Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 437 papers

Expression of dual-specificity phosphatase 5 pseudogene 1 (DUSP5P1) in tumor cells.

  • Martin S Staege‎ et al.
  • PloS one‎
  • 2014‎

Sequencing of individual clones from a newly established cDNA library from the chemoresistant Hodgkin's lymphoma cell line L-1236 led to the isolation of a cDNA clone corresponding to a short sequence from chromosome 1. Reverse transcriptase-polymerase chain reaction indicated high expression of this sequence in Hodgkin's lymphoma derived cell lines but not in normal blood cells. Further characterization of this sequence and the surrounding genomic DNA revealed that this sequence is part of a human endogenous retrovirus locus. The sequence of this endogenous retrovirus is interrupted by a pseudogene of the dual specificity phosphatase 5 (DUSP5). Reverse transcriptase-polymerase chain reaction revealed high expression of this pseudogene (DUSP5P1) in HL cell lines but not in normal blood cells or Epstein-Barr virus-immortalized B cells. Cells from other tumor types (Burkitt's lymphoma, leukemia, neuroblastoma, Ewing sarcoma) also showed a higher DUSP5P1/DUSP5 ratio than normal cells. Furthermore, we observed that higher expression of DUSP5 in relation to DUSP5P1 correlated with the expression of the pro-apoptotic factor B cell leukemia/lymphoma 2-like 11 (BCL2L11) in peripheral blood cells and HL cells. Knock-down of DUSP5 in HL cells resulted in down-regulation of BCL2L11. Thus, the DUSP5/DUSP5P1 system could be responsible for regulation of BCL2L11 leading to inhibition of apoptosis in these tumor cells.


Transcriptional regulation of human dual specificity protein phosphatase 1 (DUSP1) gene by glucocorticoids.

  • Lauren E Shipp‎ et al.
  • PloS one‎
  • 2010‎

Glucocorticoids are potent anti-inflammatory agents commonly used to treat inflammatory diseases. They convey signals through the intracellular glucocorticoid receptor (GR), which upon binding to ligands, associates with genomic glucocorticoid response elements (GREs) to regulate transcription of associated genes. One mechanism by which glucocorticoids inhibit inflammation is through induction of the dual specificity phosphatase-1 (DUSP1, a.k.a. mitogen-activated protein kinase phosphatase-1, MKP-1) gene.


Dual-Specificity Phosphatase 1 and Tristetraprolin Cooperate To Regulate Macrophage Responses to Lipopolysaccharide.

  • Tim Smallie‎ et al.
  • Journal of immunology (Baltimore, Md. : 1950)‎
  • 2015‎

Dual-specificity phosphatase (DUSP) 1 dephosphorylates and inactivates members of the MAPK superfamily, in particular, JNKs, p38α, and p38β MAPKs. It functions as an essential negative regulator of innate immune responses, hence disruption of the Dusp1 gene renders mice extremely sensitive to a wide variety of experimental inflammatory challenges. The principal mechanisms behind the overexpression of inflammatory mediators by Dusp1(-/-) cells are not known. In this study, we use a genetic approach to identify an important mechanism of action of DUSP1, involving the modulation of the activity of the mRNA-destabilizing protein tristetraprolin. This mechanism is key to the control of essential early mediators of inflammation, TNF, CXCL1, and CXCL2, as well as the anti-inflammatory cytokine IL-10. The same mechanism also contributes to the regulation of a large number of transcripts induced by treatment of macrophages with LPS. These findings demonstrate that modulation of the phosphorylation status of tristetraprolin is an important physiological mechanism by which innate immune responses can be controlled.


Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1.

  • Sonya M Abraham‎ et al.
  • The Journal of experimental medicine‎
  • 2006‎

Glucocorticoids (GCs), which are used in the treatment of immune-mediated inflammatory diseases, inhibit the expression of many inflammatory mediators. They can also induce the expression of dual specificity phosphatase 1 (DUSP1; otherwise known as mitogen-activated protein kinase [MAPK] phosphatase 1), which dephosphorylates and inactivates MAPKs. We investigated the role of DUSP1 in the antiinflammatory action of the GC dexamethasone (Dex). Dex-mediated inhibition of c-Jun N-terminal kinase and p38 MAPK was abrogated in DUSP1-/- mouse macrophages. Dex-mediated suppression of several proinflammatory genes (including tumor necrosis factor, cyclooxygenase 2, and interleukin 1alpha and 1beta) was impaired in DUSP1-/- mouse macrophages, whereas other proinflammatory genes were inhibited by Dex in a DUSP1-independent manner. In vivo antiinflammatory effects of Dex on zymosan-induced inflammation were impaired in DUSP1-/- mice. Therefore, the expression of DUSP1 is required for the inhibition of proinflammatory signaling pathways by Dex in mouse macrophages. Furthermore, DUSP1 contributes to the antiinflammatory effects of Dex in vitro and in vivo.


NSC-87877, inhibitor of SHP-1/2 PTPs, inhibits dual-specificity phosphatase 26 (DUSP26).

  • Mina Song‎ et al.
  • Biochemical and biophysical research communications‎
  • 2009‎

Protein phosphorylation plays critical roles in many regulatory mechanisms controlling cell activities and thus involved in various diseases. The cellular equilibrium of phosphorylation is regulated through the actions of protein kinases and phosphatases. Therefore, these regulatory proteins have emerged as promising targets for drug development. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by 8-hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid (NSC-87877), a potent inhibitor of SHP-1 and SHP-2 PTPs. Phosphatase activity of dual-specificity protein phosphatase 26 (DUSP26) was decreased by the inhibitor in a dose-dependent manner. Kinetic studies with NSC-87877 and DUSP26 revealed a competitive inhibition. NSC-87877 effectively inhibited DUSP26-mediated dephosphorylation of p38, a member of mitogen-activated protein kinase (MAPK) family. Since DUSP26 is involved in survival of anaplastic thyroid cancer (ATC) cells, NSC-87877 could be a therapeutic reagent for treating ATC.


Dual specificity phosphatase 1 attenuates inflammation-induced cardiomyopathy by improving mitophagy and mitochondrial metabolism.

  • Ying Tan‎ et al.
  • Molecular metabolism‎
  • 2022‎

Dual specificity phosphatase 1 (DUSP1) is regarded as an anti-inflammatory factor in cardiovascular disorders. Mitophagy removes damaged mitochondria and thus promotes mitochondrial regeneration. We investigated whether DUSP1 could attenuate inflammation-induced cardiomyopathy by improving mitophagy.


Dual-specificity phosphatase 23 mediates GCM1 dephosphorylation and activation.

  • Fang-Yu Lin‎ et al.
  • Nucleic acids research‎
  • 2011‎

Glial cells missing homolog 1 (GCM1) is a transcription factor essential for placental development. GCM1 promotes syncytiotrophoblast formation and placental vasculogenesis by activating fusogenic and proangiogenic gene expression in placenta. GCM1 activity is regulated by multiple post-translational modifications. The cAMP/PKA-signaling pathway promotes CBP-mediated GCM1 acetylation and stabilizes GCM1, whereas hypoxia-induced GSK-3β-mediated phosphorylation of Ser322 causes GCM1 ubiquitination and degradation. How and whether complex modifications of GCM1 are coordinated is not known. Here we show that the interaction of GCM1 and dual-specificity phosphatase 23 (DUSP23) is enhanced by PKA-dependent phosphorylation of GCM1 on Ser269 and Ser275. The recruitment of DUSP23 reverses GSK-3β-mediated Ser322 phosphorylation, which in turn promotes GCM1 acetylation, stabilization and activation. Supporting a central role in coordinating GCM1 modifications, knockdown of DUSP23 suppressed GCM1 target gene expression and placental cell fusion. Our study identifies DUSP23 as a novel factor that promotes placental cell fusion and reveals a complex regulation of GCM1 activity by coordinated phosphorylation, dephosphorylation and acetylation.


Methylation of dual-specificity phosphatase 4 controls cell differentiation.

  • Hairui Su‎ et al.
  • Cell reports‎
  • 2021‎

Mitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity phosphatases (DUSPs), the activities of which are tightly regulated during cell differentiation. Using knockdown screening and single-cell transcriptional analysis, we demonstrate that DUSP4 is the phosphatase that specifically inactivates p38 kinase to promote megakaryocyte (Mk) differentiation. Mechanistically, PRMT1-mediated methylation of DUSP4 triggers its ubiquitinylation by an E3 ligase HUWE1. Interestingly, the mechanistic axis of the DUSP4 degradation and p38 activation is also associated with a transcriptional signature of immune activation in Mk cells. In the context of thrombocytopenia observed in myelodysplastic syndrome (MDS), we demonstrate that high levels of p38 MAPK and PRMT1 are associated with low platelet counts and adverse prognosis, while pharmacological inhibition of p38 MAPK or PRMT1 stimulates megakaryopoiesis. These findings provide mechanistic insights into the role of the PRMT1-DUSP4-p38 axis on Mk differentiation and present a strategy for treatment of thrombocytopenia associated with MDS.


Gefitinib enhances sensitivity of endometrial cancer cells to progestin therapy via dual-specificity phosphatase 1.

  • Yuan Yang‎ et al.
  • Oncotarget‎
  • 2017‎

In this study, we investigated if Gefitinib, an epidermal growth factor receptor (EGFR) inhibitor, augments endometrial cancer (EC) therapy with medroxyprogesterone acetate (MPA). Combined treatment with Gefitinib plus MPA decreased the proliferation and invasiveness of the Ishikawa and RL952 EC cell lines more effectively than MPA treatment alone. Moreover, combined treatment with Gefitinib plus MPA reduced growth of EC xenografts in Balb/c nude mice more than either Gefitinib or MPA alone. The therapeutic efficacy of combined Gefitinib plus MPA treatment was dependent on expression of dual-specificity phosphatase 1 (DUSP1). DUSP1 knockdown in Ishikawa cells treated with Gefitinib plus MPA showed greater proliferation and invasiveness than parental Ishikawa cells treated similarly. EC cells treated with the combination of Gefitinib plus MPA also showed DUSP1-dependent reductions in phospho-ERK1/2 and increases in E-Cadherin. Thus, Gefitinib appears to DUSP1-dependently enhance the therapeutic efficacy of progestin in EC cells.


Dual specificity phosphatase 1 regulates human inducible nitric oxide synthase expression by p38 MAP kinase.

  • Tuija Turpeinen‎ et al.
  • Mediators of inflammation‎
  • 2011‎

The role of dual specificity phosphatase 1 (DUSP1) in inducible nitric oxide synthase (iNOS) expression in A549 human pulmonary epithelial cells, J774 mouse macrophages and primary mouse bone marrow-derived macrophages (BMMs) was investigated. iNOS expression was induced by a cytokine mixture (TNF, IFNγ and IL-1β) in A549 cells and by LPS in J774 cells, and it was inhibited by p38 MAPK inhibitors SB202190 and BIRB 796. Stimulation with cytokine mixture or LPS enhanced also DUSP1 expression. Down-regulation of DUSP1 by siRNA increased p38 MAPK phosphorylation and iNOS expression in A549 and J774 cells. In addition, LPS-induced iNOS expression was enhanced in BMMs from DUSP1((-/-)) mice as compared to that in BMMs from wild-type mice. The results indicate that DUSP1 suppresses iNOS expression by limiting p38 MAPK activity in human and mouse cells. Compounds that enhance DUSP1 expression or modulate its function may be beneficial in diseases complicated with increased iNOS-mediated NO production.


Exosome-transmitted microRNA-133b inhibited bladder cancer proliferation by upregulating dual-specificity protein phosphatase 1.

  • Xiaoxiao Cai‎ et al.
  • Cancer medicine‎
  • 2020‎

Bladder Cancer (BC) is the ninth most common tumor in the world and one of the most common malignant tumors of the urinary system. Some studies reported that miR-133b expression is reduced in BC, but whether it plays a role in the development of BC and its mechanism is unclear. microRNAs can be packaged into exosomes to mediate communication between tumor cells, affecting their proliferation and apoptosis. The objective of this study was to investigate the effect of exosomal miR-133b on BC proliferation and its molecular mechanism. Firstly, the expression of miR-133b was evaluated in BC and adjacent normal tissues, as well as in serum exosomes of BC patients and healthy controls. Then the delivery and internalization of exosomes in cells was observed through fluorescence localization. Cell viability and apoptosis were assessed in BC cells transfected with mimics and incubated with exosomes. The role of exosomal miR-133b was also analyzed in nude mice transplant tumors. Furthermore, the target gene of miR-133b was predicted through bioinformatics. The level of miR-133b was significantly decreased in BC tissues and in exosomes from serum of patients, which was correlated with poor overall survival in TCGA. Exosomal miR-133b could be obtained using BC cells after transfection with miR-133b mimics. The miR-133b expression increased after incubation with exosomal miR-133b, which lead to the inhibition of viability and increase of apoptosis in BC cells. Exosomal miR-133b could suppress tumor growth in vivo. In addition, we found that exosomal miR-133b may play a role in suppressing BC proliferation by upregulating dual-specificity protein phosphatase 1 (DUSP1). These findings may offer promise for new therapeutic directions of BC.


Dual Specificity Phosphatase 5 Is Essential for T Cell Survival.

  • Raman G Kutty‎ et al.
  • PloS one‎
  • 2016‎

The mitogen-activated protein kinase (MAPK) pathway regulates many key cellular processes such as differentiation, apoptosis, and survival. The final proteins in this pathway, ERK1/2, are regulated by dual specificity phosphatase 5 (DUSP5). DUSP5 is a nuclear, inducible phosphatase with high affinity and fidelity for ERK1/2. By regulating the final step in the MAPK signaling cascade, DUSP5 exerts strong regulatory control over a central cellular pathway. Like other DUSPs, DUSP5 plays an important role in immune function. In this study, we have utilized new knockout mouse reagents to explore its function further. We demonstrate that global loss of DUSP5 does not result in any gross phenotypic changes. However, loss of DUSP5 affects memory/effector CD8+ T cell populations in response to acute viral infection. Specifically, Dusp5-/- mice have decreased proportions of short-lived effector cells (SLECs) and increased proportions of memory precursor effector cells (MPECs) in response to infection. Further, we show that this phenotype is T cell intrinsic; a bone marrow chimera model restricting loss of DUSP5 to the CD8+ T cell compartment displays a similar phenotype. Dusp5-/- T cells also display increased proliferation, increased apoptosis, and altered metabolic profiles, suggesting that DUSP5 is a pro-survival protein in T cells.


A parental requirement for dual-specificity phosphatase 6 in zebrafish.

  • Jennifer M Maurer‎ et al.
  • BMC developmental biology‎
  • 2018‎

Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are expressed in both embryonic and adult zebrafish, but their specific roles in embryogenesis remain to be fully understood.


Dual-Specificity Phosphatase 26 Protects Against Cardiac Hypertrophy Through TAK1.

  • Jing Zhao‎ et al.
  • Journal of the American Heart Association‎
  • 2021‎

Background Heart pathological hypertrophy has been recognized as a predisposing risk factor for heart failure and arrhythmia. DUSP (dual-specificity phosphatase) 26 is a member of the DUSP family of proteins, which has a significant effect on nonalcoholic fatty liver disease, neuroblastoma, glioma, and so on. However, the involvement of DUSP26 in cardiac hypertrophy remains unclear. Methods and Results Our study showed that DUSP26 expression was significantly increased in mouse hearts in response to pressure overload as well as in angiotensin II-treated cardiomyocytes. Cardiac-specific overexpression of DUSP26 mice showed attenuated cardiac hypertrophy and fibrosis, while deficiency of DUSP26 in mouse hearts resulted in increased cardiac hypertrophy and deteriorated cardiac function. Similar effects were also observed in cellular hypertrophy induced by angiotensin II. Importantly, we showed that DUSP26 bound to transforming growth factor-β activated kinase 1 and inhibited transforming growth factor-β activated kinase 1 phosphorylation, which led to suppression of the mitogen-activated protein kinase signaling pathway. In addition, transforming growth factor-β activated kinase 1-specific inhibitor inhibited cardiomyocyte hypertrophy induced by angiotensin II and attenuated the exaggerated hypertrophic response in DUSP26 conditional knockout mice. Conclusions Taken together, DUSP26 was induced in cardiac hypertrophy and protected against pressure overload induced cardiac hypertrophy by modulating transforming growth factor-β activated kinase 1-p38/ c-Jun N-terminal kinase-signaling axis. Therefore, DUSP26 may provide a therapeutic target for treatment of cardiac hypertrophy and heart failure.


DUSP5 (dual-specificity protein phosphatase 5) suppresses BCG-induced autophagy via ERK 1/2 signaling pathway.

  • Jia Luo‎ et al.
  • Molecular immunology‎
  • 2020‎

Autophagy is considered as an effective strategy for host cells to eliminate intracellular Mycobacterium tuberculosis (Mtb). Dual-specificity phosphatase 5 (DUSP5) is an endogenous phosphatase of ERK1/2, and plays an important role in host innate immune responses, its function in autophagy regulation however remains unexplored. In the present study, the function of DUSP5 in autophagy in Mycobacterium bovis Bacillus Calmette-Guerin (BCG)-infected RAW264.7 cells, a murine macrophage-like cell line, was examined by assessing the alteration of the cell morphology, expression of autophagy markers, and ERK1/2 signaling activation. The results demonstrated that the BCG infection could induce DUSP5 expression and activate ERK1/2 signaling in RAW264.7 cells; an activation of ERK1/2 signaling contributed to autophagic process in RAW264.7 cells. Moreover, DUSP5 knockdown increased the expression of autophagy-related proteins (Atgs), including LC3-II, Beclin1, Atg5 and Atg7. However, an overexpression of DUSP5 exhibited an opposite effect. Mechanistically, DUSP5 could inhibit the formation of autophagosome by suppressing the phosphorylation of signaling molecules in ERK1/2 signaling cascade. This study thus demonstrated a novel role of DUSP5 in modulating autophagy inRAW264.7 cells in response to BCG infection in particular, and autophagy macrophage to Mtb in general.


Interaction between dual specificity phosphatase-1 and cullin-1 attenuates alcohol-related liver disease by restoring p62-mediated mitophagy.

  • Ruibing Li‎ et al.
  • International journal of biological sciences‎
  • 2023‎

Besides abstinence, no effective treatment exists for alcohol-related liver disease (ALD), a dreaded consequence of alcohol abuse. In this study, we assessed the roles on ALD of dual specificity phosphatase-1 (DUSP1), an hepatoprotective enzyme, and Cullin-1 (CUL1), a member of the E3 ubiquitin ligase complex that exerts also transcriptional suppression of mitochondrial genes. Alcohol treatment downregulated hepatic DUSP1 expression in wild-type mice. Notably, DUSP1 transgenic (Dusp1Tg ) mice showed resistance to alcohol-mediated hepatic dysfunction, as evidenced by decreased AST/ALT activity, improved alcohol metabolism, and suppressed liver fibrosis, inflammation, and oxidative stress. Functional experiments demonstrated that DUSP1 overexpression prevents alcohol-mediated mitochondrial damage in hepatocytes through restoring mitophagy. Accordingly, pharmacological blockade of mitophagy abolished the hepatoprotective actions of DUSP1. Molecular assays showed that DUSP1 binds cytosolic CUL1 and prevents its translocation to the nucleus. Importantly, CUL1 silencing restored the transcription of p62 and Parkin, resulting in mitophagy activation, and sustained mitochondrial integrity and hepatocyte function upon alcohol stress. These results indicate that alcohol-mediated DUSP1 downregulation interrupts DUSP1/CUL1 interaction, leading to CUL1 nuclear translocation and mitophagy inhibition via transcriptional repression of p62 and Parkin. Thus, targeting the DUSP1/CUL1/p62 axis will be a key approach to restore hepatic mitophagy as well as alleviate symptoms of ALD.


Attenuation of the acute inflammatory response by dual specificity phosphatase 1 by inhibition of p38 MAP kinase.

  • Riku Korhonen‎ et al.
  • Molecular immunology‎
  • 2011‎

Dual specificity phosphatase 1 (DUSP1) dephosphorylates and, hence, regulates the activity of MAP kinases. The present study investigated the effect of DUSP1 on inflammatory gene expression and on the development of carrageenan-induced inflammation. It was found that DUSP1 expression was increased by LPS, and the down-regulation of DUSP1 by siRNA enhanced the phosphorylation of p38 MAPK, while JNK phosphorylation was not affected in murine macrophages. LPS-induced interleukin (IL)-6, tumor-necrosis factor (TNF) and cyclooxygenase-2 (COX2) expression were enhanced in bone marrow-derived macrophages (BMMs) from DUSP1(-/-) mice as compared to those from wild-type mice. In addition, down-regulation of DUSP1 by siRNA enhanced IL-6, TNF and COX2 expression in J774 macrophages, while p38 MAPK inhibitors SB202190 and BIRB 796 inhibited the expression of those inflammatory factors. In vivo, the intensity of the carrageenan-induced paw edema reaction was increased in DUSP1(-/-) mice as compared to the wild-type animals. In conclusion, DUSP1 is an important negative regulator of the acute inflammatory response by limiting p38 MAPK, and compounds which enhance DUSP1 expression or activity may hold a promise as anti-inflammatory drugs.


Proteomic Signaling of Dual-Specificity Phosphatase 4 (DUSP4) in Alzheimer's Disease.

  • Erming Wang‎ et al.
  • Biomolecules‎
  • 2024‎

DUSP4 is a member of the DUSP (dual-specificity phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized the stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with the label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified protein expression and phosphorylation patterns modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome. In 5xFAD mice, a substantial number of proteins were up- or down-regulated in both male and female mice in comparison to age and sex-matched WT mice, many of which are involved in AD-related biological processes, such as activated immune response or suppressed synaptic activities. Many proteins in pathways, such as immune response were found to be suppressed in response to DUSP4 overexpression in male 5xFAD mice. In contrast, such a shift was absent in female mice. For the phosphoproteome, we detected an array of phosphorylation sites regulated in 5xFAD compared to WT and modulated via DUSP4 overexpression in each sex. Interestingly, 5xFAD- and DUSP4-associated phosphorylation changes occurred in opposite directions. Strikingly, both the 5xFAD- and DUSP4-associated phosphorylation changes were found to be mostly in neurons and play key roles in neuronal processes and synaptic functions. Site-centric pathway analysis revealed that both the 5xFAD- and DUSP4-associated phosphorylation sites were enriched for a number of kinase sets in females but only a limited number of sets of kinases in male mice. Taken together, our results suggest that male and female 5xFAD mice responded to DUSP4 overexpression via shared and sex-specific molecular mechanisms, which might underly similar reductions in amyloid pathology in both sexes while learning deficits were reduced in only females with DUSP4 overexpression. Finally, we validated our findings with the sex-specific AD-associated proteomes in human cohorts and further developed DUSP4-centric proteomic network models and signaling maps for each sex.


Proteomic signaling of dual specificity phosphatase 4 (DUSP4) in Alzheimer's disease.

  • Erming Wang‎ et al.
  • Research square‎
  • 2023‎

DUSP4 is a member of the DUSP (Dual-Specificity Phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified patterns of protein expression and phosphorylation that are modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome. In 5xFAD mice, a substantial number of proteins were up- or down-regulated in both male and female mice in comparison to age and sex-matched WT mice, many of which are involved in AD-related biological processes, such as the activated immune response or suppression of synaptic activities. Upon DUSP4 overexpression, significantly regulated proteins were found in pathways that were suppressed, such as the immune response, in male 5xFAD mice. In contrast, such a shift was absent in female mice. For the phosphoproteome, we detected an array of phosphorylation sites that are regulated in 5xFAD compared to WT, and are modulated by DUSP4 overexpression in each sex. Interestingly, the changes in 5xFAD- and DUSP4-associated phosphorylation occurred in opposite directions. Strikingly, both the 5xFAD- and DUSP4-associated phosphorylation changes were found for the most part in neurons, and play key roles in neuronal processes and synaptic function. Site-centric pathway analysis revealed that both the 5xFAD- and DUSP4-associated phosphorylation sites were enriched for a number of kinase sets in female, but only a limited number of sets of kinases in male mice. Taken together, our results suggest that male and female 5xFAD mice respond to DUSP4 overexpression via shared and sex-specific molecular mechanisms, which might underly similar reductions in amyloid pathology in both sexes, while learning deficits were reduced in only females with DUSP4 overexpression. Finally, we validated our findings with the sex-specific AD-associated proteomes in human cohorts and further developed DUSP4-centric proteomic network models and signaling maps for each sex.


Dual-specificity Phosphatase 9 protects against Cardiac Hypertrophy by targeting ASK1.

  • Lang Jiang‎ et al.
  • International journal of biological sciences‎
  • 2021‎

The functions of dual-specificity phosphatase 9 (DUSP9) in hepatic steatosis and metabolic disturbance during nonalcoholic fatty liver disease were discussed in our prior study. However, its roles in the pathophysiology of pressure overload-induced cardiac hypertrophy remain to be illustrated. This study attempted to uncover the potential contributions and underpinning mechanisms of DUSP9 in cardiac hypertrophy. Utilizing the gain-and-loss-of-functional approaches of DUSP9 the cardiac phenotypes arising from the pathological, echocardiographic, and molecular analysis were quantified. The results showed increased levels of DUSP9 in hypertrophic mice heart and angiotensin II treated cardiomyocytes. In accordance with the results of cellular hypertrophy in response to angiotensin II, cardiac hypertrophy exaggeration, fibrosis, and malfunction triggered by pressure overload was evident in the case of cardiac-specific conditional knockout of DUSP9. In contrast, transgenic mice hearts with DUSP9 overexpression portrayed restoration of the hypertrophic phenotypes. Further explorations of molecular mechanisms indicated the direct interaction of DUSP9 with ASK1, which further repressed p38 and JNK signaling pathways. Moreover, blocking ASK1 with ASK1-specific inhibitor compensated the pro-hypertrophic effects induced by DUSP9 deficiency in cardiomyocytes. The main findings of this study suggest the potential of DUSP9 in alleviating cardiac hypertrophy at least partially by repressing ASK1, thereby looks promising as a prospective target against cardiac hypertrophy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: