Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

The ERG1a potassium channel increases basal intracellular calcium concentration and calpain activity in skeletal muscle cells.

  • Clayton Whitmore‎ et al.
  • Skeletal muscle‎
  • 2020‎

Skeletal muscle atrophy is the net loss of muscle mass that results from an imbalance in protein synthesis and protein degradation. It occurs in response to several stimuli including disease, injury, starvation, and normal aging. Currently, there is no truly effective pharmacological therapy for atrophy; therefore, exploration of the mechanisms contributing to atrophy is essential because it will eventually lead to discovery of an effective therapeutic target. The ether-a-go-go related gene (ERG1A) K+ channel has been shown to contribute to atrophy by upregulating ubiquitin proteasome proteolysis in cachectic and unweighted mice and has also been implicated in calcium modulation in cancer cells.


The erg-like potassium current in rat lactotrophs.

  • R Schäfer‎ et al.
  • The Journal of physiology‎
  • 1999‎

1. The ether-à-go-go-related gene (erg)-like K+ current in rat lactotrophs from primary culture was characterized and compared with that in clonal rat pituitary cells (GH3/B6). The class III antiarrhythmic E-4031 known to block specifically erg K+ channels was used to isolate the erg-like current as the E-4031-sensitive current. The experiments were performed in 150 mM K+ external solution using the patch-clamp technique. 2. The erg-like K+ current elicited with hyperpolarizing pulses negative to -100 mV consisted of a fast and a pronounced slowly deactivating current component. The contribution of the slow component to the total current amplitude was potential dependent and varied from cell to cell. At -100 mV it ranged from 50 to 85% and at -140 mV from 21 to 45%. 3. The potential-dependent channel availability curves determined with 2 s prepulses were fitted with the sum of two Boltzmann functions. The function related to the slowly deactivating component of the erg-like current was shifted by more than 40 mV to more negative membrane potentials compared with that of the fast component. 4. In contrast to that of native lactotrophs studied under identical conditions, the erg-like K+ current of GH3/B6 cells was characterized by a predominant fast deactivating current component, with similar kinetic and steady-state properties to the fast deactivating current component of native lactotrophs. 5. Thyrotrophin-releasing hormone reduced the erg-like current in native lactotrophs via an intracellular signal cascade which seemed to involve a pathway independent from protein kinase A and protein kinase C. 6. RT-PCR studies on cytoplasm from single lactotrophs revealed the presence of mRNA of the rat homologue of the human ether-à-go-go-related gene HERG (r-erg1) as well as mRNA of the two other cloned r-erg cDNAs (r-erg2 and r-erg3) in different combinations. In GH3/B6 cells, only the transcripts of r-erg1 and r-erg2 were found.


Prognostic role of hERG1 Potassium Channels in Neuroendocrine Tumours of the Ileum and Pancreas.

  • Jessica Iorio‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

hERG1 potassium channels are widely expressed in human cancers of different origins, where they affect several key aspects of cellular behaviour. The present study was designed to evaluate the expression and clinical relevance of hERG1 protein in cancer tissues from patients suffering from neuroendocrine tumours (NETs) of ileal (iNETs) and pancreatic (pNETs) origin, with available clinicopathological history and follow-up. The study was carried out by immunohistochemistry with an anti-hERG1 monoclonal antibody. In a subset of samples, a different antibody directed against the hERG1/β1 integrin complex was also used. The analysis showed for the first time that hERG1 is expressed in human NETs originating from either the ileum or the pancreas. hERG1 turned out to have a prognostic value in NETs, showing (i) a statistically significant positive impact on OS of patients affected by ileal NETs, regardless the TNM stage; (ii) a statistically significant positive impact on OS of patients affected by aggressive (TNM stage IV) disease, either ileal or pancreatic; (iii) a trend to a negative impact on OS of patients affected by less aggressive (TNM stage I-III) disease, either ileal or pancreatic. Moreover, in order to evaluate whether ERG1 was functionally expressed in a cellular model of pNET, the INS1E rat insulinoma cell line was used, and it emerged that blocking ERG1 with a specific inhibitor of the channel (E4031) turned out in a significant reduction in cell proliferation.


Ether-à-go-go-related gene K+ channels contribute to threshold excitability of mouse auditory brainstem neurons.

  • Rachael M Hardman‎ et al.
  • The Journal of physiology‎
  • 2009‎

The ionic basis of excitability requires identification and characterisation of expressed channels and their specific roles in native neurons. We have exploited principal neurons of the medial nucleus of the trapezoid body (MNTB) as a model system for examining voltage-gated K(+) channels, because of their known function and simple morphology. Here we show that channels of the ether-à-go-go-related gene family (ERG, Kv11; encoded by kcnh) complement Kv1 channels in regulating neuronal excitability around threshold voltages. Using whole-cell patch clamp from brainstem slices, the selective ERG antagonist E-4031 reduced action potential (AP) threshold and increased firing on depolarisation. In P12 mice, under voltage-clamp with elevated [K(+)](o) (20 mm), a slowly deactivating current was blocked by E-4031 or terfenadine (V(0.5,act) = -58.4 +/- 0.9 mV, V(0.5,inact) = -76.1 +/- 3.6 mV). Deactivation followed a double exponential time course (tau(slow) = 113.8 +/- 6.9 ms, tau(fast) = 33.2 +/- 3.8 ms at -110 mV, tau(fast) 46% peak amplitude). In P25 mice, deactivation was best fitted by a single exponential (tau(fast) = 46.8 +/- 5.8 ms at -110 mV). Quantitative RT-PCR showed that ERG1 and ERG3 were the predominant mRNAs and immunohistochemistry showed expression as somatic plasma membrane puncta on principal neurons. We conclude that ERG currents complement Kv1 currents in limiting AP firing at around threshold; ERG may have a particular role during periods of high activity when [K(+)](o) is elevated. These ERG currents suggest a potential link between auditory hyperexcitability and acoustic startle triggering of cardiac events in familial LQT2.


Muscarinic Acetylcholine Receptors and M-Currents Underlie Efferent-Mediated Slow Excitation in Calyx-Bearing Vestibular Afferents.

  • J Chris Holt‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Stimulation of vestibular efferent neurons excites calyx and dimorphic (CD) afferents. This excitation consists of fast and slow components that differ >100-fold in activation kinetics and response duration. In the turtle, efferent-mediated fast excitation arises in CD afferents when the predominant efferent neurotransmitter acetylcholine (ACh) activates calyceal nicotinic ACh receptors (nAChRs); however, it is unclear whether the accompanying efferent-mediated slow excitation is also attributed to cholinergic mechanisms. To identify synaptic processes underlying efferent-mediated slow excitation, we recorded from CD afferents innervating the turtle posterior crista during electrical stimulation of efferent neurons, in combination with pharmacological probes and mechanical stimulation. Efferent-mediated slow excitation was unaffected by nAChR compounds that block efferent-mediated fast excitation, but were mimicked by muscarine and antagonized by atropine, indicating that it requires ACh and muscarinic ACh receptor (mAChR) activation. Efferent-mediated slow excitation or muscarine application enhanced the sensitivity of CD afferents to mechanical stimulation, suggesting that mAChR activation increases afferent input impedance by closing calyceal potassium channels. These observations were consistent with suppression of a muscarinic-sensitive K+-current, or M-current. Immunohistochemistry for putative M-current candidates suggested that turtle CD afferents express KCNQ3, KCNQ4, and ERG1-3 potassium channel subunits. KCNQ channels were favored as application of the selective antagonist XE991 mimicked and occluded efferent-mediated slow excitation in CD afferents. These data highlight an efferent-mediated mechanism for enhancing afferent sensitivity. They further suggest that the clinical effectiveness of mAChR antagonists in treating balance disorders may also target synaptic mechanisms in the vestibular periphery, and that KCNQ channel modulators might offer similar therapeutic value.SIGNIFICANCE STATEMENT Targeting the efferent vestibular system (EVS) pharmacologically might prove useful in ameliorating some forms of vestibular dysfunction by modifying ongoing primary vestibular input. EVS activation engages several kinetically distinct synaptic processes that profoundly alter the discharge rate and sensitivity of first-order vestibular neurons. Efferent-mediated slow excitation of vestibular afferents is of considerable interest given its ability to elevate afferent activity over an extended time course. We demonstrate for the first time that efferent-mediated slow excitation of vestibular afferents is mediated by muscarinic acetylcholine receptor (mAChR) activation and the subsequent closure of KCNQ potassium channels. The clinical effectiveness of some anti-mAChR drugs in treating motion sickness suggest that we may, in fact, already be targeting the peripheral EVS.


Key role for Kv11.1 (ether-a-go-go related gene) channels in rat bladder contractility.

  • Vincenzo Barrese‎ et al.
  • Physiological reports‎
  • 2023‎

In addition, to their established role in cardiac myocytes and neurons, ion channels encoded by ether-a-go-go-related genes (ERG1-3 or kcnh2,3 and 6) (kcnh2) are functionally relevant in phasic smooth muscle. The aim of the study was to determine the expression and functional impact of ERG expression products in rat urinary bladder smooth muscle using quantitative polymerase chain reaction, immunocytochemistry, whole-cell patch-clamp and isometric tension recording. kcnh2 was expressed in rat bladder, whereas kcnh6 and kcnh3 expression were negligible. Immunofluorescence for the kcnh2 expression product Kv11.1 was detected in the membrane of isolated smooth muscle cells. Potassium currents with voltage-dependent characteristics consistent with Kv11.1 channels and sensitive to the specific blocker E4031 (1 μM) were recorded from isolated detrusor smooth muscles. Disabling Kv11.1 activity with specific blockers (E4031 and dofetilide, 0.2-20 μM) augmented spontaneous contractions to a greater extent than BKCa channel blockers, enhanced carbachol-driven activity, increased nerve stimulation-mediated contractions, and impaired β-adrenoceptor-mediated inhibitory responses. These data establish for the first time that Kv11.1 channels are key determinants of contractility in rat detrusor smooth muscle.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: