Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 761 papers

Ultrasensitive response explains the benefit of combination chemotherapy despite drug antagonism.

  • Sarah C Patterson‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Most aggressive lymphomas are treated with combination chemotherapy, commonly as multiple cycles of concurrent drug administration. Concurrent administration is in theory optimal when combination therapies have synergistic (more than additive) drug interactions. We investigated pharmacodynamic interactions in the standard 4-drug 'CHOP' regimen in Peripheral T-Cell Lymphoma (PTCL) cell lines, and found that CHOP consistently exhibits antagonism and not synergy. We tested whether staggered treatment schedules could improve tumor cell kill by avoiding antagonism, using month-long in vitro models of concurrent or staggered treatments. Surprisingly, we observed that tumor cell kill is maximized by concurrent drug administration despite antagonistic drug-drug interactions. We propose that an ultrasensitive dose response, as described in radiology by the linear-quadratic (LQ) model, can reconcile these seemingly contradictory experimental observations. The LQ model describes the relationship between cell survival and dose, and in radiology has identified scenarios favoring hypofractionated radiation - the administration of fewer large doses rather than multiple smaller doses. Specifically, hypofractionated treatment can be favored when cells require an accumulation of DNA damage, rather than a 'single hit', in order to die. By adapting the LQ model to combination chemotherapy and accounting for tumor heterogeneity, we find that tumor cell kill is maximized by concurrent administration of multiple drugs, even when chemotherapies have antagonistic interactions. Thus, our study identifies a new mechanism by which combination chemotherapy can be clinically beneficial that is not reliant on positive drug-drug interactions.


Drug antagonism and single-agent dominance result from differences in death kinetics.

  • Ryan Richards‎ et al.
  • Nature chemical biology‎
  • 2020‎

Cancer treatment generally involves drugs used in combinations. Most previous work has focused on identifying and understanding synergistic drug-drug interactions; however, understanding antagonistic interactions remains an important and understudied issue. To enrich for antagonism and reveal common features of these combinations, we screened all pairwise combinations of drugs characterized as activators of regulated cell death. This network is strongly enriched for antagonism, particularly a form of antagonism that we call 'single-agent dominance'. Single-agent dominance refers to antagonisms in which a two-drug combination phenocopies one of the two agents. Dominance results from differences in cell death onset time, with dominant drugs acting earlier than their suppressed counterparts. We explored mechanisms by which parthanatotic agents dominate apoptotic agents, finding that dominance in this scenario is caused by mutually exclusive and conflicting use of Poly(ADP-ribose) polymerase 1 (PARP1). Taken together, our study reveals death kinetics as a predictive feature of antagonism, due to inhibitory crosstalk between cell death pathways.


Ultrasound-sensitive siRNA-loaded nanobubbles fabrication and antagonism in drug resistance for NSCLC.

  • Chunhong Su‎ et al.
  • Drug delivery‎
  • 2022‎

Due to the lack of safe, effective, and gene-targeted delivery technology. In this study, we have prepared nanobubbles loaded PDLIM5 siRNA (PDLIM5siRNA-NBs) to investigate the transfection efficiency and their antagonism in drug resistance in combination with ultrasound irradiation for non-small-cell lung cancer (NSCLC). Research results show that the PDLIM5 siRNA are effectively bound to the shell of NBs with a mean diameter of 191.6 ± 0.50 nm and a Zeta potential of 11.8 ± 0.68 mV. And the ultrasonic imaging indicated that the PDLIM5 siRNA NBs maintain the same signals as the microbubbles (SonoVue). Under the optimized conditions of 0.5 W/m2 ultrasound intensity and 1 min irradiation duration, the highest transfection efficiency of PC9GR cells was 90.23 ± 1.45%, which resulted in the inhibition of PDLIM5 mRNA and protein expression. More importantly, the anti-tumor effect of fabricated PDLIM5siRNA-NBs with the help of ultrasound irradiation has been demonstrated to significantly inhibit tumor cell growth and promote apoptosis. Therefore, NBs carrying PDLIM5siRNA may have the potential to act as gene vectors combined with ultrasound irradiation to antagonize drug resistance for NSCLC.


Acute antagonism in three-drug combinations for vaginal HIV prevention in humanized mice.

  • Philippe A Gallay‎ et al.
  • Scientific reports‎
  • 2023‎

Adolescent girls and young women in low- to middle-income countries are disproportionately at risk of becoming HIV-1 infected. New non-vaccine biomedical products aimed at overcoming this global health challenge need to provide a range of safe, effective, and discreet dosage forms based on the delivery of one or more antiviral compounds. An overarching strategy involves vaginal drug administration through inserts/tablets, gels, films, and intravaginal rings. The approach derives its appeal from being women-controlled and topical, there-by potentially minimizing systemic exposure to the agents and their metabolites. Oral regimens based on tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) are established and effective in HIV-1 pre-exposure prophylaxis (PrEP), and form a promising basis for vaginal PrEP. Here, we used bone marrow/liver/thymus humanized mice to measure the in vivo efficacy against HIV-1 of single and combination antiviral compounds applied vaginally, coupled with data analysis using the Chou-Talalay mathematical model to study the dose-effect characteristics. Unexpectedly, strong antagonism was observed in drug combinations composed of TDF-FTC coupled with a third agent using a different mode of action against HIV-1. The antagonistic effect was remedied when TDF was omitted from the regimen. Our approach provides a translational template for the preclinical, rational, and systematic evaluation of drug combinations for the prevention of HIV-1, and other viral diseases.


FXR antagonism of NSAIDs contributes to drug-induced liver injury identified by systems pharmacology approach.

  • Weiqiang Lu‎ et al.
  • Scientific reports‎
  • 2015‎

Non-steroidal anti-inflammatory drugs (NSAIDs) are worldwide used drugs for analgesic, antipyretic, and anti-inflammatory therapeutics. However, NSAIDs often cause several serious liver injuries, such as drug-induced liver injury (DILI), and the molecular mechanisms of DILI have not been clearly elucidated. In this study, we developed a systems pharmacology approach to explore the mechanism-of-action of NSAIDs. We found that the Farnesoid X Receptor (FXR) antagonism of NSAIDs is a potential molecular mechanism of DILI through systematic network analysis and in vitro assays. Specially, the quantitative real-time PCR assay reveals that indomethacin and ibuprofen regulate FXR downstream target gene expression in HepG2 cells. Furthermore, the western blot shows that FXR antagonism by indomethacin induces the phosphorylation of STAT3 (signal transducer and activator of transcription 3), promotes the activation of caspase9, and finally causes DILI. In summary, our systems pharmacology approach provided novel insights into molecular mechanisms of DILI for NSAIDs, which may propel the ways toward the design of novel anti-inflammatory pharmacotherapeutics.


A classification model to predict synergism/antagonism of cytotoxic mixtures using protein-drug docking scores.

  • John C Boik‎ et al.
  • BMC pharmacology‎
  • 2008‎

Safer and more effective mixtures of anticancer drugs are needed, and modeling can assist in this endeavor. This paper describes classification models that were constructed to predict which fixed-ratio mixtures created from a pool of 10 drugs would show a high degree of in-vitro synergism against H460 human lung cancer cells. One of the tested drugs was doxorubicin and the others were natural compounds including quercetin, curcumin, and EGCG. Explanatory variables were based on virtual docking profiles. Docking profiles for the 10 drugs were obtained for 1087 proteins using commercial docking software. The cytotoxicity of all 10 drugs and of 45 of the 1,013 possible mixtures was tested in the laboratory and synergism indices were generated using the MixLow method. Model accuracy was assessed using cross validation, as well as using predictions on a new set of 10 tested mixtures. Results were compared to models where explanatory variables were constructed using the pseudomolecule approach of Sheridan.


The Antiarrhythmic Drug, Dronedarone, Demonstrates Cytotoxic Effects in Breast Cancer Independent of Thyroid Hormone Receptor Alpha 1 (THRα1) Antagonism.

  • Mitchell J Elliott‎ et al.
  • Scientific reports‎
  • 2018‎

Previous research has suggested that thyroid hormone receptor alpha 1 (THRα1), a hormone responsive splice variant, may play a role in breast cancer progression. Whether THRα1 can be exploited for anti-cancer therapy is unknown. The antiproliferative and antitumor effects of dronedarone, an FDA-approved anti-arrhythmic drug which has been shown to antagonize THRα1, was evaluated in breast cancer cell lines in vitro and in vivo. The THRα1 splice variant and the entire receptor, THRα, were also independently targeted using siRNA to determine the effect of target knockdown in vitro. In our study, dronedarone demonstrates cytotoxic effects in vitro and in vivo in breast cancer cell lines at doses and concentrations that may be clinically relevant. However, knockdown of either THRα1 or THRα did not cause substantial anti-proliferative or cytotoxic effects in vitro, nor did it alter the sensitivity to dronedarone. Thus, we conclude that dronedarone's cytotoxic effect in breast cancer cell lines are independent of THRα or THRα1 antagonism. Further, the depletion of THRα or THRα1 does not affect cell viability or proliferation. Characterizing the mechanism of dronedarone's anti-tumor action may facilitate drug repurposing or the development of new anti-cancer agents.


Inhibition by colchicine of human lymphocytotoxic function: dependence on cell-bound drug level, spontaneous reversibility and antagonism by desacetylcolchicine (DAC).

  • A E Thomson‎ et al.
  • Leukemia research‎
  • 1983‎

Colchicine elicits inhibition of spontaneous, PHA-dependent and antibody-dependent forms of lymphocytotoxicity of peripheral blood lymphocytes (PBL) against allogeneic target cells. The findings are that it does so in cell-bound form and to near-maximum effect in the amount of this produced in PBL exposed to it at 10(-6)M concentration for 2 h at 37 degrees C. This represents only a small fraction of the cells' binding capacity, which suggests that it involves sites special in kind (localisation) rather than number (occupied at random). Desacetylcolchicine (DAC) (a known inhibitor of the colchicine-tubulin binding reaction) afforded the PBL protection at concentrations that antagonised the binding of colchicine to them. That DAC itself hardly inhibited PBL function is attributed by inference to a weaker binding affinity making for readier loss of it upon removal of the free drug. It did, however, exhibit a tight form of binding to other, functionally-insensitive cell sites not competed for by colchicine at 100-fold higher concentration. Contrary to the impression lent by other workers' studies (on mouse lymphocytes), colchicine-induced suppression of cytotoxic function is not necessarily irreversible. PBL cultured in drug-free medium gradually lost bound colchicine and they recovered in capacity to express spontaneous and PHA-dependent activity, but not in antibody-dependent activity. The residual cytolytic activity shown by colchicine pre-treated PBL appears in the case of antibody-dependent activity to be truly colchicine resistant; it survived unchanged a 10-fold increase in cell-bound drug level and it cannot be explained as a possible product of recovery. This colchicine-independence may reflect the existence of tubulin/microtubule-independent mechanisms contributing to antibody-dependent activity. Examination of colchicine-treated PBL for membrane fluidity changes, using the probe molecule DPH and the technique of fluorescence polarisation, has yielded negative results, even for cells treated at excessively high colchicine concentration (10(-4)M). All three forms of lymphocytotoxic activity were retained in PBL reconstituted after cryopreservation in liquid nitrogen.


Growth hormone receptor antagonism downregulates ATP-binding cassette transporters contributing to improved drug efficacy against melanoma and hepatocarcinoma in vivo.

  • Reetobrata Basu‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Knockdown of GH receptor (GHR) in melanoma cells in vitro downregulates ATP-binding cassette-containing (ABC) transporters and sensitizes them to anti-cancer drug treatments. Here we aimed to determine whether a GHR antagonist (GHRA) could control cancer growth by sensitizing tumors to therapy through downregulation of ABC transporters in vivo. We intradermally inoculated Fluc-B16-F10 mouse melanoma cells into GHA mice, transgenic for a GHR antagonist (GHRA), and observed a marked reduction in tumor size, mass and tumoral GH signaling. Moreover, constitutive GHRA production in the transgenic mice significantly improved the response to cisplatin treatment by suppressing expression of multiple ABC transporters and sensitizing the tumors to the drug. We confirmed that presence of a GHRA and not a mere absence of GH is essential for this chemo-sensitizing effect using Fluc-B16-F10 allografts in GH knockout (GHKO) mice, where tumor growth was reduced relative to that in GH-sufficient controls but did not sensitize the tumor to cisplatin. We extended our investigation to hepatocellular carcinoma (HCC) using human HCC cells in vitro and a syngeneic mouse model of HCC with Hepa1-6 allografts in GHA mice. Gene expression analyses and drug-efflux assays confirm that blocking GH significantly suppresses the levels of ABC transporters and improves the efficacy of sorafenib towards almost complete tumor clearance. Human patient data for melanoma and HCC show that GHR RNA levels correlate with ABC transporter expression. Collectively, our results validate in vivo that combination of a GHRA with currently available anti-cancer therapies can be effective in attacking cancer drug resistance.


Bliss and Loewe interaction analyses of clinically relevant drug combinations in human colon cancer cell lines reveal complex patterns of synergy and antagonism.

  • Muhammad Kashif‎ et al.
  • Oncotarget‎
  • 2017‎

We analyzed survival effects for 15 different pairs of clinically relevant anti-cancer drugs in three iso-genic pairs of human colorectal cancer carcinoma cell lines, by applying for the first time our novel software (R package) called COMBIA. In our experiments iso-genic pairs of cell lines were used, differing only with respect to a single clinically important KRAS or BRAF mutation. Frequently, concentration dependent but mutation independent joint Bliss and Loewe synergy/antagonism was found statistically significant. Four combinations were found synergistic/antagonistic specifically to the parental (harboring KRAS or BRAF mutation) cell line of the corresponding iso-genic cell lines pair. COMBIA offers considerable improvements over established software for synergy analysis such as MacSynergy™ II as it includes both Bliss (independence) and Loewe (additivity) analyses, together with a tailored non-parametric statistical analysis employing heteroscedasticity, controlled resampling, and global (omnibus) testing. In many cases Loewe analyses found significant synergistic as well as antagonistic effects in a cell line at different concentrations of a tested drug combination. By contrast, Bliss analysis found only one type of significant effect per cell line. In conclusion, the integrated Bliss and Loewe interaction analysis based on non-parametric statistics may provide more robust interaction analyses and reveal complex patterns of synergy and antagonism.


Bimodal antagonism of PKA signalling by ARHGAP36.

  • Rebecca L Eccles‎ et al.
  • Nature communications‎
  • 2016‎

Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease.


Exploring new scaffolds for angiotensin II receptor antagonism.

  • Eftichia Kritsi‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2016‎

Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities.


Tachykinin receptors antagonism for asthma: a systematic review.

  • Renata Ramalho‎ et al.
  • BMC pulmonary medicine‎
  • 2011‎

Tachykinins substance P, neurokinin A and neurokinin B seem to account for asthma pathophysiology by mediating neurogenic inflammation and several aspects of lung mechanics. These neuropeptides act mainly by their receptors NK1, NK2 and NK3, respectively which may be targets for new asthma therapy.


Biochemical characterization of a multi-drug resistant HIV-1 subtype AG reverse transcriptase: antagonism of AZT discrimination and excision pathways and sensitivity to RNase H inhibitors.

  • Anna Schneider‎ et al.
  • Nucleic acids research‎
  • 2016‎

We analyzed a multi-drug resistant (MR) HIV-1 reverse transcriptase (RT), subcloned from a patient-derived subtype CRF02_AG, harboring 45 amino acid exchanges, amongst them four thymidine analog mutations (TAMs) relevant for high-level AZT (azidothymidine) resistance by AZTMP excision (M41L, D67N, T215Y, K219E) as well as four substitutions of the AZTTP discrimination pathway (A62V, V75I, F116Y and Q151M). In addition, K65R, known to antagonize AZTMP excision in HIV-1 subtype B was present. Although MR-RT harbored the most significant amino acid exchanges T215Y and Q151M of each pathway, it exclusively used AZTTP discrimination, indicating that the two mechanisms are mutually exclusive and that the Q151M pathway is obviously preferred since it confers resistance to most nucleoside inhibitors. A derivative was created, additionally harboring the TAM K70R and the reversions M151Q as well as R65K since K65R antagonizes excision. MR-R65K-K70R-M151Q was competent of AZTMP excision, whereas other combinations thereof with only one or two exchanges still promoted discrimination. To tackle the multi-drug resistance problem, we tested if the MR-RTs could still be inhibited by RNase H inhibitors. All MR-RTs exhibited similar sensitivity toward RNase H inhibitors belonging to different inhibitor classes, indicating the importance of developing RNase H inhibitors further as anti-HIV drugs.


Targeting pancreatic cancer metabolic dependencies through glutamine antagonism.

  • Joel Encarnación-Rosado‎ et al.
  • Nature cancer‎
  • 2024‎

Pancreatic ductal adenocarcinoma (PDAC) cells use glutamine (Gln) to support proliferation and redox balance. Early attempts to inhibit Gln metabolism using glutaminase inhibitors resulted in rapid metabolic reprogramming and therapeutic resistance. Here, we demonstrated that treating PDAC cells with a Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), led to a metabolic crisis in vitro. In addition, we observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. We found that extracellular signal-regulated kinase (ERK) signaling is increased as a compensatory mechanism. Combinatorial treatment with DRP-104 and trametinib led to a significant increase in survival in a syngeneic model of PDAC. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. The combination with an ERK signaling pathway inhibitor could further improve the therapeutic outcome.


Hereditary angioedema therapy: kallikrein inhibition and bradykinin receptor antagonism.

  • Marc Riedl‎
  • The World Allergy Organization journal‎
  • 2010‎

Current strategies for the treatment of hereditary angioedema (HAE) include targeted inhibition or antagonism of the contact system, which is dysregulated in HAE patients by a C1 esterase inhibitor deficiency. Ecallantide, a plasma kallikrein inhibitor, and icatibant, a selective bradykinin-2 receptor antagonist, have recently been evaluated in clinical studies for the treatment of acute HAE attacks. Both drugs have demonstrated evidence of efficacy and safety in treating acute HAE episodes, with ecallantide approved for use in the United States and icatibant approved for use in Europe. As therapeutic options for HAE expand for both for prophylactic and acute treatment strategies, a number of patient-specific and drug-specific factors have emerged as important considerations when developing individualized HAE management plans. Optimization of HAE therapy will require further integration of new therapies into the current treatment paradigm.


Sigma-1 antagonism inhibits binge ethanol drinking at adolescence.

  • Leandro Ruiz-Leyva‎ et al.
  • Drug and alcohol dependence‎
  • 2020‎

Ethanol use during adolescence is a significant health problem, yet the pharmacological treatments to reduce adolescent binge drinking are scarce. The present study assessed, in male and female adolescent Wistar rats, if the sigma-1 receptor (S1-R) antagonists S1RA or BD-1063 disrupted ethanol drinking.


Convergent evolution of escape from hepaciviral antagonism in primates.

  • Maulik R Patel‎ et al.
  • PLoS biology‎
  • 2012‎

The ability to mount an interferon response on sensing viral infection is a critical component of mammalian innate immunity. Several viruses directly antagonize viral sensing pathways to block activation of the host immune response. Here, we show that recurrent viral antagonism has shaped the evolution of the host protein MAVS--a crucial component of the viral-sensing pathway in primates. From sequencing and phylogenetic analyses of MAVS from 21 simian primates, we found that MAVS has evolved under strong positive selection. We focused on how this positive selection has shaped MAVS' susceptibility to Hepatitis C virus (HCV). We functionally tested MAVS proteins from diverse primate species for their ability to resist antagonism by HCV, which uses its protease NS3/4A to cleave human MAVS. We found that MAVS from multiple primates are resistant to inhibition by the HCV protease. This resistance maps to single changes within the protease cleavage site in MAVS, which protect MAVS from getting cleaved by the HCV protease. Remarkably, most of these changes have been independently acquired at a single residue 506 that evolved under positive selection. We show that "escape" mutations lower affinity of the NS3 protease for MAVS and allow it to better restrict HCV replication. We further show that NS3 proteases from all other primate hepaciviruses, including the highly divergent GBV-A and GBV-C viruses, are functionally similar to HCV. We conclude that convergent evolution at residue 506 in multiple primates has resulted in escape from antagonism by hepaciviruses. Our study provides a model whereby insights into the ancient history of viral infections in primates can be gained using extant host and virus genes. Our analyses also provide a means by which primates might clear infections by extant hepaciviruses like HCV.


Mirabegron attenuates porcine ureteral contractility via α1-adrenoceptor antagonism.

  • Iris Lim‎ et al.
  • Naunyn-Schmiedeberg's archives of pharmacology‎
  • 2022‎

The β3-agonist mirabegron is thought to induce relaxation of the detrusor muscle, contributing to the improvement of overactive bladder symptoms. There has been recent interest in purposing mirabegron as a medical expulsive therapy drug to improve the passage of smaller kidney stones by relaxing the ureteral smooth muscles. The aim of this study was to determine the effects of mirabegron on the activity of the ureter. Additionally, we investigated the receptor and mechanisms through which mirabegron exerts these effects. In vitro agonist-induced responses of isolated porcine distal ureteral tissues were measured in the absence and presence of mirabegron in organ bath experiments. The responses were expressed as frequency, area under the curve and maximum amplitude. Mirabegron at concentrations of 100 nM and lower failed to suppress phenylephrine- or 5-HT-induced contractions in the porcine ureteral strip. Mirabegron at 1 μM and 10 μM produced a rightward shift of phenylephrine concentration-response curves in these tissues. This effect of mirabegron (10 μM) was not present in 5-HT concentration-response curves. The mirabegron effect on phenylephrine-induced contractions was also not abolished by β-adrenoceptor antagonist SR 59230A (10 μM), β-adrenoceptor antagonist propranolol (10 μM), α2-adrenoceptor antagonist yohimbine (30 nM), and nitric oxide synthase inhibitor L-NNA (10 μM). The present results show that mirabegron suppresses ureteral contractile responses in the porcine ureter via α1-adrenoceptor antagonism, since their effects were not present when the tissues were contracted with 5-HT. Furthermore, the inhibitory effects by mirabegron were not affected by β3-adrenoceptor antagonists.


Cysteinyl leukotriene receptor 1 antagonism prevents experimental abdominal aortic aneurysm.

  • Antonio Di Gennaro‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Cysteinyl-leukotrienes (cys-LTs) are 5-lipoxygenase-derived lipid mediators involved in the pathogenesis and progression of inflammatory disorders, in particular asthma. We have previously found evidence linking these mediators to increased levels of proteolytic enzymes in tissue specimens of human abdominal aortic aneurysm (AAA). Here we show that antagonism of the CysLT1 receptor by montelukast, an established antiasthma drug, protects against a strong aorta dilatation (>50% increase = aneurysm) in a mouse model of CaCl2-induced AAA at a dose comparable to human medical practice. Analysis of tissue extracts revealed that montelukast reduces the levels of matrix metalloproteinase-9 (MMP-9) and macrophage inflammatory protein-1α (MIP-1α) in the aortic wall. Furthermore, aneurysm progression was specifically mediated through CysLT1 signaling since a selective CysLT2 antagonist was without effect. A significantly reduced vessel dilatation is also observed when treatment with montelukast is started days after aneurysm induction, suggesting that the drug not only prevents but also stops and possibly reverts an already ongoing degenerative process. Moreover, montelukast reduced the incidence of aortic rupture and attenuated the AAA development in two additional independent models, i.e., angiotensin II- and porcine pancreatic elastase-induced AAA, respectively. Our results indicate that cys-LTs are involved in the pathogenesis of AAA and that antagonism of the CysLT1 receptor is a promising strategy for preventive and therapeutic treatment of this clinically silent and highly lethal disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: