Substituted Buckybowls-Synthesis, Photoluminescence and Electrochemistry.

  • Johannes Bayer‎ et al.
  • Chemistry (Weinheim an der Bergstrasse, Germany)‎
  • 2020‎

C-C cross coupling products of bowl-shaped as-indaceno[3,2,1,8,7,6-pqrstuv]picene (Idpc) and different planar arenes and ethynyl-arenes were synthesized. Photoluminescence as well as electrochemical properties of all products were investigated and complemented by time-dependent quantum chemical calculations. UV/Vis spectroelectrochemistry investigations of the directly linked (Idpc)2 indicated the absence of any intramolecular charge-transfer transition of intermittently formed (Idpc)2 .- . All coupling products showed fluorescence. Ferrocene-1-yl-Idpc was structurally characterized by X-ray diffraction and is a rare example of a ferrocene-containing buckybowl exhibiting luminescence.


Ring Ultramicroelectrodes for Current-Blockade Particle-Impact Electrochemistry.

  • Taghi Moazzenzade‎ et al.
  • Analytical chemistry‎
  • 2022‎

In current-blockade impact electrochemistry, insulating particles are detected amperometrically as they impinge upon a micro- or nanoelectrode via a decrease in the faradaic current caused by a redox mediator. A limit of the method is that analytes of a given size yield a broad distribution of response amplitudes due to the inhomogeneities of the mediator flux at the electrode surface. Here, we overcome this limitation by introducing microfabricated ring-shaped electrodes with a width that is significantly smaller than the size of the target particles. We show that the relative step size is somewhat larger and exhibits a narrower distribution than at a conventional ultramicroelectrode of equal diameter.


Synthesis, structure, electrochemistry, and cytotoxic properties of ferrocenyl ester derivatives.

  • Li Ming Gao‎ et al.
  • Metal-based drugs‎
  • 2009‎

A series of ferrocenyl ester complexes, varying the lipophilic character of the pendant groups, was prepared and characterized by spectroscopic and analytical methods. The syntheses of Fe(C(5)H(4)CO(2)CH(3))(2), Fe(CpCOOCH(3)) (CpCOO CH(2)CH(3)), and Fe(CpCOOCH(2)CH(3))(2) are reported. The solid-state structure of Fe(C(5)H(4)CO(2)CH(3))(2) has been determined by X-ray crystallography. Fe(C(5)H(4)CO(2)CH(3))(2) has the cyclopentadienyl rings virtually in an eclipsed conformation with the pendant groups not completely opposite to each other. Cyclic voltammetry characterization showed that the functionalized ferrocenes oxidize at potentials, E(pa), higher than ferrocene as a result of the electro withdrawing effect of the pendant groups on the cyclopentadienyl ligand. The cytotoxicities of Fe(C(5)H(4)CO(2)CH(2)CH(2)OH)(2), Fe(C(5)H(4)CO(2)CH(2)CH=CH(2))(2), Fe(C(5)H(4)CO(2)CH(3))(2), Fe(CpCOOCH(3))(CpCOOCH(2)CH(3)), and Fe(CpCOOCH(2)CH(3))(2) in colon cancer HT-29 and breast cancer MCF-7 cell lines were measured by the MTT biological viability assay and compared to ferrocene and ferrocenium. Fe(C(5)H(4)CO(2)CH(2)CH=CH(2))(2) showed the best IC(50) values, 180(10) muM for HT-29 and 190(30) muM for MCF-7 cell lines, with cytotoxicities similar to ferrocenium. The cytotoxic data suggest that as we increase the lipophilic character of the functionalized ferrocene, the cytotoxicity improves approaching to the cytotoxic activity of ferrocenium.


Magnetoreception of Photoactivated Cryptochrome 1 in Electrochemistry and Electron Transfer.

  • Zheng Zeng‎ et al.
  • ACS omega‎
  • 2018‎

Cryptochromes are flavoproteins whose photochemistry is important for crucial functions associated with phototropism and circadian clocks. In this report, we, for the first time, observed a magnetic response of the cryptochrome 1 (CRY1) immobilized at a gold electrode with illumination of blue light. These results present the magnetic field-enhanced photoinduced electron transfer of CRY1 to the electrode by voltammetry, exhibiting magnetic responsive rate constant and electrical current changes. A mechanism of the electron transfer, which involves photoinduced radicals in the CRY, is sensitive to the weak magnetic field; and the long-lived free radical FAD•- is responsible for the detected electrochemical Faradaic current. As a photoreceptor, the finding of a 5.7% rate constant change in electron transfer corresponding to a 50 μT magnetic field may be meaningful in regulation of magnetic field signaling and circadian clock function under an electromagnetic field.


On the improved electrochemistry of hybrid conducting-redox polymer electrodes.

  • Louis Sieuw‎ et al.
  • Scientific reports‎
  • 2017‎

The electrochemistry of poly(2,5-dihydroxyaniline) (PDHA), a novel hybrid molecular configuration with redox active sites and electrical charge conduction along the polymer chain, has been recently reported. The theoretical capacity of this material is estimated at 443 mAh g-1, with high power performances being proposed given the intrinsic electrical conductivity. However, the initial results were below the expectations: only half the theoretical capacity attained, poor cycling stability and modest power behavior calling for further investigations on improving these performances. Herein we detail the optimized chemical synthesis and electrode formulation for poly(2,5-dihydroxyaniline) resulting in improved cycling stability, power performances and defined electrochemical response. We also detail the alternative electrochemical synthesis and activation route for PDHA and compare the results with the chemical approach.


Redox-Rich Metallocene Tetrazene Complexes: Synthesis, Structure, Electrochemistry, and Catalysis.

  • Stefan Vanicek‎ et al.
  • Organometallics‎
  • 2019‎

Thermal or photochemical metal-centered cycloaddition reactions of azidocobaltocenium hexafluoridophosphate or azidoferrocene with (cyclooctadiene)(cyclopentadienyl)cobalt(I) afforded the first metallocenyl-substituted tetrazene cyclopentadienyl cobalt complexes together with azocobaltocenium or azoferrocene as side products. The trimetallic CpCo compounds are highly conjugated, colored, and redox-active metallo-aromatic compounds, as shown by their spectroscopic, structural, and electrochemical properties. The CpCo-tetrazenido complex with two terminally appended cobaltocene units catalyzes electrochemical proton reduction from acetic acid at a mild overpotential (0.35 V). Replacing cobaltocene with ferrocene moieties rendered the complex inactive toward catalysis.


Electrochemistry and Rapid Electrochromism Control of MoO3/V2O5 Hybrid Nanobilayers.

  • Chung-Chieh Chang‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2019‎

MoO3/V2O5 hybrid nanobilayers are successfully prepared by the sol-gel method with a spin- coating technique followed by heat -treatment at 350 °C in order to achieve a good crystallinity. The composition, morphology, and microstructure of the nanobilayers are characterized by a scanning electron microscope (SEM) and X-ray diffractometer (XRD) that revealed the a grain size of around 20-30 nm, and belonging to the monoclinic phase. The samples show good reversibility in the cyclic voltammetry studies and exhibit an excellent response to the visible transmittance. The electrochromic (EC) window displayed an optical transmittance changes (ΔT) of 22.65% and 31.4% at 550 and 700 nm, respectively, with the rapid response time of about 8.2 s for coloration and 6.3 s for bleaching. The advantages, such as large optical transmittance changes, rapid electrochromism control speed, and excellent cycle durability, demonstrated in the electrochromic cell proves the potential application of MoO3/V2O5 hybrid nanobilayers in electrochromic devices.


Wireless magneto-ionics: voltage control of magnetism by bipolar electrochemistry.

  • Zheng Ma‎ et al.
  • Nature communications‎
  • 2023‎

Modulation of magnetic properties through voltage-driven ion motion and redox processes, i.e., magneto-ionics, is a unique approach to control magnetism with electric field for low-power memory and spintronic applications. So far, magneto-ionics has been achieved through direct electrical connections to the actuated material. Here we evidence that an alternative way to reach such control exists in a wireless manner. Induced polarization in the conducting material immersed in the electrolyte, without direct wire contact, promotes wireless bipolar electrochemistry, an alternative pathway to achieve voltage-driven control of magnetism based on the same electrochemical processes involved in direct-contact magneto-ionics. A significant tunability of magnetization is accomplished for cobalt nitride thin films, including transitions between paramagnetic and ferromagnetic states. Such effects can be either volatile or non-volatile depending on the electrochemical cell configuration. These results represent a fundamental breakthrough that may inspire future device designs for applications in bioelectronics, catalysis, neuromorphic computing, or wireless communications.


Electrochemistry in Micro- and Nanochannels Controlled by Streaming Potentials.

  • Zinaida A Kostiuchenko‎ et al.
  • The journal of physical chemistry. C, Nanomaterials and interfaces‎
  • 2020‎

Fluid and charge transport in micro- and nanoscale fluidic systems are intrinsically coupled via electrokinetic phenomena. While electroosmotic flows and streaming potentials are well understood for externally imposed stimuli, charge injection at electrodes localized inside fluidic systems via electrochemical processes remains to a large degree unexplored. Here, we employ ultramicroelectrodes and nanogap electrodes to study the subtle interplay between ohmic drops, streaming currents, and faradaic processes in miniaturized channels at low concentrations of supporting electrolyte. We show that electroosmosis can, under favorable circumstances, counteract the effect of ohmic losses and shift the apparent formal potential of redox reactions. This interplay can be described by simple circuit models, such that the results described here can be adapted to other micro- and nanofluidic electrochemical systems.


Electrochemistry of Tetrathiafulvalene Ligands Assembled on the Surface of Gold Nanoparticles.

  • Jiří Janoušek‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

The synthesis of a tetrathiafulvalene (TTF) derivative, S-[4-({4-[(2,2'-bi-1,3-dithiol-4-ylmethoxy)methyl] phenyl}ethynyl)phenyl] ethanethioate, suitable for the modification of gold nanoparticles (AuNPs), is described in this article. The TTF ligand was self-assembled on the AuNP surface through ligand exchange, starting from dodecanethiol-stabilized AuNPs. The resulting modified AuNPs were characterized by TEM, UV-Vis spectroscopy, and electrochemistry. The most suitable electrochemical method was the phase-sensitive AC voltammetry at very low frequencies of the sine-wave perturbation. The results indicate a diminishing electronic communication between the two equivalent redox centers of TTF and also intermolecular donor-acceptor interactions manifested by an additional oxidation wave upon attachment of the ligand to AuNPs.


Resonance Raman Spectro-Electrochemistry to Illuminate Photo-Induced Molecular Reaction Pathways.

  • Linda Zedler‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Electron transfer reactions play a key role for artificial solar energy conversion, however, the underlying reaction mechanisms and the interplay with the molecular structure are still poorly understood due to the complexity of the reaction pathways and ultrafast timescales. In order to investigate such light-induced reaction pathways, a new spectroscopic tool has been applied, which combines UV-vis and resonance Raman spectroscopy at multiple excitation wavelengths with electrochemistry in a thin-layer electrochemical cell to study [RuII(tbtpy)₂]2+ (tbtpy = tri-tert-butyl-2,2':6',2''-terpyridine) as a model compound for the photo-activated electron donor in structurally related molecular and supramolecular assemblies. The new spectroscopic method substantiates previous suggestions regarding the reduction mechanism of this complex by localizing photo-electrons and identifying structural changes of metastable intermediates along the reaction cascade. This has been realized by monitoring selective enhancement of Raman-active vibrations associated with structural changes upon electronic absorption when tuning the excitation wavelength into new UV-vis absorption bands of intermediate structures. Additional interpretation of shifts in Raman band positions upon reduction with the help of quantum chemical calculations provides a consistent picture of the sequential reduction of the individual terpyridine ligands, i.e., the first reduction results in the monocation [(tbtpy)Ru(tbtpy•)]⁺, while the second reduction generates [(tbtpy•)Ru(tbtpy•)]0 of triplet multiplicity. Therefore, the combination of this versatile spectro-electrochemical tool allows us to deepen the fundamental understanding of light-induced charge transfer processes in more relevant and complex systems.


Lignin-Based Carbon Nanofibers as Electrodes for Vanadium Redox Couple Electrochemistry.

  • Jose Francisco Vivo-Vilches‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2019‎

Three different types of lignin (kraft, organosolv and phosphoric acid lignin) were characterized and tested as precursors of electrospun nanofibers. Polyethylene oxide (PEO) was added as a plasticizer and dimethyl formamide (DMF) employed as a solvent. It was found that the molecular weight of lignin was the key parameter to understand the differences of the mechanical stability of the resultant fiber mats. In the case of kraft lignin (KL), the influence of some changes in the synthetic process was also tested: applied voltage, pretreatment in air or not, and the addition of a small amount of Ketjen black. After pyrolysis in nitrogen flow, the obtained carbon nanofibers (CNFs) were characterized by different techniques to analyze their differences in morphology and surface chemistry. Vanadium electrochemistry in 3M sulfuric acid was used to evaluate the different CNFs. All fibers allowed electrochemical reactions, but we observed that the oxidation of V(II) to V(III) was very sensitive to the nature of the raw material. Materials prepared from kraft and phosphorus lignin showed the best performances. Nevertheless, when 1 wt.% of Ketjen black was added to KL during the electrospinning, the electrochemical performance of the sample was significantly improved and all targeted reactions for an all-vanadium redox flow battery were observed. Therefore, in this work, we demonstrated that CNFs obtained by the electrospinning of lignin can be employed as electrodes for vanadium electrochemistry, and their properties can be tuned to improve their electrochemical properties.


Ultra-Low Loading of Gold on Nickel Foam for Nitrogen Electrochemistry.

  • Giuseppe Tranchida‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2023‎

Ammonia (NH3) is widely used in various fields, and it is also considered a promising carbon free energy carrier, due to its high hydrogen content. The nitrogen reduction reaction (NRR), which converts nitrogen into ammonia by using protons from water as the hydrogen source, is receiving a lot of attention, since effective process optimization would make it possible to overcome the Haber-Bosch method. In this study, we used a solution-based approach to obtain functionalized porous Ni foam substrates with a small amount of gold (<0.1 mg cm-1). We investigated several deposition conditions and obtained different morphologies. The electrochemical performance of various catalysts on the hydrogen evolution reaction (HER) and NRR has been characterized. The ammonia production yield was determined by chronoamperometry experiments at several potentials, and the results showed a maximum ammonia yield rate of 20 µg h-1 mgcat-1 and a Faradaic efficiency of 5.22%. This study demonstrates the potential of gold-based catalysts for sustainable ammonia production and highlights the importance of optimizing deposition conditions to improve the selectivity toward HER.


A 4D x-ray computer microtomography for high-temperature electrochemistry.

  • Handong Jiao‎ et al.
  • Science advances‎
  • 2022‎

High-temperature electrochemistry is widely used in many fields. However, real-time observations and an in-depth understanding of the inside evolution of this system from an experimental perspective remain limited because of harsh reaction conditions and multiphysics fields. Here, we tackled this challenge with a high-temperature electrolysis facility developed in-house. This facility permits in situ x-ray computer microtomography (μ-CT) for nondestructive and quantitative three-dimensional (3D) imaging. In an electrorefining system, the μ-CT probed the dynamic evolution of 3D morphology and components of electrodes (4D). Subsequently, this 4D process was visually presented via reconstructed images. The results monitor the efficiency of the process, explore the dynamic mechanisms, and even offer real-time optimization. This 4D analysis platform is notable for in-depth combinations of traditional electrochemistry with digital twin technologies owing to its multiscale visualization and high efficiency of data extraction.


Nanoparticle Printing for Microfluidic Applications: Bipolar Electrochemistry and Localized Raman Sensing Spots.

  • Alessia Broccoli‎ et al.
  • Micromachines‎
  • 2023‎

The local integration of metal nanoparticle films on 3D-structured polydimethylsiloxane (PDMS)-based microfluidic devices is of high importance for applications including electronics, electrochemistry, electrocatalysis, and localized Raman sensing. Conventional processes to locally deposit and pattern metal nanoparticles require multiple steps and shadow masks, or access to cleanroom facilities, and therefore, are relatively imprecise, or time and cost-ineffective. As an alternative, we present an aerosol-based direct-write method, in which patterns of nanoparticles generated via spark ablation are locally printed with sub-mm size and precision inside of microfluidic structures without the use of lithography or other masking methods. As proof of principle, films of Pt or Ag nanoparticles were printed in the chambers of a multiplexed microfluidic device and successfully used for two different applications: Screening electrochemical activity in a high-throughput fashion, and localized sensing of chemicals via surface-enhanced Raman spectroscopy (SERS). The versatility of the approach will enable the generation of functional microfluidic devices for applications that include sensing, high-throughput screening platforms, and microreactors using catalytically driven chemical conversions.


Click-electrochemistry for the rapid labeling of virus, bacteria and cell surfaces.

  • Sébastien Depienne‎ et al.
  • Nature communications‎
  • 2023‎

Methods for direct covalent ligation of microorganism surfaces remain poorly reported, and mostly based on metabolic engineering for bacteria and cells functionalization. While effective, a faster method avoiding the bio-incorporation step would be highly complementary. Here, we used N-methylluminol (NML), a fully tyrosine-selective protein anchoring group after one-electron oxidation, to label the surface of viruses, living bacteria and cells. The functionalization was performed electrochemically and in situ by applying an electric potential to aqueous buffered solutions of tagged NML containing the viruses, bacteria or cells. The broad applicability of the click-electrochemistry method was explored on recombinant adeno-associated viruses (rAAV2), Escherichia coli (Gram-) and Staphyloccocus epidermidis (Gram + ) bacterial strains, and HEK293 and HeLa eukaryotic cell lines. Surface electro-conjugation was achieved in minutes to yield functionalized rAAV2 that conserved both structural integrity and infectivity properties, and living bacteria and cell lines that were still alive and able to divide.


Myoglobin- and Hydroxyapatite-Doped Carbon Nanofiber-Modified Electrodes for Electrochemistry and Electrocatalysis.

  • Juan Liu‎ et al.
  • ACS omega‎
  • 2019‎

In this paper, a hydroxyapatite (HAp)-doped carbon nanofiber (CNF)-modified carbon ionic liquid electrode (CILE) was prepared and used for the investigation on the direct electrochemistry and electrocatalysis of myoglobin (Mb). HAp nanoparticles were mixed within a polyacrylonitrile (PAN) solution, and a HAp@PAN nanofiber was synthesized by electrospinning process, which was further controlled by carbonization at 800 °C for 2 h in a nitrogen atmosphere to get a HAp@CNF nanocomposite. Various techniques were used to check the physicochemical properties of HAp@CNF. Mb was mixed with a HAp@CNF dispersion solution and casted on the surface of CILE to obtain an electrochemical sensing platform. The direct electrochemistry of Mb on the modified electrode was checked when a pair of enhanced redox waves appeared, indicating the direct electron transfer of Mb. HAp@CNF exhibited high conductivity, good biocompatibility, and large surface area, which was beneficial for Mb immobilization. The modified electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid and sodium nitrite, which was further used to establish a new electroanalytical method. Real samples were analyzed by the proposed method with satisfactory results.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: