Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 538 papers

Classification feasibility test on multi-lead electrocardiography signals generated from single-lead electrocardiography signals.

  • Gi-Won Yoon‎ et al.
  • Scientific reports‎
  • 2024‎

Nowadays, Electrocardiogram (ECG) signals can be measured using wearable devices, such as smart watches. Most wearable devices provide only a few details; however, they have the advantage of recording data in real time. In this study, 12-lead ECG signals were generated from lead I and their feasibility was tested to obtain more details. The 12-lead ECG signals were generated using a U-net-based generative adversarial network (GAN) that was trained on ECG data obtained from the Asan Medical Center. Subsequently, unseen PTB-XL PhysioNet data were used to produce real 12-lead ECG signals for classification. The generated and real 12-lead ECG signals were then compared using a ResNet classification model; and the normal, atrial fibrillation (A-fib), left bundle branch block (LBBB), right bundle branch block (RBBB), left ventricular hypertrophy (LVH), and right ventricular hypertrophy (RVH) were classified. The mean precision, recall, and f1-score for the real 12-lead ECG signals are 0.70, 0.72, and 0.70, and that for the generated 12-lead ECG signals are 0.82, 0.80, and 0.81, respectively. In our study, according to the result generated 12-lead ECG signals performed better than real 12-lead ECG.


Ultra-High-Resolution Electrocardiography Enables Earlier Detection of Transmural and Subendocardial Myocardial Ischemia Compared to Conventional Electrocardiography.

  • Kirill V Zaichenko‎ et al.
  • Diagnostics (Basel, Switzerland)‎
  • 2023‎

The sensitivity of exercise ECG is marginally sufficient for the detection of mild reduction of coronary blood flow in patients with early coronary atherosclerosis. Here, we describe the application of a new technique of ECG registration/analysis-ultra-high-resolution ECG (UHR ECG)-for early detection of myocardial ischemia (MIS). The utility of UHR ECG vs. conventional ECG (C ECG) was tested in anesthetized rats and pigs. Transmural MIS was induced in rats by the ligation of the left coronary artery (CA). In pigs, subendocardial ischemia of a variable extent was produced by stepwise inflation of a balloon within the right CA, causing a 25-100% reduction of its lumen. In rats, a reduction in power spectral density (PSD) in the high-frequency (HF) channel of UHR ECG was registered at 60 s after ischemia (power 0.81 ± 0.14 vs. 1.25 ± 0.12 mW at baseline, p < 0.01). This was not accompanied by any ST segment elevation on C ECG. In pigs, PSD in the HF channel of UHR ECG was significantly decreased at a 25% reduction of CA lumen, while the ST segment on C ECG remained unchanged. In conclusion, UHR ECG enabled earlier detection of transmural MIS compared to C ECG. PSD in the HF channel of UHR ECG demonstrated greater sensitivity in the settings of subendocardial ischemia.


Inference of ventricular activation properties from non-invasive electrocardiography.

  • Julia Camps‎ et al.
  • Medical image analysis‎
  • 2021‎

The realisation of precision cardiology requires novel techniques for the non-invasive characterisation of individual patients' cardiac function to inform therapeutic and diagnostic decision-making. Both electrocardiography and imaging are used for the clinical diagnosis of cardiac disease. The integration of multi-modal datasets through advanced computational methods could enable the development of the cardiac 'digital twin', a comprehensive virtual tool that mechanistically reveals a patient's heart condition from clinical data and simulates treatment outcomes. The adoption of cardiac digital twins requires the non-invasive efficient personalisation of the electrophysiological properties in cardiac models. This study develops new computational techniques to estimate key ventricular activation properties for individual subjects by exploiting the synergy between non-invasive electrocardiography, cardiac magnetic resonance (CMR) imaging and modelling and simulation. More precisely, we present an efficient sequential Monte Carlo approximate Bayesian computation-based inference method, integrated with Eikonal simulations and torso-biventricular models constructed based on clinical CMR imaging. The method also includes a novel strategy to treat combined continuous (conduction speeds) and discrete (earliest activation sites) parameter spaces and an efficient dynamic time warping-based ECG comparison algorithm. We demonstrate results from our inference method on a cohort of twenty virtual subjects with cardiac ventricular myocardial-mass volumes ranging from 74 cm3 to 171 cm3 and considering low versus high resolution for the endocardial discretisation (which determines possible locations of the earliest activation sites). Results show that our method can successfully infer the ventricular activation properties in sinus rhythm from non-invasive epicardial activation time maps and ECG recordings, achieving higher accuracy for the endocardial speed and sheet (transmural) speed than for the fibre or sheet-normal directed speeds.


Electrocardiography Abnormalities in Macaques after Infection with Encephalitic Alphaviruses.

  • Henry Ma‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2019‎

Eastern (EEEV) and Venezuelan (VEEV) equine encephalitis viruses (EEVs) are related, (+) ssRNA arboviruses that can cause severe, sometimes fatal, encephalitis in humans. EEVs are highly infectious when aerosolized, raising concerns for potential use as biological weapons. No licensed medical countermeasures exist; given the severity/rarity of natural EEV infections, efficacy studies require animal models. Cynomolgus macaques exposed to EEV aerosols develop fever, encephalitis, and other clinical signs similar to humans. Fever is nonspecific for encephalitis in macaques. Electrocardiography (ECG) metrics may predict onset, severity, or outcome of EEV-attributable disease. Macaques were implanted with thermometry/ECG radiotransmitters and exposed to aerosolized EEV. Data was collected continuously, and repeated-measures ANOVA and frequency-spectrum analyses identified differences between courses of illness and between pre-exposure and post-exposure states. EEEV-infected macaques manifested widened QRS-intervals in severely ill subjects post-exposure. Moreover, QT-intervals and RR-intervals decreased during the febrile period. VEEV-infected macaques suffered decreased QT-intervals and RR-intervals with fever onset. Frequency-spectrum analyses revealed differences in the fundamental frequencies of multiple metrics in the post-exposure and febrile periods compared to baseline and confirmed circadian dysfunction. Heart rate variability (HRV) analyses revealed diminished variability post-exposure. These analyses support using ECG data alongside fever and clinical laboratory findings for evaluating medical countermeasure efficacy.


PTB-XL, a large publicly available electrocardiography dataset.

  • Patrick Wagner‎ et al.
  • Scientific data‎
  • 2020‎

Electrocardiography (ECG) is a key non-invasive diagnostic tool for cardiovascular diseases which is increasingly supported by algorithms based on machine learning. Major obstacles for the development of automatic ECG interpretation algorithms are both the lack of public datasets and well-defined benchmarking procedures to allow comparison s of different algorithms. To address these issues, we put forward PTB-XL, the to-date largest freely accessible clinical 12-lead ECG-waveform dataset comprising 21837 records from 18885 patients of 10 seconds length. The ECG-waveform data was annotated by up to two cardiologists as a multi-label dataset, where diagnostic labels were further aggregated into super and subclasses. The dataset covers a broad range of diagnostic classes including, in particular, a large fraction of healthy records. The combination with additional metadata on demographics, additional diagnostic statements, diagnosis likelihoods, manually annotated signal properties as well as suggested folds for splitting training and test sets turns the dataset into a rich resource for the development and the evaluation of automatic ECG interpretation algorithms.


Portable out-of-hospital electrocardiography: A review of current technologies.

  • Agam Bansal‎ et al.
  • Journal of arrhythmia‎
  • 2018‎

Availability of portable and home-based electrocardiography (ECG) is an important medical innovation, which has a potential to transform medical care. We performed this review to understand the current state of out-of-hospital portable ECG technologies with respect to their scope, ease of use, data transmission capabilities, and diagnostic accuracy.


Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography.

  • Joon-Myoung Kwon‎ et al.
  • Scandinavian journal of trauma, resuscitation and emergency medicine‎
  • 2020‎

In-hospital cardiac arrest is a major burden in health care. Although several track-and-trigger systems are used to predict cardiac arrest, they often have unsatisfactory performances. We hypothesized that a deep-learning-based artificial intelligence algorithm (DLA) could effectively predict cardiac arrest using electrocardiography (ECG). We developed and validated a DLA for predicting cardiac arrest using ECG.


Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography.

  • Younghoon Cho‎ et al.
  • Scientific reports‎
  • 2020‎

Rapid diagnosis of myocardial infarction (MI) using electrocardiography (ECG) is the cornerstone of effective treatment and prevention of mortality; however, conventional interpretation methods has low reliability for detecting MI and is difficulty to apply to limb 6-lead ECG based life type or wearable devices. We developed and validated a deep learning-based artificial intelligence algorithm (DLA) for detecting MI using 6-lead ECG. A total of 412,461 ECGs were used to develop a variational autoencoder (VAE) that reconstructed precordial 6-lead ECG using limb 6-lead ECG. Data from 9536, 1301, and 1768 ECGs of adult patients who underwent coronary angiography within 24 h from each ECG were used for development, internal and external validation, respectively. During internal and external validation, the area under the receiver operating characteristic curves of the DLA with VAE using a 6-lead ECG were 0.880 and 0.854, respectively, and the performances were preserved by the territory of the coronary lesion. Our DLA successfully detected MI using a 12-lead ECG or a 6-lead ECG. The results indicate that MI could be detected not only with a conventional 12 lead ECG but also with a life type 6-lead ECG device that employs our DLA.


Validation of a Low-Cost Electrocardiography (ECG) System for Psychophysiological Research.

  • Ruth Erna Wagner‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2021‎

The reliability of low-cost mobile systems for recording Electrocardiographic (ECG) data is mostly unknown, posing questions regarding the quality of the recorded data and the validity of the extracted physiological parameters. The present study compared the BITalino toolkit with an established medical-grade ECG system (BrainAmp-ExG).


Electrocardiography clues in assessment of patients with premature ventricular contractions.

  • Ahmet Akdi‎ et al.
  • Turkish journal of medical sciences‎
  • 2021‎

Some electrocardiography (ECG) parameters such as Tp-e interval, Tp-e / QT ratio, fragmented QRS (fQRS), and heart rate variability (HRV) are related to cardiovascular mortality and morbidity. We aim to investigate the relation between premature ventricular contraction burden and these parameters on 24-h ECG recording.


Self-Adherent Biodegradable Gelatin-Based Hydrogel Electrodes for Electrocardiography Monitoring.

  • Yechan Lee‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2020‎

Patch-type hydrogel electrodes have received increasing attention in biomedical applications due to their high biocompatibility and conformal adherence. However, their poor mechanical properties and non-uniform electrical performance in a large area of the hydrogel electrode should be improved for use in wearable devices for biosignal monitoring. Here, we developed self-adherent, biocompatible hydrogel electrodes composed of biodegradable gelatin and conductive polymers for electrocardiography (ECG) measurement. After incorporating conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) into gelatin hydrogels crosslinked by natural crosslinkers (genipin), the mechanical properties and electrical conductivity of the hydrogel electrodes were improved and additionally optimized by adjusting the amounts of crosslinker and PEDOT:PSS, respectively. Furthermore, the effect of dimethyl sulfoxide, as a dopant, on the conductivity of hydrogels was investigated. The gelatin-based, conductive hydrogel patch displayed self-adherence to human skin with an adhesive strength of 0.85 N and achieved conformal contact with less skin irritation compared to conventional electrodes with a chemical adhesive layer. Eyelet-type hydrogel electrodes, which were compatible with conventional ECG measurement instruments, exhibited a comparable performance in 12-lead human ECG measurement with commercial ECG clinical electrodes (3M Red Dot). These self-adherent, biocompatible, gelatin-based hydrogel electrodes could be used for monitoring various biosignals, such as in electromyography and electroencephalography.


Polyphonic sonification of electrocardiography signals for diagnosis of cardiac pathologies.

  • Jakob Nikolas Kather‎ et al.
  • Scientific reports‎
  • 2017‎

Electrocardiography (ECG) data are multidimensional temporal data with ubiquitous applications in the clinic. Conventionally, these data are presented visually. It is presently unclear to what degree data sonification (auditory display), can enable the detection of clinically relevant cardiac pathologies in ECG data. In this study, we introduce a method for polyphonic sonification of ECG data, whereby different ECG channels are simultaneously represented by sound of different pitch. We retrospectively applied this method to 12 samples from a publicly available ECG database. We and colleagues from our professional environment then analyzed these data in a blinded way. Based on these analyses, we found that the sonification technique can be intuitively understood after a short training session. On average, the correct classification rate for observers trained in cardiology was 78%, compared to 68% and 50% for observers not trained in cardiology or not trained in medicine at all, respectively. These values compare to an expected random guessing performance of 25%. Strikingly, 27% of all observers had a classification accuracy over 90%, indicating that sonification can be very successfully used by talented individuals. These findings can serve as a baseline for potential clinical applications of ECG sonification.


Assessment of cardiac variables using a new electrocardiography lead system in horses.

  • Worakij Cherdchutham‎ et al.
  • Veterinary world‎
  • 2020‎

The objective of this study was to assess a new lead system method to improve electrocardiographic measurement in horses.


Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity.

  • Yong-Soo Baek‎ et al.
  • Scientific reports‎
  • 2023‎

Despite challenges in severity scoring systems, artificial intelligence-enhanced electrocardiography (AI-ECG) could assist in early coronavirus disease 2019 (COVID-19) severity prediction. Between March 2020 and June 2022, we enrolled 1453 COVID-19 patients (mean age: 59.7 ± 20.1 years; 54.2% male) who underwent ECGs at our emergency department before severity classification. The AI-ECG algorithm was evaluated for severity assessment during admission, compared to the Early Warning Scores (EWSs) using the area under the curve (AUC) of the receiver operating characteristic curve, precision, recall, and F1 score. During the internal and external validation, the AI algorithm demonstrated reasonable outcomes in predicting COVID-19 severity with AUCs of 0.735 (95% CI: 0.662-0.807) and 0.734 (95% CI: 0.688-0.781). Combined with EWSs, it showed reliable performance with an AUC of 0.833 (95% CI: 0.830-0.835), precision of 0.764 (95% CI: 0.757-0.771), recall of 0.747 (95% CI: 0.741-0.753), and F1 score of 0.747 (95% CI: 0.741-0.753). In Cox proportional hazards models, the AI-ECG revealed a significantly higher hazard ratio (HR, 2.019; 95% CI: 1.156-3.525, p = 0.014) for mortality, even after adjusting for relevant parameters. Therefore, application of AI-ECG has the potential to assist in early COVID-19 severity prediction, leading to improved patient management.


Echocardiography to supplement stress electrocardiography in emergency department chest pain patients.

  • Mark I Langdorf‎ et al.
  • The western journal of emergency medicine‎
  • 2010‎

Chest pain (CP) patients in the Emergency Department (ED) present a diagnostic dilemma, with a low prevalence of coronary disease but grave consequences with misdiagnosis. A common diagnostic strategy involves ED cardiac monitoring while excluding myocardial necrosis, followed by stress testing. We sought to describe the use of stress echocardiography (echo) at our institution, to identify cardiac pathology compared with stress electrocardiography (ECG) alone.


Artificial intelligence opportunities in cardio-oncology: Overview with spotlight on electrocardiography.

  • Daniel Sierra-Lara Martinez‎ et al.
  • American heart journal plus : cardiology research and practice‎
  • 2022‎

Cardiovascular disease is a leading cause of death among cancer survivors, second only to cancer recurrence or development of new tumors. Cardio-oncology has therefore emerged as a relatively new specialty focused on prevention and management of cardiovascular consequences of cancer therapies. Yet challenges remain regarding precision and accuracy with predicting individuals at highest risk for cardiotoxicity. Barriers such as access to care also limit screening and early diagnosis to improve prognosis. Thus, developing innovative approaches for prediction and early detection of cardiovascular illness in this population is critical. In this review, we provide an overview of the present state of machine learning applications in cardio-oncology. We begin by outlining some factors that should be considered while utilizing machine learning algorithms. We then examine research in which machine learning has been applied to improve prediction of cardiac dysfunction in cancer survivors. We also highlight the use of artificial intelligence (AI) in conjunction with electrocardiogram (ECG) to predict cardiac malfunction and also atrial fibrillation (AF), and we discuss the potential role of wearables. Additionally, the article summarizes future prospects and critical takeaways for the application of machine learning in cardio-oncology. This study is the first in a series on artificial intelligence in cardio-oncology, and complements our manuscript on echocardiography and other forms of imaging relevant to cancer survivors cared for in cardiology clinical practice.


Non-Invasive Hemodynamics Monitoring System Based on Electrocardiography via Deep Convolutional Autoencoder.

  • Muammar Sadrawi‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2021‎

This study evaluates cardiovascular and cerebral hemodynamics systems by only using non-invasive electrocardiography (ECG) signals. The Massachusetts General Hospital/Marquette Foundation (MGH/MF) and Cerebral Hemodynamic Autoregulatory Information System Database (CHARIS DB) from the PhysioNet database are used for cardiovascular and cerebral hemodynamics, respectively. For cardiovascular hemodynamics, the ECG is used for generating the arterial blood pressure (ABP), central venous pressure (CVP), and pulmonary arterial pressure (PAP). Meanwhile, for cerebral hemodynamics, the ECG is utilized for the intracranial pressure (ICP) generator. A deep convolutional autoencoder system is applied for this study. The cross-validation method with Pearson's linear correlation (R), root mean squared error (RMSE), and mean absolute error (MAE) are measured for the evaluations. Initially, the ECG is used to generate the cardiovascular waveform. For the ABP system-the systolic blood pressure (SBP) and diastolic blood pressures (DBP)-the R evaluations are 0.894 ± 0.004 and 0.881 ± 0.005, respectively. The MAE evaluations for SBP and DBP are, respectively, 6.645 ± 0.353 mmHg and 3.210 ± 0.104 mmHg. Furthermore, for the PAP system-the systolic and diastolic pressures-the R evaluations are 0.864 ± 0.003 mmHg and 0.817 ± 0.006 mmHg, respectively. The MAE evaluations for systolic and diastolic pressures are, respectively, 3.847 ± 0.136 mmHg and 2.964 ± 0.181 mmHg. Meanwhile, the mean CVP evaluations are 0.916 ± 0.001, 2.220 ± 0.039 mmHg, and 1.329 ± 0.036 mmHg, respectively, for R, RMSE, and MAE. For the mean ICP evaluation in cerebral hemodynamics, the R and MAE evaluations are 0.914 ± 0.003 and 2.404 ± 0.043 mmHg, respectively. This study, as a proof of concept, concludes that the non-invasive cardiovascular and cerebral hemodynamics systems can be potentially investigated by only using the ECG signal.


Noninvasive Fetal Electrocardiography Part II: Segmented-Beat Modulation Method for Signal Denoising.

  • Angela Agostinelli‎ et al.
  • The open biomedical engineering journal‎
  • 2017‎

Fetal well-being evaluation may be accomplished by monitoring cardiac activity through fetal electrocardiography. Direct fetal electrocardiography (acquired through scalp electrodes) is the gold standard but its invasiveness limits its clinical applicability. Instead, clinical use of indirect fetal electrocardiography (acquired through abdominal electrodes) is limited by its poor signal quality.


P wave dispersion on 12-lead electrocardiography in adolescents with neurocardiogenic syncope.

  • Dong-Hyuk Lee‎ et al.
  • Korean journal of pediatrics‎
  • 2016‎

Neurocardiogenic syncope (NCS) is the most frequent cause of fainting during adolescence. Inappropriate cardiovascular autonomic control may be responsible for this clinical event. The head-up tilt test has been considered a diagnostic standard, but it is cumbersome and has a high false-positive rate. We performed a study to evaluate whether P-wave dispersion (PWD) could be a useful electrocardiographic parameter of cardiac autonomic dysfunction in children with NCS.


Artificial intelligence assessment for early detection and prediction of renal impairment using electrocardiography.

  • Joon-Myoung Kwon‎ et al.
  • International urology and nephrology‎
  • 2022‎

Although renal failure is a major healthcare burden globally and the cornerstone for preventing its irreversible progression is an early diagnosis, an adequate and noninvasive tool to screen renal impairment (RI) reliably and economically does not exist. We developed an interpretable deep learning model (DLM) using electrocardiography (ECG) and validated its performance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: