Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 532 papers

Transcription Factor E2F1 Regulates the Expression of ADRB2.

  • Juan Du‎ et al.
  • International journal of analytical chemistry‎
  • 2023‎

Adrenergic beta-2-receptor (ADRB2) is highly expressed in various tissue cells, affecting the susceptibility, development, and drug efficacy of diseases such as bronchial asthma and malignant tumor. However, the transcriptional regulatory mechanism of the human ADRB2 gene remains unclear. This study aimed to clarify whether E2F transcription factor 1 (E2F1) was involved in the transcriptional regulation of the human ADRB2 gene. First, the 5' flanking region of the human ADRB2 gene was cloned, and its activity was detected using A549 and BEAS-2B cells. Second, it was found that the overexpression of E2F1 could increase promoter activity by a dual-luciferase reporter gene assay. In contrast, treatment of knockdown of E2F1 significantly resulted in a decrease in its promoter activity. Moreover, mutation of the binding site of E2F1 greatly reduced the potential of human ADRB2 promoter transcriptional activity to be regulated by E2F1 overexpression and knockdown. Additionally, by real-time quantitative PCR and Western blot analysis, we demonstrated that overexpression of E2F1 elevated the ADRB2 mRNA expression and protein levels while si-E2F1 reduced its expression. Finally, the consequence of the chromatin immunoprecipitation assay showed that E2F1 was able to bind to the promoter region of ADRB2 in vivo. These results confirmed that E2F1 upregulated the expression of the human ADRB2 gene.


Regulation of Ferroptosis by Transcription Factor E2F1 and RB.

  • Nishanth Kuganesan‎ et al.
  • Research square‎
  • 2023‎

Tumor suppressor RB binds to E2F family proteins and modulates cell cycle progression. Cyclin dependent kinases (CDK) regulate the interaction of RB/E2F by phosphorylating RB. Previously, we have revealed that CDK2, RB and E2F inhibit ferroptosis. Ferroptosis is a non-apoptotic, iron-dependent form of cell death characterized by toxic lipid peroxidation. Here we provide evidence that CDK2 suppresses ferroptosis through phosphorylation of RB. We approach this question by overexpressing WT-RB or a mutant RB that cannot be phosphorylated by CDKs (RBÎ"CDK) along with CDK2/cyclinE followed by analysis of ferroptosis. We also observed that E2F1 regulates of both pro and anti-ferroptotic proteins including ALOX5, MYC SLC7A11, ATF4, and GPX4 and finally renders a net inhibitory role in ferroptosis. Interestingly, we also found a cell type dependent compensatory effect of E2F3 upon E2F1 depletion. This compensatory effect resulted in no change of ferroptotic target genes after E2F1 knock down in an osteosarcoma cell line. Taken together, our study reveals that cancer cells protect themselves from ferroptosis through cell cycle regulatory proteins.


Metastasis is altered through multiple processes regulated by the E2F1 transcription factor.

  • Matthew R Swiatnicki‎ et al.
  • Scientific reports‎
  • 2021‎

The E2F family of transcription factors is important for many cellular processes, from their canonical role in cell cycle regulation to other roles in angiogenesis and metastasis. Alteration of the Rb/E2F pathway occurs in various forms of cancer, including breast cancer. E2F1 ablation has been shown to decrease metastasis in MMTV-Neu and MMTV-PyMT transgenic mouse models of breast cancer. Here we take a bioinformatic approach to determine the E2F1 regulated genomic alterations involved in the metastatic cascade, in both Neu and PyMT models. Through gene expression analysis, we reveal few transcriptome changes in non-metastatic E2F1-/- tumors relative to transgenic tumor controls. However investigation of these models through whole genome sequencing found numerous differences between the models, including differences in the proposed tumor etiology between E2F1-/- and E2F1+/+ tumors induced by Neu or PyMT. For example, loss of E2F1 within the Neu model led to an increased contribution of the inefficient double stranded break repair signature to the proposed etiology of the tumors. While the SNV mutation burden was higher in PyMT mouse tumors than Neu mouse tumors, there was no statistically significant differences between E2F WT and E2F1 KO mice. Investigating mutated genes through gene set analysis also found a significant number of genes mutated in the cell adhesion pathway in E2F1-/- tumors, indicating this may be a route for disruption of metastasis in E2F1-/- tumors. Overall, these findings illustrate the complicated nature of uncovering drivers of the metastatic process.


Transcription Factor E2F1 Knockout Promotes Mice White Adipose Tissue Browning Through Autophagy Inhibition.

  • Mingchen Xiong‎ et al.
  • Frontiers in physiology‎
  • 2021‎

Obesity is associated with energy metabolic disturbance and is caused by long-term excessive energy storage in white adipose tissue (WAT). The WAT browning potentially reduces excessive energy accumulation, contributing an attractive target to combat obesity. As a pivotal regulator of cell growth, the transcription factor E2F1 activity dysregulation leads to metabolic complications. The regulatory effect and underlying mechanism of E2F1 knockout on WAT browning, have not been fully elucidated. To address this issue, in this study, the in vivo adipose morphology, mitochondria quantities, uncoupling protein 1 (UCP-1), autophagy-related genes in WAT of wild-type (WT) and E2F1-/- mice were detected. Furthermore, we evaluated the UCP-1, and autophagy-related gene expression in WT and E2F1-/- adipocyte in vitro. The results demonstrated that E2F1 knockout could increase mitochondria and UCP-1 expression in WAT through autophagy suppression in mice, thus promoting WAT browning. Besides, adipocytes lacking E2F1 showed upregulated UCP-1 and downregulated autophagy-related genes expression in vitro. These results verified that E2F1 knockout exerted effects on inducing mice WAT browning through autophagy inhibition in vivo and in vitro. These findings regarding the molecular mechanism of E2F1-modulated autophagy in controlling WAT plasticity, provide a novel insight into the functional network with the potential therapeutic application against obesity.


Transcription factor E2F1 positively regulates interferon regulatory factor 5 expression in non-small cell lung cancer.

  • Dan-Dan Feng‎ et al.
  • OncoTargets and therapy‎
  • 2019‎

Lung cancer is the most common malignant tumor in the world, and its incidence and mortality are very high. This study focuses on the mechanism of non-small cell lung cancer to find new therapeutic targets.


Cell cycle regulation of the psoriasis associated gene CCHCR1 by transcription factor E2F1.

  • Yick Hin Ling‎ et al.
  • PloS one‎
  • 2023‎

The coiled-coil alpha-helical rod protein 1 (CCHCR1) was first identified as a candidate gene in psoriasis and has lately been found to be associated with a wide range of clinical conditions including COVID-19. CCHCR1 is located within P-bodies and centrosomes, but its exact role in these two subcellular structures and its transcriptional control remain largely unknown. Here, we showed that CCHCR1 shares a bidirectional promoter with its neighboring gene, TCF19. This bidirectional promoter is activated by the G1/S-regulatory transcription factor E2F1, and both genes are co-induced during the G1/S transition of the cell cycle. A luciferase reporter assay suggests that the short intergenic sequence, only 287 bp in length, is sufficient for the G1/S induction of both genes, but the expression of CCHCR1 is further enhanced by the presence of exon 1 from both TCF19 and CCHCR1. This research uncovers the transcriptional regulation of the CCHCR1 gene, offering new perspectives on its function. These findings contribute to the broader understanding of diseases associated with CCHCR1 and may serve as a foundational benchmark for future research in these vital medical fields.


The transcription factor E2F1 controls the GLP-1 receptor pathway in pancreatic β cells.

  • Cyril Bourouh‎ et al.
  • Cell reports‎
  • 2022‎

The glucagon-like peptide 1 (Glp-1) has emerged as a hormone with broad pharmacological potential in type 2 diabetes (T2D) treatment, notably by improving β cell functions. The cell-cycle regulator and transcription factor E2f1 is involved in glucose homeostasis by modulating β cell mass and function. Here, we report that β cell-specific genetic ablation of E2f1 (E2f1β-/-) impairs glucose homeostasis associated with decreased expression of the Glp-1 receptor (Glp1r) in E2f1β-/- pancreatic islets. Pharmacological inhibition of E2F1 transcriptional activity in nondiabetic human islets decreases GLP1R levels and blunts the incretin effect of GLP1R agonist exendin-4 (ex-4) on insulin secretion. Overexpressing E2f1 in pancreatic β cells increases Glp1r expression associated with enhanced insulin secretion mediated by ex-4. Interestingly, ex-4 induces retinoblastoma protein (pRb) phosphorylation and E2f1 transcriptional activity. Our findings reveal critical roles for E2f1 in β cell function and suggest molecular crosstalk between the E2F1/pRb and GLP1R signaling pathways.


Characterization of the human DYRK1A promoter and its regulation by the transcription factor E2F1.

  • Barbara Maenz‎ et al.
  • BMC molecular biology‎
  • 2008‎

Overexpression of the human DYRK1A gene due to the presence of a third gene copy in trisomy 21 is thought to play a role in the pathogenesis of Down syndrome. The observation of gene dosage effects in transgenic mouse models implies that subtle changes in expression levels can affect the correct function of the DYRK1A gene product. We have therefore characterized the promoter of the human DYRK1A gene in order to study its transcriptional regulation.


Transcription Factor E2F1 Aggravates Neurological Injury in Ischemic Stroke via microRNA-122-Targeted Sprouty2.

  • Yunxia Wu‎ et al.
  • Neuropsychiatric disease and treatment‎
  • 2020‎

It has been documented that microRNAs (miRs) assume a pivotal role in the development of ischemic stroke (IS). However, it remains poorly identified about the role of miR-122 in IS. Herein, this study was intended to explore the mechanism of E2F1-orchestrated miR-122 in IS.


E2F transcription factor 1 (E2F1) promotes the transforming growth factor TGF-β1 induced human cardiac fibroblasts differentiation through promoting the transcription of CCNE2 gene.

  • Rongheng Liao‎ et al.
  • Bioengineered‎
  • 2021‎

The differentiation of cardiac fibroblast to myofibroblast is the key process of cardiac fibrosis. In the study, we aimed to determine the function of E2F Transcription Factor 1 (E2F1) in human cardiac fibroblasts (HCFs) differentiation, search for its downstream genes and elucidate the function of them in HCFs differentiation. As a result, we found that E2F1 was up-regulated in TGF-β1-induced HCFs differentiation. Silencing the expression of E2F1 by siRNA in HCFs, we found that the expression of differentiation-related genes (Collagen-1, α-Smooth muscle actin, and Fibronectin-1) was significantly suppressed, combining with proliferation and migration assay, we determined that HCFs differentiation was decreased. Luciferase report assay and immunoprecipitation proved that the oncogene CCNE2 was a direct target gene of E2F1, overexpression of CCNE2 was found in differentiated HCFs, silencing the expression of CCNE2 by siRNA decreased HCFs differentiation. Our research suggested that E2F1 and its downstream target gene CCNE2 play a vital role in TGF-β1-induced HCFs differentiation, thus E2F1 and CCNE2 may be a potential therapeutic target for cardiac fibrosis.


Protease Omi facilitates neurite outgrowth in mouse neuroblastoma N2a cells by cleaving transcription factor E2F1.

  • Qi Ma‎ et al.
  • Acta pharmacologica Sinica‎
  • 2015‎

Omi is an ATP-independent serine protease that is necessary for neuronal function and survival. The aim of this study was to investigate the role of protease Omi in regulating differentiation of mouse neuroblastoma cells and to identify the substrate of Omi involved in this process.


The Yun/Prohibitin complex regulates adult Drosophila intestinal stem cell proliferation through the transcription factor E2F1.

  • Hang Zhao‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Stem cells constantly divide and differentiate to maintain adult tissue homeostasis, and uncontrolled stem cell proliferation leads to severe diseases such as cancer. How stem cell proliferation is precisely controlled remains poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Yun, required for proliferation of normal and transformed ISCs. Yun is mainly expressed in progenitors; our genetic and biochemical evidence suggest that it acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. We demonstrate that the Yun/PHB complex is regulated by and acts downstream of EGFR/MAPK signaling. Importantly, the Yun/PHB complex interacts with and positively affects the levels of the transcription factor E2F1 to regulate ISC proliferation. In addition, we find that the role of the PHB complex in cell proliferation is evolutionarily conserved. Thus, our study uncovers a Yun/PHB-E2F1 regulatory axis in stem cell proliferation.


Methylation of the transcription factor E2F1 by SETD6 regulates SETD6 expression via a positive feedback mechanism.

  • Margarita Kublanovsky‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

The protein lysine methyltransferase SET domain-containing protein 6 (SETD6) has been shown to influence different cellular activities and to be critically involved in the regulation of diverse developmental and pathological processes. However, the upstream signals that regulate the mRNA expression of SETD6 are not known. Bioinformatic analysis revealed that the SETD6 promoter has a binding site for the transcription factor E2F1. Using various experimental approaches, we show that E2F1 binds to the SETD6 promoter and regulates SETD6 mRNA expression. Our further observation that this phenomenon is SETD6 dependent suggested that SETD6 and E2F1 are linked. We next demonstrate that SETD6 monomethylates E2F1 specifically at K117 in vitro and in cells. Finally, we show that E2F1 methylation at K117 positively regulates the expression level of SETD6 mRNA. Depletion of SETD6 or overexpression of E2F1 K117R mutant, which cannot be methylated by SETD6, reverses the effect. Taken together, our data provide evidence for a positive feedback mechanism, which regulates the expression of SETD6 by E2F1 in a SETD6 methylation-dependent manner, and highlight the importance of protein lysine methyltransferases and lysine methylation signaling in the regulation of gene transcription.


PRR11 promotes cell proliferation by regulating PTTG1 through interacting with E2F1 transcription factor in pan-cancer.

  • Haibo Zhang‎ et al.
  • Frontiers in molecular biosciences‎
  • 2022‎

The upregulated proline rich 11 (PRR11) plays a critical role in cancer progression. The relevant biological functions of PRR11 in pan-cancer development are not well understood. In the current study, we found that PRR11 was upregulated in 19 cancer types compared with that of normal tissues and high-expressed PRR11 was a predictor of poor prognosis in 10 cancer types by bioinformatics. Then we showed that interfering PRR11 on three cancer cell lines could greatly inhibit cell proliferation and migration and arrest cells to S phase in vivo. Based on RNA-seq, downregulation of PRR11 expression could extremely suppress the expression of PTTG1 and the cell cycle pathway identified by a differentially expressed gene analysis and an enrichment analysis. The expression of PRR11 and PTTG1 was positively correlated in TCGA and independent GEO data sets. Importantly, we revealed that the PRR11 could express itself in the nucleus and interact with E2F1 on the PTTG1 promoter region to increase the expression of PTTG1. Further results indicated that the expression of PTTG1 was also associated with poor prognosis in 10 cancer types, while downregulation of PTTG1 expression could inhibit cancer cell proliferation and migration. Therefore, we found that PRR11 served as an oncogene in pan-cancer and could influence the cell cycle progression through regulating the expression of PTTG1 by interacting with the transcription factor E2F1.


Modulation of the cell cycle regulating transcription factor E2F1 pathway by the proteasome following amino acid starvation.

  • Bertrand Fabre‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

The proteasome is one of the main catalytic machineries of eukaryotic cells responsible for protein degradation, and is known to be regulated during several cellular stress conditions. Recent studies suggest that the activity of the proteasome is modulated following mTOR inhibition. However, it is not clear how this process affects the proteome. In the present study, we investigated the role of the proteasome in the modulation of the proteome of HeLa cells following amino acid starvation, a stress known to inhibit mTOR activity. We used label-free quantitative proteomics to identify proteins regulated by the proteasome in starved cells. We found that nearly 50% of the proteins the level of which decreased significantly during starvation stress, could be rescued by addition of the proteasome inhibitor MG132. This suggests a key role for the proteasome in reshaping the proteome under starvation. Importantly, the expression of several of these proteins is known to be dependent on the transcription factor E2F1. Further investigation of E2F1 level showed that this transcription factor along with several other proteins involved in its pathway are regulated by the proteasome upon amino acids starvation.


Genome-wide analysis of transcription factor E2F1 mutant proteins reveals that N- and C-terminal protein interaction domains do not participate in targeting E2F1 to the human genome.

  • Alina R Cao‎ et al.
  • The Journal of biological chemistry‎
  • 2011‎

Previous studies of E2F family members have suggested that protein-protein interactions may be the mechanism by which E2F proteins are recruited to specific genomic regions. We have addressed this hypothesis on a genome-wide scale using ChIP-seq analysis of MCF7 cell lines that express tagged wild type and mutant E2F1 proteins. First, we performed ChIP-seq for tagged WT E2F1. Then, we analyzed E2F1 proteins that lacked the N-terminal SP1 and cyclin A binding domains, the C-terminal transactivation and pocket protein binding domains, and the internal marked box domain. Surprisingly, we found that the ChIP-seq patterns of the mutant proteins were identical to that of WT E2F1. However, mutation of the DNA binding domain abrogated all E2F1 binding to the genome. These results suggested that the interaction between the E2F1 DNA binding domain and a consensus motif may be the primary determinant of E2F1 recruitment. To address this possibility, we analyzed the in vivo binding sites for the in vitro-derived consensus E2F1 motif (TTTSSCGC) and also performed de novo motif analysis. We found that only 12% of the ChIP-seq peaks contained the TTTSSCGC motif. De novo motif analysis indicated that most of the in vivo sites lacked the 5' half of the in vitro-derived consensus, having instead the in vivo consensus of CGCGC. In summary, our findings do not provide support for the model that protein-protein interactions are involved in recruiting E2F1 to the genome, but rather suggest that recognition of a motif found at most human promoters is the critical determinant.


The TERT promoter SNP rs2853669 decreases E2F1 transcription factor binding and increases mortality and recurrence risks in liver cancer.

  • Eunkyong Ko‎ et al.
  • Oncotarget‎
  • 2016‎

A common single-nucleotide polymorphism in the telomerase reverse transcriptase (TERT) promoter, rs2853669 influences patient survival rates and the risk of developing cancer. Recently, several lines of evidence suggest that the rs2853669 suppresses TERT promoter mutation-mediated TERT expression levels and cancer mortality as well as recurrence rates. However, no reports are available on the impact of rs2853669 on TERT expression in hepatocellular carcinoma (HCC) and its association with patient survival. Here, we found that HCC-related overall and recurrence-free survival rates were not associated with TERT promoter mutation individually, but rs2853669 and the TERT promoter mutation in combination were associated with poor survival rates. TERT mRNA expression and telomere fluorescence levels were greater in patients with HCC who had both the combination. The combination caused TERT promoter methylation through regulating the binding of DNA methyltransferase 1 and histone deacetylase 1 to the TERT promoter in HCC cell lines. The TERT expression level was significantly higher in HCC tumor with a methylated promoter than in that with an unmethylated promoter. In conclusion, we demonstrate a substantial role for the rs2853669 in HCC with TERT promoter mutation, which suggests that the combination of the rs2853669 and the mutation indicate poor prognoses in liver cancer.


Downregulation of homologous recombination DNA repair genes by HDAC inhibition in prostate cancer is mediated through the E2F1 transcription factor.

  • Sushant K Kachhap‎ et al.
  • PloS one‎
  • 2010‎

Histone deacetylase inhibitors (HDACis) re-express silenced tumor suppressor genes and are currently undergoing clinical trials. Although HDACis have been known to induce gene expression, an equal number of genes are downregulated upon HDAC inhibition. The mechanism behind this downregulation remains unclear. Here we provide evidence that several DNA repair genes are downregulated by HDAC inhibition and provide a mechanism involving the E2F1 transcription factor in the process.


E2F1 transcription factor mediates a link between fat and islets to promote β cell proliferation in response to acute insulin resistance.

  • Jun Shirakawa‎ et al.
  • Cell reports‎
  • 2022‎

Prevention or amelioration of declining β cell mass is a potential strategy to cure diabetes. Here, we report the pathways utilized by β cells to robustly replicate in response to acute insulin resistance induced by S961, a pharmacological insulin receptor antagonist. Interestingly, pathways that include CENP-A and the transcription factor E2F1 that are independent of insulin signaling and its substrates appeared to mediate S961-induced β cell multiplication. Consistently, pharmacological inhibition of E2F1 blocks β-cell proliferation in S961-injected mice. Serum from S961-treated mice recapitulates replication of β cells in mouse and human islets in an E2F1-dependent manner. Co-culture of islets with adipocytes isolated from S961-treated mice enables β cells to duplicate, while E2F1 inhibition limits their growth even in the presence of adipocytes. These data suggest insulin resistance-induced proliferative signals from adipocytes activate E2F1, a potential therapeutic target, to promote β cell compensation.


Ribosomal protein L5 (RPL5)/ E2F transcription factor 1 (E2F1) signaling suppresses breast cancer progression via regulating endoplasmic reticulum stress and autophagy.

  • Xiaoping Ma‎ et al.
  • Bioengineered‎
  • 2022‎

Endoplasmic reticulum stress (ERS) is associated with breast cancer progression. However, the potential role of ribosomal protein L5 (RPL5) on ERS in breast cancer remains unclear. This study aimed to determine the role of RPL5/E2F transcription factor 1 (E2F1) in breast cancer. It was found that RPL5 was downregulated in breast cancer cells and tissues. Additionally, overexpression of RPL5 inhibited cell proliferation. Moreover, the levels of ERS and autophagy markers were estimated using western blotting. Overexpression of RPL5 induced ERS and suppressed autophagy. Additionally, RPL5 downregulated E2F1, which was overexpressed in breast cancer cells. However, E2F1 knockdown promoted the transcriptional activation of glucose regulated protein 78 (GRP78), suppressed ERS response, and promoted autophagy. Rescue assays indicated that the effects of RPL5 on ERS and autophagy were abolished by E2F1. Taken together, RPL5 inhibited the growth of breast cancer cells by modulating ERS and autophagy via the regulation of E2F1. These findings suggest that RPL5 has a tumor-suppressive effect in breast cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: