Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 63,281 papers

Biological Soil Crusts as Ecosystem Engineers in Antarctic Ecosystem.

  • Andrea Barrera‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Biological soil crusts (BSC) are considered as pivotal ecological elements among different ecosystems of the world. The effects of these BSC at the micro-site scale have been related to the development of diverse plant species that, otherwise, might be strongly limited by the harsh abiotic conditions found in environments with low water availability. Here, we describe for the first time the bacterial composition of BSCs found in the proximities of Admiralty Bay (Maritime Antarctica) through 16S metabarcoding. In addition, we evaluated their effect on soils (nutrient levels, enzymatic activity, and water retention), and on the fitness and performance of Colobanthus quitensis, one of the two native Antarctic vascular plants. This was achieved by comparing the photochemical performance, foliar nutrient, biomass, and reproductive investment between C. quitensis plants growing with or without the influence of BSC. Our results revealed a high diversity of prokaryotes present in these soil communities, although we found differences in terms of their abundances. We also found that the presence of BSCs is linked to a significant increase in soils' water retention, nutrient levels, and enzymatic activity when comparing with control soils (without BSCs). In the case of C. quitensis, we found that measured ecophysiological performance parameters were significantly higher on plants growing in association with BSCs. Taken together, our results suggest that BSCs in Antarctic soils are playing a key role in various biochemical processes involved in soil development, while also having a positive effect on the accompanying vascular flora. Therefore, BSCs would be effectively acting as ecosystem engineers for the terrestrial Antarctic ecosystem.


Avian ecosystem functions are influenced by small mammal ecosystem engineering.

  • Meredith Root-Bernstein‎ et al.
  • BMC research notes‎
  • 2013‎

Birds are important mobile link species that contribute to landscape-scale patterns by means of pollination, seed dispersal, and predation. Birds are often associated with habitats modified by small mammal ecosystem engineers. We investigated whether birds prefer to forage on degu (Octodon degus) runways by comparing their foraging effort across sites with a range of runway densities, including sites without runways. We measured granivory by granivorous and omnivorous birds at Rinconada de Maipú, central Chile. As a measure of potential bird foraging on insects, we sampled invertebrate prey richness and abundance across the same sites. We then quantified an index of plot-scale functional diversity due to avian foraging at the patch scale.


Integrating Human and Ecosystem Health Through Ecosystem Services Frameworks.

  • Adriana E S Ford‎ et al.
  • EcoHealth‎
  • 2015‎

The pace and scale of environmental change is undermining the conditions for human health. Yet the environment and human health remain poorly integrated within research, policy and practice. The ecosystem services (ES) approach provides a way of promoting integration via the frameworks used to represent relationships between environment and society in simple visual forms. To assess this potential, we undertook a scoping review of ES frameworks and assessed how each represented seven key dimensions, including ecosystem and human health. Of the 84 ES frameworks identified, the majority did not include human health (62%) or include feedback mechanisms between ecosystems and human health (75%). While ecosystem drivers of human health are included in some ES frameworks, more comprehensive frameworks are required to drive forward research and policy on environmental change and human health.


Thresholds of biodiversity and ecosystem function in a forest ecosystem undergoing dieback.

  • P M Evans‎ et al.
  • Scientific reports‎
  • 2017‎

Ecological thresholds, which represent points of rapid change in ecological properties, are of major scientific and societal concern. However, very little research has focused on empirically testing the occurrence of thresholds in temperate terrestrial ecosystems. To address this knowledge gap, we tested whether a number of biodiversity, ecosystem functions and ecosystem condition metrics exhibited thresholds in response to a gradient of forest dieback, measured as changes in basal area of living trees relative to areas that lacked recent dieback. The gradient of dieback was sampled using 12 replicate study areas in a temperate forest ecosystem. Our results provide novel evidence of several thresholds in biodiversity (namely species richness of ectomycorrhizal fungi, epiphytic lichen and ground flora); for ecological condition (e.g. sward height, palatable seedling abundance) and a single threshold for ecosystem function (i.e. soil respiration rate). Mechanisms for these thresholds are explored. As climate-induced forest dieback is increasing worldwide, both in scale and speed, these results imply that threshold responses may become increasingly widespread.


Linking diffuse radiation and ecosystem productivity of a desert steppe ecosystem.

  • Cheng Li‎ et al.
  • PeerJ‎
  • 2020‎

Radiation components have distinct effects on photosynthesis. In the desert steppe ecosystem, the influence of diffuse radiation on carbon fixation has not been thoroughly explored. We examined this diffusion and its effect on ecosystem productivity was examined during the growing season from 2014 to 2015 on the basis of eddy covariance measurements of CO2 exchange in a desert steppe ecosystem in northwest China. Our results indicated that the gross ecosystem production (GEP) and diffuse photosynthetically active radiation (PARdif) peaked when the clearness index (CI) was around 0.5. The maximum canopy photosynthesis (Pmax) under cloudy skies (CI < 0.7) was 23.7% greater than under clear skies (CI ≥ 0.7). When the skies became cloudy in the desert steppe ecosystem, PARdif had a greater effect on GEP. Additionally, lower vapor pressure deficits (VPD ≤ 1 kPa), lower air temperatures (Ta ≤ 20 °C), and non-stressed water conditions (REW ≥ 0.4) were more conducive for enhanced ecosystem photosynthesis under cloudy skies than under clear skies. This may be due to the comprehensive effects of VPD and Ta on stomatal conductance. We concluded that cloudiness can influence diffuse radiation components and that diffuse radiation can increase the ecosystem production of desert steppe ecosystems in northwest China.


Future of evidence ecosystem series: 1. Introduction Evidence synthesis ecosystem needs dramatic change.

  • Isabelle Boutron‎ et al.
  • Journal of clinical epidemiology‎
  • 2020‎

This article presents why the planning, conduct, and reporting of systematic reviews and meta-analyses of therapeutic interventions are suboptimal.


Ecosystem health assessment in the pearl river estuary of China by considering ecosystem coordination.

  • Xiaoyan Chen‎ et al.
  • PloS one‎
  • 2013‎

Marine ecosystem is a complex nonlinear system. However, ecosystem health assessment conventionally builds on a linear superposition of changes in ecosystem components and probably fails to evaluate nonlinear interactions among various components. To better reflect the intrinsic interactions and their impacts on ecosystem health, an ecosystem coordination index, defined as the matching level of ecosystem structure/services, is proposed and incorporated into the ecosystem health index for a systematic diagnosis in the Pearl River Estuary, China. The analysis results show that the ecosystem health index over the last three decades decreased from 0.91 to 0.50, indicating deteriorating from healthy to unhealthy status. The health index is 3-16% lower than that calculated using the common method without considering ecosystem coordination. Ecosystem health degradation in the Pearl River Estuary manifested as significant decreases in structure/services and somewhat mismatching among them. Overall, the introduction of coordination in ecosystem health assessment could improve the understanding of the mechanism of marine ecosystem change and facilitate effective restoration of ecosystem health.


Checklist of Serengeti Ecosystem Grasses.

  • Emma Victoria Williams‎ et al.
  • Biodiversity data journal‎
  • 2016‎

We present the first taxonomic checklist of the Poaceae species of the Serengeti, Tanzania. A review of the literature and herbarium specimens recorded 200 species of grasses, in line with similar studies in other parts of East Africa. The checklist is supported by a total of 939 herbarium collections. Full georeferenced collection data is made available alongside a summary checklist in pdf format. More than a quarter of the species are known from a single collection highlighting the need for further research, especially concerning the rare species and their distribution.


Characterizing the Vector Data Ecosystem.

  • Catherine A Lippi‎ et al.
  • Journal of medical entomology‎
  • 2023‎

A growing body of information on vector-borne diseases has arisen as increasing research focus has been directed towards the need for anticipating risk, optimizing surveillance, and understanding the fundamental biology of vector-borne diseases to direct control and mitigation efforts. The scope and scale of this information, in the form of data, comprising database efforts, data storage, and serving approaches, means that it is distributed across many formats and data types. Data ranges from collections records to molecular characterization, geospatial data to interactions of vectors and traits, infection experiments to field trials. New initiatives arise, often spanning the effort traditionally siloed in specific research disciplines, and other efforts wane, perhaps in response to funding declines, different research directions, or lack of sustained interest. Thusly, the world of vector data - the Vector Data Ecosystem - can become unclear in scope, and the flows of data through these various efforts can become stymied by obsolescence, or simply by gaps in access and interoperability. As increasing attention is paid to creating FAIR (Findable Accessible Interoperable, and Reusable) data, simply characterizing what is 'out there', and how these existing data aggregation and collection efforts interact, or interoperate with each other, is a useful exercise. This study presents a snapshot of current vector data efforts, reporting on level of accessibility, and commenting on interoperability using an illustration to track a specimen through the data ecosystem to understand where it occurs for the database efforts anticipated to describe it (or parts of its extended specimen data).


Ecosystem Coupling and Ecosystem Multifunctionality May Evaluate the Plant Succession Induced by Grazing in Alpine Meadow.

  • Yingxin Wang‎ et al.
  • Frontiers in plant science‎
  • 2022‎

Most alpine meadow on the Tibetan Plateau are at different stages of community succession induced by grazing practices. Quantifying the succession sequence and assessing the dynamics of plant composition, ecosystem coupling, and multifunctionality across successional stages are essential for reasonable restoration of degraded alpine meadow. Here, we selected areas with different grazing disturbance histories and used them as a space series (i.e., space-for-time substitution) to study the community succession. Our work quantified the plant succession sequence of alpine meadow induced by grazing with plant functional group approach. The plant succession sequence is from the tall sedge community with erect growth to the short undesirable toxic forbs community with prostrate growth. Ecosystem coupling, ecosystem multifunctionality and their relationships were all the lowest in Stage 4. Compared to Stage 4, the ecosystem multifunctionality index increased in Stages 1, 2, and 3 by 102.6, 89.8, and 207.6%, respectively; the extent of ecosystem coupling increased by 20.0, 16.8, and 21.2%, respectively. Our results indicated that the driving factors of ecosystem coupling and ecosystem multifunctionality were soil factor individual in early successional stage to plant-soil simultaneously in late successional stage. Our results also highlighted the importance of toxic weeds during the late stage of degraded succession and suggest that the expansion of toxic plants is a consequence of their greater suitability from a successional perspective. The findings of this study would provide valuable guidance for optimizing the management and restoration practice of alpine meadow.


Ecosystem Service and Environmental Health.

  • Porchè L Spence‎ et al.
  • Environmental health insights‎
  • 2015‎

No abstract available


An integrated approach is needed for ecosystem based fisheries management: insights from ecosystem-level management strategy evaluation.

  • Elizabeth A Fulton‎ et al.
  • PloS one‎
  • 2014‎

An ecosystem approach is widely seen as a desirable goal for fisheries management but there is little consensus on what strategies or measures are needed to achieve it. Management strategy evaluation (MSE) is a tool that has been widely used to develop and test single species fisheries management strategies and is now being extended to support ecosystem based fisheries management (EBFM). We describe the application of MSE to investigate alternative strategies for achieving EBFM goals for a complex multispecies fishery in southeastern Australia. The study was undertaken as part of a stakeholder driven process to review and improve the ecological, economic and social performance of the fishery. An integrated management strategy, involving combinations of measures including quotas, gear controls and spatial management, performed best against a wide range of objectives and this strategy was subsequently adopted in the fishery, leading to marked improvements in performance. Although particular to one fishery, the conclusion that an integrated package of measures outperforms single focus measures we argue is likely to apply widely in fisheries that aim to achieve EBFM goals.


Carcass detection and consumption by facultative scavengers in forest ecosystem highlights the value of their ecosystem services.

  • Akino Inagaki‎ et al.
  • Scientific reports‎
  • 2022‎

Scavenging is a common feeding behavior that provides ecosystem services by removing potentially infectious waste from the landscape. The importance of facultative scavenging is often overlooked, but likely becomes especially important in ecosystems without obligate scavengers. Here, we investigated the ecological function of vertebrate facultative scavengers in removing ungulate carcasses from Japanese forests that lack obligate scavengers. We found that mammals detected carcasses first more often than birds, and that raccoon dogs (Nyctereutes procyonoides) were the most frequent scavenger to first detect carcasses. However, we found no evidence of there being species that signal the location of carrion to other species via social cues. Instead, higher temperatures promoted earlier detection of the carcasses by scavengers, likely related to increased olfactory signals. The carcasses were completely consumed on average in 7.0 days, reasonably similar to other systems regardless of habitat, indicating that facultative scavengers are providing ecosystem services. Larger carcasses tended to take longer to deplete, but carcasses were consumed faster in warmer temperatures. Our results indicate that facultative scavengers were capable of consuming carrion and contributing ecosystem services in a forest ecosystem that lacks obligate scavengers.


Inferring ecosystem networks as information flows.

  • Jie Li‎ et al.
  • Scientific reports‎
  • 2021‎

The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring how well historical values of one variable can reliably estimate states of other variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and [Formula: see text]-diversity including their characteristic time delays. We propose an optimal threshold on inferred interactions that maximize accuracy in predicting fluctuations of effective [Formula: see text]-diversity, defined as the count of model-inferred interacting species. Overall OIF outperforms all other models in assessing predictive causality (also in terms of computational complexity) due to the explicit consideration of synchronization, divergence and diversity of events that define model sensitivity, uncertainty and complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks of complex ecosystems from time-series data in the space-time continuum. The accurate inference of species interactions at any biological scale of organization is highly valuable because it allows to predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. This has practical implications for defining optimal ecosystem management and design, such as fish stock prioritization and delineation of marine protected areas based on derived collective multispecies assembly. OIF can be applied to any complex system and used for model evaluation and design where causality should be considered as non-linear predictability of diverse events of populations or communities.


Extremophiles in an Antarctic Marine Ecosystem.

  • Iain Dickinson‎ et al.
  • Microorganisms‎
  • 2016‎

Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF) but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.


An environment-sensitive synthetic microbial ecosystem.

  • Bo Hu‎ et al.
  • PloS one‎
  • 2010‎

Microbial ecosystems have been widely used in industrial production, but the inter-relationships of organisms within them haven't been completely clarified due to complex composition and structure of natural microbial ecosystems. So it is challenging for ecologists to get deep insights on how ecosystems function and interplay with surrounding environments. But the recent progresses in synthetic biology show that construction of artificial ecosystems where relationships of species are comparatively clear could help us further uncover the meadow of those tiny societies. By using two quorum-sensing signal transduction circuits, this research designed, simulated and constructed a synthetic ecosystem where various population dynamics formed by changing environmental factors. Coherent experimental data and mathematical simulation in our study show that different antibiotics levels and initial cell densities can result in correlated population dynamics such as extinction, obligatory mutualism, facultative mutualism and commensalism. This synthetic ecosystem provides valuable information for addressing questions in ecology and may act as a chassis for construction of more complex microbial ecosystems.


The impact of fishing on a highly vulnerable ecosystem, the case of Juan Fernández Ridge ecosystem.

  • Javier Porobic‎ et al.
  • PloS one‎
  • 2019‎

The Juan Fernández Ridge (JFRE) is a vulnerable marine ecosystem (VME) located off the coast of central Chile formed by the Juan Fernández Archipelago and a group of seamounts. This ecosystem has unique biological and oceanographic features, characterized by: small geographical units, high degree of endemism with a high degree of connectivity within the system. Two fleets have historically operated in this system: a long term coastal artisanal fishery associated with the Islands, focused mainly on lobster, and a mainland based industrial demersal finfish fishery operating on the seamounts which is currently considered overexploited. The management of these fisheries has been based on a classical single-species approach to determine output controls (industrial fleet) and a mixed management system with formal and informal components (artisanal fleet). There has been growing interest in increasing the exploitation of fisheries, and modernization of the fishing fleet already operating in the JFRE. Under this scenario of increased levels of fishing exploitation and the high level of interrelation of species it might be necessary to understand the impact of these fisheries from a holistic perspective based on a ecosystem-based modeling approach. To address these challenges we developed an Atlantis end-to-end model was configured for this ecosystem. The implemented model has a high degree of skill in representing the observed trends and fluctuations of the JFRE. The model shows that the industrial fishing has a localized impact and the artisanal fisheries have a relatively low impact on the ecosystem, mainly via the lobster fishery. The model indicates that the depletion of large sized lobster has leads to an increase in the population of sea urchins. Although this increase is not sufficient, as yet, to cause substantial flow-on effects to other groups, caution is advised in case extra pressure leads the ecosystem towards a regime shift.


Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem.

  • Ronnie Solomon‎ et al.
  • The ISME journal‎
  • 2022‎

Unicellular eukaryotes are an integral part of many microbial ecosystems where they interact with their surrounding prokaryotic community-either as predators or as mutualists. Within the rumen, one of the most complex host-associated microbial habitats, ciliate protozoa represent the main micro-eukaryotes, accounting for up to 50% of the microbial biomass. Nonetheless, the extent of the ecological effect of protozoa on the microbial community and on the rumen metabolic output remains largely understudied. To assess the role of protozoa on the rumen ecosystem, we established an in-vitro system in which distinct protozoa sub-communities were introduced to the native rumen prokaryotic community. We show that the different protozoa communities exert a strong and differential impact on the composition of the prokaryotic community, as well as its function including methane production. Furthermore, the presence of protozoa increases prokaryotic diversity with a differential effect on specific bacterial populations such as Gammaproteobacteria, Prevotella and Treponema. Our results suggest that protozoa contribute to the maintenance of prokaryotic diversity in the rumen possibly by mitigating the effect of competitive exclusion between bacterial taxa. Our findings put forward the rumen protozoa populations as potentially important ecosystem engineers for future microbiome modulation strategies.


The Virtuous Cycle of a Data Ecosystem.

  • Bradley Voytek‎
  • PLoS computational biology‎
  • 2016‎

No abstract available


Ecosystem services and agriculture: tradeoffs and synergies.

  • Alison G Power‎
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences‎
  • 2010‎

Agricultural ecosystems provide humans with food, forage, bioenergy and pharmaceuticals and are essential to human wellbeing. These systems rely on ecosystem services provided by natural ecosystems, including pollination, biological pest control, maintenance of soil structure and fertility, nutrient cycling and hydrological services. Preliminary assessments indicate that the value of these ecosystem services to agriculture is enormous and often underappreciated. Agroecosystems also produce a variety of ecosystem services, such as regulation of soil and water quality, carbon sequestration, support for biodiversity and cultural services. Depending on management practices, agriculture can also be the source of numerous disservices, including loss of wildlife habitat, nutrient runoff, sedimentation of waterways, greenhouse gas emissions, and pesticide poisoning of humans and non-target species. The tradeoffs that may occur between provisioning services and other ecosystem services and disservices should be evaluated in terms of spatial scale, temporal scale and reversibility. As more effective methods for valuing ecosystem services become available, the potential for 'win-win' scenarios increases. Under all scenarios, appropriate agricultural management practices are critical to realizing the benefits of ecosystem services and reducing disservices from agricultural activities.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: