Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 386 papers

A cholesterol-regulated PP2A/HePTP complex with dual specificity ERK1/2 phosphatase activity.

  • Ping-Yuan Wang‎ et al.
  • The EMBO journal‎
  • 2003‎

The acute depletion of membrane cholesterol causes the concentration of pERK1/2 in caveola/raft lipid domains and the cytosol of human fibroblasts to dramatically increase. This increase could be caused by either the activation of MEK-1 or the inhibition of a pERK phosphatase. Here we describe the isolation of a high molecular weight ( approximately 440 kDa), cholesterol-regulated pERK phosphatase that dephosphorylates both the phosphotyrosine and the phosphothreonine residues in the activation loop of the enzyme. The dual activity in the complex appears to be due to the combined activities of the serine/threonine phosphatase PP2A and the tyrosine phosphatase HePTP. Acute depletion of cholesterol causes the disassembly of the complex and a concomitant loss of the dual specificity pERK phosphatase activity. The existence of a cholesterol-regulated HePTP/PP2A activity provides a molecular explanation for why ERK activity is sensitive to membrane cholesterol levels, and raises the possibility that ERK plays a role in regulating the traffic of cholesterol to caveolae/rafts and other membranes.


NSC-87877, inhibitor of SHP-1/2 PTPs, inhibits dual-specificity phosphatase 26 (DUSP26).

  • Mina Song‎ et al.
  • Biochemical and biophysical research communications‎
  • 2009‎

Protein phosphorylation plays critical roles in many regulatory mechanisms controlling cell activities and thus involved in various diseases. The cellular equilibrium of phosphorylation is regulated through the actions of protein kinases and phosphatases. Therefore, these regulatory proteins have emerged as promising targets for drug development. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by 8-hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid (NSC-87877), a potent inhibitor of SHP-1 and SHP-2 PTPs. Phosphatase activity of dual-specificity protein phosphatase 26 (DUSP26) was decreased by the inhibitor in a dose-dependent manner. Kinetic studies with NSC-87877 and DUSP26 revealed a competitive inhibition. NSC-87877 effectively inhibited DUSP26-mediated dephosphorylation of p38, a member of mitogen-activated protein kinase (MAPK) family. Since DUSP26 is involved in survival of anaplastic thyroid cancer (ATC) cells, NSC-87877 could be a therapeutic reagent for treating ATC.


Dual-specificity phosphatase 23 mediates GCM1 dephosphorylation and activation.

  • Fang-Yu Lin‎ et al.
  • Nucleic acids research‎
  • 2011‎

Glial cells missing homolog 1 (GCM1) is a transcription factor essential for placental development. GCM1 promotes syncytiotrophoblast formation and placental vasculogenesis by activating fusogenic and proangiogenic gene expression in placenta. GCM1 activity is regulated by multiple post-translational modifications. The cAMP/PKA-signaling pathway promotes CBP-mediated GCM1 acetylation and stabilizes GCM1, whereas hypoxia-induced GSK-3β-mediated phosphorylation of Ser322 causes GCM1 ubiquitination and degradation. How and whether complex modifications of GCM1 are coordinated is not known. Here we show that the interaction of GCM1 and dual-specificity phosphatase 23 (DUSP23) is enhanced by PKA-dependent phosphorylation of GCM1 on Ser269 and Ser275. The recruitment of DUSP23 reverses GSK-3β-mediated Ser322 phosphorylation, which in turn promotes GCM1 acetylation, stabilization and activation. Supporting a central role in coordinating GCM1 modifications, knockdown of DUSP23 suppressed GCM1 target gene expression and placental cell fusion. Our study identifies DUSP23 as a novel factor that promotes placental cell fusion and reveals a complex regulation of GCM1 activity by coordinated phosphorylation, dephosphorylation and acetylation.


Methylation of dual-specificity phosphatase 4 controls cell differentiation.

  • Hairui Su‎ et al.
  • Cell reports‎
  • 2021‎

Mitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity phosphatases (DUSPs), the activities of which are tightly regulated during cell differentiation. Using knockdown screening and single-cell transcriptional analysis, we demonstrate that DUSP4 is the phosphatase that specifically inactivates p38 kinase to promote megakaryocyte (Mk) differentiation. Mechanistically, PRMT1-mediated methylation of DUSP4 triggers its ubiquitinylation by an E3 ligase HUWE1. Interestingly, the mechanistic axis of the DUSP4 degradation and p38 activation is also associated with a transcriptional signature of immune activation in Mk cells. In the context of thrombocytopenia observed in myelodysplastic syndrome (MDS), we demonstrate that high levels of p38 MAPK and PRMT1 are associated with low platelet counts and adverse prognosis, while pharmacological inhibition of p38 MAPK or PRMT1 stimulates megakaryopoiesis. These findings provide mechanistic insights into the role of the PRMT1-DUSP4-p38 axis on Mk differentiation and present a strategy for treatment of thrombocytopenia associated with MDS.


Dual Specificity Phosphatase 5 Is Essential for T Cell Survival.

  • Raman G Kutty‎ et al.
  • PloS one‎
  • 2016‎

The mitogen-activated protein kinase (MAPK) pathway regulates many key cellular processes such as differentiation, apoptosis, and survival. The final proteins in this pathway, ERK1/2, are regulated by dual specificity phosphatase 5 (DUSP5). DUSP5 is a nuclear, inducible phosphatase with high affinity and fidelity for ERK1/2. By regulating the final step in the MAPK signaling cascade, DUSP5 exerts strong regulatory control over a central cellular pathway. Like other DUSPs, DUSP5 plays an important role in immune function. In this study, we have utilized new knockout mouse reagents to explore its function further. We demonstrate that global loss of DUSP5 does not result in any gross phenotypic changes. However, loss of DUSP5 affects memory/effector CD8+ T cell populations in response to acute viral infection. Specifically, Dusp5-/- mice have decreased proportions of short-lived effector cells (SLECs) and increased proportions of memory precursor effector cells (MPECs) in response to infection. Further, we show that this phenotype is T cell intrinsic; a bone marrow chimera model restricting loss of DUSP5 to the CD8+ T cell compartment displays a similar phenotype. Dusp5-/- T cells also display increased proliferation, increased apoptosis, and altered metabolic profiles, suggesting that DUSP5 is a pro-survival protein in T cells.


A parental requirement for dual-specificity phosphatase 6 in zebrafish.

  • Jennifer M Maurer‎ et al.
  • BMC developmental biology‎
  • 2018‎

Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are expressed in both embryonic and adult zebrafish, but their specific roles in embryogenesis remain to be fully understood.


Dual-Specificity Phosphatase 26 Protects Against Cardiac Hypertrophy Through TAK1.

  • Jing Zhao‎ et al.
  • Journal of the American Heart Association‎
  • 2021‎

Background Heart pathological hypertrophy has been recognized as a predisposing risk factor for heart failure and arrhythmia. DUSP (dual-specificity phosphatase) 26 is a member of the DUSP family of proteins, which has a significant effect on nonalcoholic fatty liver disease, neuroblastoma, glioma, and so on. However, the involvement of DUSP26 in cardiac hypertrophy remains unclear. Methods and Results Our study showed that DUSP26 expression was significantly increased in mouse hearts in response to pressure overload as well as in angiotensin II-treated cardiomyocytes. Cardiac-specific overexpression of DUSP26 mice showed attenuated cardiac hypertrophy and fibrosis, while deficiency of DUSP26 in mouse hearts resulted in increased cardiac hypertrophy and deteriorated cardiac function. Similar effects were also observed in cellular hypertrophy induced by angiotensin II. Importantly, we showed that DUSP26 bound to transforming growth factor-β activated kinase 1 and inhibited transforming growth factor-β activated kinase 1 phosphorylation, which led to suppression of the mitogen-activated protein kinase signaling pathway. In addition, transforming growth factor-β activated kinase 1-specific inhibitor inhibited cardiomyocyte hypertrophy induced by angiotensin II and attenuated the exaggerated hypertrophic response in DUSP26 conditional knockout mice. Conclusions Taken together, DUSP26 was induced in cardiac hypertrophy and protected against pressure overload induced cardiac hypertrophy by modulating transforming growth factor-β activated kinase 1-p38/ c-Jun N-terminal kinase-signaling axis. Therefore, DUSP26 may provide a therapeutic target for treatment of cardiac hypertrophy and heart failure.


The dual specificity phosphatase 2 gene is hypermethylated in human cancer and regulated by epigenetic mechanisms.

  • Tanja Haag‎ et al.
  • BMC cancer‎
  • 2016‎

Dual specificity phosphatases are a class of tumor-associated proteins involved in the negative regulation of the MAP kinase pathway. Downregulation of the dual specificity phosphatase 2 (DUSP2) has been reported in cancer. Epigenetic silencing of tumor suppressor genes by abnormal promoter methylation is a frequent mechanism in oncogenesis. It has been shown that the epigenetic factor CTCF is involved in the regulation of tumor suppressor genes.


DUSP5 (dual-specificity protein phosphatase 5) suppresses BCG-induced autophagy via ERK 1/2 signaling pathway.

  • Jia Luo‎ et al.
  • Molecular immunology‎
  • 2020‎

Autophagy is considered as an effective strategy for host cells to eliminate intracellular Mycobacterium tuberculosis (Mtb). Dual-specificity phosphatase 5 (DUSP5) is an endogenous phosphatase of ERK1/2, and plays an important role in host innate immune responses, its function in autophagy regulation however remains unexplored. In the present study, the function of DUSP5 in autophagy in Mycobacterium bovis Bacillus Calmette-Guerin (BCG)-infected RAW264.7 cells, a murine macrophage-like cell line, was examined by assessing the alteration of the cell morphology, expression of autophagy markers, and ERK1/2 signaling activation. The results demonstrated that the BCG infection could induce DUSP5 expression and activate ERK1/2 signaling in RAW264.7 cells; an activation of ERK1/2 signaling contributed to autophagic process in RAW264.7 cells. Moreover, DUSP5 knockdown increased the expression of autophagy-related proteins (Atgs), including LC3-II, Beclin1, Atg5 and Atg7. However, an overexpression of DUSP5 exhibited an opposite effect. Mechanistically, DUSP5 could inhibit the formation of autophagosome by suppressing the phosphorylation of signaling molecules in ERK1/2 signaling cascade. This study thus demonstrated a novel role of DUSP5 in modulating autophagy inRAW264.7 cells in response to BCG infection in particular, and autophagy macrophage to Mtb in general.


Dual Specificity Phosphatase 6 Protects Neural Stem Cells from β-Amyloid-Induced Cytotoxicity through ERK1/2 Inactivation.

  • Wang Liao‎ et al.
  • Biomolecules‎
  • 2018‎

Alzheimer's disease (AD) is a devastating neurodegenerative disease with limited treatment options and no cure. Beta-amyloid (Aβ) is a hallmark of AD that has potent neurotoxicity in neural stem cells (NSCs). Dual specificity phosphatase 6 (DUSP6) is a member of the mitogen-activated protein kinases (MAPKs), which is involved in regulating various physiological and pathological processes. Whether DUSP6 has a protective effect on Aβ-induced NSC injury remains to be explored. C17.2 neural stem cells were transfected with DUSP6-overexpressed plasmid. NSCs with or without DUSP6 overexpression were administrated with Aβ25⁻35 at various concentrations (i.e., 0, 2.5, 5 μM). DUSP6 expression after Aβ treatment was detected by Real-Time Polymerase Chain Reaction (RT-PCR) and Western blot and cell vitality was examined by the CCK8 assay. The oxidative stress (intracellular reactive oxygen species (ROS) and malondialdehyde (MDA)), endoplasmic reticulum stress (ER calcium level) and mitochondrial dysfunction (cytochrome c homeostasis) were tested. The expression of p-ERK1/2 and ERK1/2 were assayed by Western blot. Our results showed that Aβ decreased the expression of DUSP6 in a dose-dependent manner. The overexpression of DUSP6 increased the cell vitality of NSCs after Aβ treatment. Oxidative stress, ER stress, and mitochondrial dysfunction induced by Aβ could be restored by DUSP6 overexpression. Additionally, the Aβ-induced ERK1/2 activation was reversed. In summary, DUSP6 might have a neuroprotective effect on Aβ-induced cytotoxicity, probably via ERK1/2 activation.


The dual-specificity phosphatase 2 (DUSP2) does not regulate obesity-associated inflammation or insulin resistance in mice.

  • Graeme I Lancaster‎ et al.
  • PloS one‎
  • 2014‎

Alterations in the immune cell profile and the induction of inflammation within adipose tissue are a hallmark of obesity in mice and humans. Dual-specificity phosphatase 2 (DUSP2) is widely expressed within the immune system and plays a key role promoting immune and inflammatory responses dependent on mitogen-activated protein kinase (MAPK) activity. We hypothesised that the absence of DUSP2 would protect mice against obesity-associated inflammation and insulin resistance. Accordingly, male and female littermate mice that are either wild-type (wt) or homozygous for a germ-line null mutation of the dusp2 gene (dusp2-/-) were fed either a standard chow diet (SCD) or high fat diet (HFD) for 12 weeks prior to metabolic phenotyping. Compared with mice fed the SCD, all mice consuming the HFD became obese, developed glucose intolerance and insulin resistance, and displayed increased macrophage recruitment and markers of inflammation in epididymal white adipose tissue. The absence of DUSP2, however, had no effect on the development of obesity or adipose tissue inflammation. Whole body insulin sensitivity in male mice was unaffected by an absence of DUSP2 in response to either the SCD or HFD; however, HFD-induced insulin resistance was slightly, but significantly, reduced in female dusp2-/- mice. In conclusion, DUSP2 plays no role in regulating obesity-associated inflammation and only a minor role in controlling insulin sensitivity following HFD in female, but not male, mice. These data indicate that rather than DUSP2 being a pan regulator of MAPK dependent immune cell mediated inflammation, it appears to differentially regulate inflammatory responses that have a MAPK component.


Characterization of the Arabidopsis thaliana Arath;CDC25 dual-specificity tyrosine phosphatase.

  • Isabelle Landrieu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2004‎

CDC25 enzymes are dual-specificity phosphatases involved in the regulation of the cell cycle. No CDC25 enzymes have been described in higher plant organisms. We report here the characterization of an Arabidopsis thaliana CDC25 enzyme, constituted by a sole catalytic domain and devoid of the N-terminal regulatory region found in the human CDC25. We describe the recombinant expression in Escherichia coli of the Arath;CDC25 and its purification for activity assay and structure determination by NMR. The recombinant enzyme has a tyrosine phosphatase activity towards an artificial substrate, a NMR characterization equally concludes to its correct folding. The secondary structure of the protein was predicted on the basis of the assigned chemical shift of (1)H, (15)N, and (13)C backbone atoms of the protein. The presence of a metal ion in the C-terminus of this new protein points to a zinc finger, and sequence homology indicates that this new structural element might be conserved in related plant homologs.


Dual-specificity Phosphatase 9 protects against Cardiac Hypertrophy by targeting ASK1.

  • Lang Jiang‎ et al.
  • International journal of biological sciences‎
  • 2021‎

The functions of dual-specificity phosphatase 9 (DUSP9) in hepatic steatosis and metabolic disturbance during nonalcoholic fatty liver disease were discussed in our prior study. However, its roles in the pathophysiology of pressure overload-induced cardiac hypertrophy remain to be illustrated. This study attempted to uncover the potential contributions and underpinning mechanisms of DUSP9 in cardiac hypertrophy. Utilizing the gain-and-loss-of-functional approaches of DUSP9 the cardiac phenotypes arising from the pathological, echocardiographic, and molecular analysis were quantified. The results showed increased levels of DUSP9 in hypertrophic mice heart and angiotensin II treated cardiomyocytes. In accordance with the results of cellular hypertrophy in response to angiotensin II, cardiac hypertrophy exaggeration, fibrosis, and malfunction triggered by pressure overload was evident in the case of cardiac-specific conditional knockout of DUSP9. In contrast, transgenic mice hearts with DUSP9 overexpression portrayed restoration of the hypertrophic phenotypes. Further explorations of molecular mechanisms indicated the direct interaction of DUSP9 with ASK1, which further repressed p38 and JNK signaling pathways. Moreover, blocking ASK1 with ASK1-specific inhibitor compensated the pro-hypertrophic effects induced by DUSP9 deficiency in cardiomyocytes. The main findings of this study suggest the potential of DUSP9 in alleviating cardiac hypertrophy at least partially by repressing ASK1, thereby looks promising as a prospective target against cardiac hypertrophy.


Expression of dual-specificity phosphatase 5 pseudogene 1 (DUSP5P1) in tumor cells.

  • Martin S Staege‎ et al.
  • PloS one‎
  • 2014‎

Sequencing of individual clones from a newly established cDNA library from the chemoresistant Hodgkin's lymphoma cell line L-1236 led to the isolation of a cDNA clone corresponding to a short sequence from chromosome 1. Reverse transcriptase-polymerase chain reaction indicated high expression of this sequence in Hodgkin's lymphoma derived cell lines but not in normal blood cells. Further characterization of this sequence and the surrounding genomic DNA revealed that this sequence is part of a human endogenous retrovirus locus. The sequence of this endogenous retrovirus is interrupted by a pseudogene of the dual specificity phosphatase 5 (DUSP5). Reverse transcriptase-polymerase chain reaction revealed high expression of this pseudogene (DUSP5P1) in HL cell lines but not in normal blood cells or Epstein-Barr virus-immortalized B cells. Cells from other tumor types (Burkitt's lymphoma, leukemia, neuroblastoma, Ewing sarcoma) also showed a higher DUSP5P1/DUSP5 ratio than normal cells. Furthermore, we observed that higher expression of DUSP5 in relation to DUSP5P1 correlated with the expression of the pro-apoptotic factor B cell leukemia/lymphoma 2-like 11 (BCL2L11) in peripheral blood cells and HL cells. Knock-down of DUSP5 in HL cells resulted in down-regulation of BCL2L11. Thus, the DUSP5/DUSP5P1 system could be responsible for regulation of BCL2L11 leading to inhibition of apoptosis in these tumor cells.


Dual-specificity phosphatase 1 interacts with prohibitin 2 to improve mitochondrial quality control against type-3 cardiorenal syndrome.

  • Nanyang Liu‎ et al.
  • International journal of medical sciences‎
  • 2024‎

Type-3 cardiorenal syndrome (CRS-3) is acute kidney injury followed by cardiac injury/dysfunction. Mitochondrial injury may impair myocardial function during CRS-3. Since dual-specificity phosphatase 1 (DUSP1) and prohibitin 2 (PHB2) both promote cardiac mitochondrial quality control, we assessed whether these proteins were dysregulated during CRS-3-related cardiac depression. We found that DUSP1 was downregulated in heart tissues from a mouse model of CRS-3. DUSP1 transgenic (DUSP1Tg) mice were protected from CRS-3-induced myocardial damage, as evidenced by their improved heart function and myocardial structure. CRS-3 induced the inflammatory response, oxidative stress and mitochondrial dysfunction in wild-type hearts, but not in DUSP1Tg hearts. DUSP1 overexpression normalized cardiac mitochondrial quality control during CRS-3 by suppressing mitochondrial fission, restoring mitochondrial fusion, re-activating mitophagy and augmenting mitochondrial biogenesis. We found that DUSP1 sustained cardiac mitochondrial quality control by binding directly to PHB2 and maintaining PHB2 phosphorylation, while CRS-3 disrupted this physiological interaction. Transgenic knock-in mice carrying the Phb2S91D variant were less susceptible to cardiac depression upon CRS-3, due to a reduced inflammatory response, suppressed oxidative stress and improved mitochondrial quality control in their heart tissues. Thus, CRS-3-induced myocardial dysfunction can be attributed to reduced DUSP1 expression and disrupted DUSP1/PHB2 binding, leading to defective cardiac mitochondrial quality control.


Suppression of dual specificity phosphatase I expression inhibits hepatitis C virus replication.

  • Jung Eun Choi‎ et al.
  • PloS one‎
  • 2015‎

It was reported that dual specificity phosphatase 1 (DUSP1) is specifically upregulated in the liver of patients with chronic hetpatitis C virus (HCV) infection who do not respond to peginterferon (PegIFN) treatment. Here, we have investigated the role of DUSP1 in HCV replication in hepatoma cells stably expressing the full HCV replicon (FK). DUSP1 was silenced in cells harboring the FK replicon using a lentiviral vector encoding a DUSP1-specific short hairpin RNA (LV-shDUSP1). We demonstrated that knock-down of DUSP1 significantly inhibited HCV RNA and protein expression. Also, DUSP1 silencing enhanced the expression of phosphorylated signal transducer and activator of transcription 1 (phosho-STAT1) and facilitated the translocation of STAT1 into the nucleus. The mRNA expression levels of myxovirus resistance protein A (MxA), 2'-5'-oligoadenylate synthetase 1 (OAS1), ISG15 ubiquitin-like modifier (ISG15), chemokine C-X-C motif ligand 10 (CXCL10), and ubiquitin-specific protease 18 (USP18) were also accelerated by silencing of DUSP1. Furthermore, combined with the IFN treatment, DUSP1 silencing synergistically decreased the levels of HCV RNA. These results suggest that suppression of DUSP1 expression enhances phosphorylation and nuclear translocation of STAT1, resulting in increasing expression of interferon-stimulated genes (ISGs), which synergizes with IFN's antiviral effect against HCV. In conclusion, DUSP1 is involved in the antiviral host defense mechanism against a HCV infection and thus DUSP1 might be a target to treat chronic HCV infection.


Dual-Specificity Phosphatase 4 Regulates STAT5 Protein Stability and Helper T Cell Polarization.

  • Wan-Yi Hsiao‎ et al.
  • PloS one‎
  • 2015‎

Immune responses are critically regulated by the functions of CD4 helper T cells. Based on their secreted cytokines, helper T cells are further categorized into different subsets like Treg or Th17 cells, which suppress or promote inflammatory responses, respectively. Signals from IL-2 activate the transcription factor STAT5 to promote Treg but suppress Th17 cell differentiation. Our previous results found that the deficiency of a dual-specificity phosphatase, DUSP4, induced STAT5 hyper-activation, enhanced IL-2 signaling, and increased T cell proliferation. In this report, we examined the effects of DUSP4 deficiency on helper T cell differentiation and STAT5 regulation. Our in vivo data showed that DUSP4 mice were more resistant to the induction of autoimmune encephalitis, while in vitro differentiations revealed enhanced iTreg and reduced Th17 polarization in DUSP4-deficient T cells. To study the cause of this altered helper T cell polarization, we performed luciferase reporter assays and confirmed that, as predicted by our previous report, DUSP4 over-expression suppressed the transcription factor activity of STAT5. Surprisingly, we also found that DUSP4-deficient T but not B cells exhibited elevated STAT5 protein levels, and over-expressed DUSP4 destabilized STAT5 in vitro; moreover, this destabilization required the phosphatase activity of DUSP4, and was insensitive to MG132 treatment. Finally, domain-mapping results showed that both the substrate-interacting and the phosphatase domains of DUSP4 were required for its optimal interaction with STAT5, while the coiled-coil domain of STAT5 appeared to hinder this interaction. Our data thus provide the first genetic evidence that DUSP4 is important for helper T cell development. In addition, they also help uncover the novel, DUSP4-mediated regulation of STAT5 protein stability.


Dual-Specificity Phosphatase 6 Deficiency Attenuates Arterial-Injury-Induced Intimal Hyperplasia in Mice.

  • Candra D Hamdin‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

In response to injury, vascular smooth muscle cells (VSMCs) of the arterial wall dedifferentiate into a proliferative and migratory phenotype, leading to intimal hyperplasia. The ERK1/2 pathway participates in cellular proliferation and migration, while dual-specificity phosphatase 6 (DUSP6, also named MKP3) can dephosphorylate activated ERK1/2. We showed that DUSP6 was expressed in low baseline levels in normal arteries; however, arterial injury significantly increased DUSP6 levels in the vessel wall. Compared with wild-type mice, Dusp6-deficient mice had smaller neointima. In vitro, IL-1β induced DUSP6 expression and increased VSMC proliferation and migration. Lack of DUSP6 reduced IL-1β-induced VSMC proliferation and migration. DUSP6 deficiency did not affect IL-1β-stimulated ERK1/2 activation. Instead, ERK1/2 inhibitor U0126 prevented DUSP6 induction by IL-1β, indicating that ERK1/2 functions upstream of DUSP6 to regulate DUSP6 expression in VSMCs rather than downstream as a DUSP6 substrate. IL-1β decreased the levels of cell cycle inhibitor p27 and cell-cell adhesion molecule N-cadherin in VSMCs, whereas lack of DUSP6 maintained their high levels, revealing novel functions of DUSP6 in regulating these two molecules. Taken together, our results indicate that lack of DUSP6 attenuated neointima formation following arterial injury by reducing VSMC proliferation and migration, which were likely mediated via maintaining p27 and N-cadherin levels.


Transcriptional regulation of human dual specificity protein phosphatase 1 (DUSP1) gene by glucocorticoids.

  • Lauren E Shipp‎ et al.
  • PloS one‎
  • 2010‎

Glucocorticoids are potent anti-inflammatory agents commonly used to treat inflammatory diseases. They convey signals through the intracellular glucocorticoid receptor (GR), which upon binding to ligands, associates with genomic glucocorticoid response elements (GREs) to regulate transcription of associated genes. One mechanism by which glucocorticoids inhibit inflammation is through induction of the dual specificity phosphatase-1 (DUSP1, a.k.a. mitogen-activated protein kinase phosphatase-1, MKP-1) gene.


Laforin, a dual specificity phosphatase involved in Lafora disease, is present mainly as monomeric form with full phosphatase activity.

  • Vikas V Dukhande‎ et al.
  • PloS one‎
  • 2011‎

Lafora Disease (LD) is a fatal neurodegenerative epileptic disorder that presents as a neurological deterioration with the accumulation of insoluble, intracellular, hyperphosphorylated carbohydrates called Lafora bodies (LBs). LD is caused by mutations in either the gene encoding laforin or malin. Laforin contains a dual specificity phosphatase domain and a carbohydrate-binding module, and is a member of the recently described family of glucan phosphatases. In the current study, we investigated the functional and physiological relevance of laforin dimerization. We purified recombinant human laforin and subjected the monomer and dimer fractions to denaturing gel electrophoresis, mass spectrometry, phosphatase assays, protein-protein interaction assays, and glucan binding assays. Our results demonstrate that laforin prevalently exists as a monomer with a small dimer fraction both in vitro and in vivo. Of mechanistic importance, laforin monomer and dimer possess equal phosphatase activity, and they both associate with malin and bind glucans to a similar extent. However, we found differences between the two states' ability to interact simultaneously with malin and carbohydrates. Furthermore, we tested other members of the glucan phosphatase family. Cumulatively, our data suggest that laforin monomer is the dominant form of the protein and that it contains phosphatase activity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: