Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,302 papers

Identification of docosahexaenoic and eicosapentaenoic acids multiple targets facing periodontopathogens.

  • Pedro Henrique Sette-de-Souza‎ et al.
  • Microbial pathogenesis‎
  • 2021‎

The eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) play a substantial role in Periodontal Disease (PD) due to their antimicrobial and immunomodulatory actions. However, their antimicrobial mechanism of action against bacteria involved in PD remains unclear. We aimed to estimate the probable targets of EPA and DHA against the seven periodontopathogens. Through in silico analyses, the protein-acids interactions, protein characterization, and molecular docking were performed. We identified 165 proteins from periodontopathogens that may interact with EPA and DHA. Fusobacterium nucleatum has the highest number of predicted proteins among analyzed bacteria (n = 43, 26.06%). The EPA shows more interactions than DHA. The EPA and DHA interact mainly with proteins involved in the metabolism (n = 69, 41.81%). Also, the EPA and DHA interact with proteins located in any subcellular location. The affinities between acids and pathogenic proteins were moderate (binding energy was lower than -4.0 kcal/mol). The interactions between EPA and DHA and periodontopathogens occur in multiples proteins. There is not a predilection about the functional class of pathogenic proteins targeting EPA and DHA. However, there are moderate binding affinities between EPA or DHA and essential pathogenic proteins (TolC, CRISPR, FusA).


Formulation, characterization and optimization of liposomes containing eicosapentaenoic and docosahexaenoic acids; a methodology approach.

  • Zahra Hadian‎ et al.
  • Iranian journal of pharmaceutical research : IJPR‎
  • 2014‎

Omega-3 fatty acids (FAs) have been shown to prevent cardiovascular disease. The most commonly used omega-3 fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are highly vulnerable to oxidation and therefore, have short shelf life. Recent advances in nanoliposomes provided a biocompatible system for stabilizing omega-3 FAs. Several methods could be implemented to prepare nanoliposomes. To the best of our knowledge, the performances of these methods in preparation omega-3 FAs have not been examined. Nanoliposomes were prepared by thin film hydration followed by one of the following methods: 1- extrusion, ultrasonic irradiation; 2- bath sonication; 3- probe sonication; or 4- combined probe and bath sonication. The size of liposomes obtained from methods 1 to 4 were 99.7 ± 3.5, 381.2 ± 7.8, 90.1 ± 2.3, and 87.1 ± 4.10 nm with zeta potential being -42.4 ± 1.7, -36.3 ± 1.6, -43.8 ± 2.4, and 31.6 ± 1.9 mV, respectively. The encapsulation efficiency (EE) for DHA was 13.2 ± 1.1%, 26.7 ± 1.9%, 56.9 ± 5.2% and 51.8 ± 3.8% for methods 1 to 4, respectively. The corresponding levels for EPA were 6.5 ± 1.3%, 18.1 ± 2.3%, 38.6 ± 1.8%, and 38 ± 3.7%, respectively. The EE for DHA and EPA of liposomes for both methods 3 and 4 increased significantly (p<0.05). Propanal, as the major volatile product formed during liposomal preparations, amounts from 81.2 ± 4.1 to 118.8 ± 2.3 μg/Kg. The differential scanning calorimetry (DSC) study showed that DHA and EPA influence the phase transition temperature of small unilamellar vesicles (SUVs) of dipalmitoyl phosphatidyl choline (DPPC). Transmission electron microscopy (TEM) images of liposomes stained with uranyl acetate showed that the liposomes were spherical in shape and maintain high structural integrity. In conclusion, probe ultrasound of pre-formed liposomes facilitates significant loading of DHA and EPA into the nanoliposomal membrane.


Characterization of gelatin/chitosan ploymer films integrated with docosahexaenoic acids fabricated by different methods.

  • Luyun Cai‎ et al.
  • Scientific reports‎
  • 2019‎

In this study, docosahexaenoic acid powder-enhanced gelatin-chitosan edible films were prepared by casting, electrospinning and coaxial electrospinning, respectively. The color (CR), transparency (UV), light transmission (UV), mechanical strength (TA-XT), thermal stability (DSC), crystalline structures (XRD), molecular interactions (FTIR), and microstructure (SEM) were assessed in the analytical research. The results of the research showed that the electrospinning process and the coaxial electrospinning process produced a smooth surface visible to by the naked eye and a uniform granular network structure in a unique film-forming manner, thereby exhibiting good water solubility and mechanical properties. In contrast, the casted film was smooth, transparent, and mechanically strong but poorly water soluble. It was also found that the addition of docosahexaenoic acid powder affected the optical, physical and mechanical properties of the film to varying degrees.


Decreased Levels of Erythrocyte Membrane Arachidonic and Docosahexaenoic Acids Are Associated With Retinopathy of Prematurity.

  • Tessa C Gillespie‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2022‎

Retinopathy of prematurity (ROP) can lead to blindness. Arachidonic acid (ARA) and docosahexaenoic acid (DHA) regulate retinal inflammation and angiogenesis. The aim of this study was to investigate red blood cell membrane (RBCM) ARA and DHA in preterm infants.


Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells.

  • Virginie Aires‎ et al.
  • British journal of pharmacology‎
  • 2003‎

1. Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery. 2. Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells. 3. To assess the role of calcium in the DHA-induced acidification, we conducted experiments in Ca2+-free (0% Ca2+) and Ca2+-containing (100% Ca2+) buffer. We observed that there was no difference in the degree of DHA-induced transient acidification in both the experimental conditions, though pHi recovery was faster in 0% Ca2+ medium than that in 100% Ca2+ medium. 4. In the presence of BAPTA, a calcium chelator, a rapid recovery of DHA-induced acidosis was observed. Furthermore, addition of CaCl2 into 0% Ca2+ medium curtailed DHA-evoked rapid pHi recovery. In 0% Ca2+ medium, containing BAPTA, DHA did not evoke increases in [Ca2+]i, though this fatty acid still induced a rapid acidification in these cells. These observations suggest that calcium is implicated in the long-lasting DHA-induced acidosis. 5. DHA-induced rapid acidification may be due to its deprotonation in the plasma membrane (flip-flop model), as suggested by the following observations: (1) DHA with a -COOH group induced intracellular acidification, but this fatty acid with a -COOCH3 group failed to do so, and (2) DHA, but not propionic acid, -induced acidification was completely reversed by addition of fatty acid-free bovine serum albumin in these cells. 6. These results suggest that DHA induces acidosis via deprotonation and Ca2+ mobilization in human T-cells.


Neuroprotective action of Eicosapentaenoic (EPA) and Docosahexaenoic (DHA) acids on Paraquat intoxication in Drosophila melanogaster.

  • Anderson de Oliveira Souza‎ et al.
  • Neurotoxicology‎
  • 2019‎

Several studies have shown the protective effects of dietary enrichment of omega-3 (ω-3) long-chain fatty acids in several animal models of neurodegenerative diseases. Here we investigate if eicosapentaenoic (EPA) and Docosahexaenoic (DHA) acids (ω-3) protect against neurodegeneration mediated by the exposure to a widely used herbicide Paraquat (PQ) (1,1'-dimethyl-4-4'-bipyridinium dichloride), focusing on mitochondrial metabolism using Drosophila melanogaster as a model. Dietary ingestion of PQ for 3 days resulted in the loss of citrate synthase content, respiratory capacity impairment and exacerbated H2O2 production per mitochondrial unit related to complex I dysfunction, and high lactate accumulation in fly heads. PQ intoxication lead to 1) the loss of ELAV (embryonic lethal abnormal vision) and α-spectrin, essential proteins of neuronal viability and synaptic stability; 2) increased gamma-secretase activity, an enzyme related to APP release; and 3) increased the amyloid fibrils contents. All these toxic effects induced by PQ were prevented by concomitant dietary ingestion of EPA/DHA, suggesting that a neuroprotective effect of ω-3 also involves mitochondrial protection. In conclusion, concomitant EPA and DHA ingestion protects against PQ-induced neuronal and mitochondrial dysfunctions frequently found in neurodegenerative processes reinforcing its protective role against environmental neurodegenerative diseases.


Eicosapentaenoic and docosahexaenoic acids attenuate hyperglycemia through the microbiome-gut-organs axis in db/db mice.

  • Pan Zhuang‎ et al.
  • Microbiome‎
  • 2021‎

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been suggested to prevent the development of metabolic disorders. However, their individual role in treating hyperglycemia and the mechanism of action regarding gut microbiome and metabolome in the context of diabetes remain unclear.


Diffusion of docosahexaenoic and eicosapentaenoic acids through the blood-brain barrier: An in situ cerebral perfusion study.

  • Melissa Ouellet‎ et al.
  • Neurochemistry international‎
  • 2009‎

Docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids are n-3 polyunsaturated fatty acids with a therapeutic potential for CNS diseases. Here, using an in situ brain perfusion technique in mice, we show that [(14)C]-DHA and [(14)C]-EPA readily cross the mouse blood-brain barrier (BBB) with brain transport coefficients (Clup) of 48+/-3microlg(-1)s(-1) and 52+/-4microlg(-1)s(-1), respectively. Mechanical capillary depletion of brain homogenates showed that less than 10% of [(14)C]-DHA or [(14)C]-EPA remained in endothelial cells of the brain vasculature, demonstrating that both molecules fully crossed the BBB. Addition of bovine serum albumin decreased the Clup of [(14)C]-DHA to 0.6+/-0.3microlg(-1)s(-1), indicating that binding to albumin reduced importantly, but not totally, the passage of DHA through the BBB. The Clup of [(14)C]-DHA or [(14)C]-EPA was not saturable at concentration up to 100microM, suggesting that these compounds crossed the BBB by simple diffusion. However, long-term high-DHA dietary consumption reduced the Clup of [(14)C]-DHA to 33+/-6microlg(-1)s(-1) (-20%, p<0.01). These results confirm that the brain uptake of DHA or EPA perfused with a physiological buffer is comparable to highly diffusible drugs like diazepam, and can be modulated by albumin binding and chronic dietary DHA intake.


Metabolic engineering to enhance biosynthesis of both docosahexaenoic acid and odd-chain fatty acids in Schizochytrium sp. S31.

  • Fangzhong Wang‎ et al.
  • Biotechnology for biofuels‎
  • 2019‎

Docosahexaenoic acid (DHA, C22:6) and odd-chain fatty acids (OCFAs, C15:0 and C17:0) have attracted great interest, since they have been widely used in food and therapeutic industries, as well as chemical industry, such as biodiesel production and improvement. The oil-producing heterotrophic microalgae Schizochytrium sp. 31 is one of main DHA-producing strains. Recently, it was found that Schizochytrium can also synthesize OCFAs; however, contents and titers of DHA and OCFAs in Schizochytrium are still low, which limit its practical application.


Lipid Structure Influences the Digestion and Oxidation Behavior of Docosahexaenoic and Eicosapentaenoic Acids in the Simulated Digestion System.

  • Gabriele Beltrame‎ et al.
  • Journal of agricultural and food chemistry‎
  • 2023‎

Omega-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential for human health but prone to oxidation. While esterification location is known to influence the stability of omega-3 in triacylglycerols (TAGs) in oxidation trials, their oxidative behavior in the gastrointestinal tract is unknown. Synthesized ABA- and AAB-type TAGs containing DHA and EPA were submitted to static in vitro digestion for the first time. Tridocosahexaenoin and DHA as ethyl esters were similarly digested. Digesta were analyzed by gas chromatography, liquid chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy. Besides the formation of di- and monoacylglycerols, degradation of hydroperoxides was detected in ABA- and AAB-type TAGs, whereas oxygenated species increased in tridocosahexaenoin. Ethyl esters were mainly unaffected. EPA was expectedly less susceptible to oxidation prior to and during the digestion process, particularly in sn-2. These results are relevant for the production of tailored omega-3 structures to be used as supplements or ingredients.


Dietary intake of eicosapentaenoic and docosahexaenoic acids is linked to gray matter volume and cognitive function in elderly.

  • Olga E Titova‎ et al.
  • Age (Dordrecht, Netherlands)‎
  • 2013‎

In the present study, we tested whether elderly with a high dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) would have higher cognitive test scores and greater brain volume than those with low dietary intake of these fatty acids. Data were obtained from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort. The dietary intake of EPA and DHA was determined by a 7-day food protocol in 252 cognitively healthy elderly (122 females) at the age of 70 years. At age 75, participants' global cognitive function was examined, and their brain volumes were measured by magnetic resonance imaging (MRI). Three different multivariate linear regression models were applied to test our hypothesis: model A (adjusted for gender and age), model B (additionally controlled for lifestyle factors, e.g., education), and model C (further controlled for cardiometabolic factors, e.g., systolic blood pressure). We found that the self-reported 7-day dietary intake of EPA and DHA at the age of 70 years was positively associated with global gray matter volume (P < 0.05, except for model C) and increased global cognitive performance score (P < 0.05). However, no significant associations were observed between the dietary intake of EPA and DHA and global white matter, total brain volume, and regional gray matter, respectively. Further, no effects were observed when examining cognitively impaired (n = 27) elderly as separate analyses. These cross-sectional findings suggest that dietary intake of EPA and DHA may be linked to improved cognitive health in late life but must be confirmed in patient studies.


Genetic risk prediction of the plasma triglyceride response to independent supplementations with eicosapentaenoic and docosahexaenoic acids: the ComparED Study.

  • Bastien Vallée Marcotte‎ et al.
  • Genes & nutrition‎
  • 2020‎

We previously built a genetic risk score (GRS) highly predictive of the plasma triglyceride (TG) response to an omega-3 fatty acid (n-3 FA) supplementation from marine sources. The objective of the present study was to test the potential of this GRS to predict the plasma TG responsiveness to supplementation with either eicosapentaenoic (EPA) or docosahexaenoic (DHA) acids in the Comparing EPA to DHA (ComparED) Study.


Eicosapentaenoic and Docosahexaenoic Acids Attenuate Progression of Albuminuria in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease.

  • Tarec K Elajami‎ et al.
  • Journal of the American Heart Association‎
  • 2017‎

Albuminuria is a marker of inflammation and an independent predictor of cardiovascular morbidity and mortality. The current study evaluated whether eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation attenuates progression of albuminuria in subjects with coronary artery disease.


A Diet With Docosahexaenoic and Arachidonic Acids as the Sole Source of Polyunsaturated Fatty Acids Is Sufficient to Support Visual, Cognitive, Motor, and Social Development in Mice.

  • Sarah J Carlson‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

Polyunsaturated fatty acids serve multiple functions in neurodevelopment and neurocognitive function. Intravenous lipid emulsions are administered to children that are dependent on parenteral nutrition to provide the essential fatty acids needed to sustain growth and development. One of these emulsions, derived from fish-oil, is particularly poor in the traditional essential fatty acids, linoleic and alpha-linolenic acids. However, it does contain adequate amounts of its main derivatives, arachidonic acid (ARA) and docosahexaenoic acid (DHA), respectively. This skewed composition has raised concern about the sole use of fish-oil based lipid emulsions in children and how its administration can be detrimental to their neurodevelopment. Using a custom-made diet that contains ARA and DHA as a sole source of polyunsaturated fatty acids, we bred and fed mice for multiple generations. Compared to adult, chow-fed mice, animals maintained on this special diet showed similar outcomes in a battery of neurocognitive tests performed under controlled conditions. Chow-fed mice did perform better in the rotarod test for ataxia and balance, although both experimental groups showed a conserved motor learning capacity. Conversely, mice fed the custom diet rich in DHA and ARA showed less neophobia than the chow-fed animals. Results from these experiments suggest that providing a diet where ARA and DHA are the sole source of polyunsaturated fatty acids is sufficient to support gross visual, cognitive, motor, and social development in mice.


N-Acyl amines of docosahexaenoic acid and other n-3 polyunsatured fatty acids - from fishy endocannabinoids to potential leads.

  • Jocelijn Meijerink‎ et al.
  • British journal of pharmacology‎
  • 2013‎

N-3 Long-chain polyunsaturated fatty acids (n-3 LC-PUFAs), in particular α-linolenic acid (18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) are receiving much attention because of their presumed beneficial health effects. To explain these, a variety of mechanisms have been proposed, but their interactions with the endocannabinoid system have received relatively little attention so far. However, it has already been shown some time ago that consumption of n-3 LC-PUFAs not only affects the synthesis of prototypic endocannabinoids like anandamide but also stimulates the formation of specific n-3 LC-PUFA-derived conjugates with ethanolamine, dopamine, serotonin or other amines. Some of these fatty amides show overlapping biological activities with those of typical endocannabinoids, whereas others possess distinct and sometimes largely unknown receptor affinities and other properties. The ethanolamine and dopamine conjugates of DHA have been the most investigated thus far. These mediators may provide promising new leads to the field of inflammatory and neurological disorders and for other pharmacological applications, including their use as carrier molecules for neurotransmitters to target the brain. Furthermore, combinations of n-3 LC-PUFA-derived fatty acid amides, their precursors and FAAH inhibitors offer possibilities to optimise their effects in health and disease.


Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways.

  • S C Dyall‎ et al.
  • Neuropharmacology‎
  • 2016‎

Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair.


Eicosapentaenoic and Docosahexaenoic Acid Supplementation Increases HDL Content in n-3 Fatty Acids and Improves Endothelial Function in Hypertriglyceridemic Patients.

  • Paola Peña-de-la-Sancha‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

High-density lipoproteins (HDLs) are known to enhance vascular function through different mechanisms, including the delivery of functional lipids to endothelial cells. Therefore, we hypothesized that omega-3 (n-3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content of HDLs would improve the beneficial vascular effects of these lipoproteins. To explore this hypothesis, we performed a placebo-controlled crossover clinical trial in 18 hypertriglyceridemic patients without clinical symptoms of coronary heart disease who received highly purified EPA 460 mg and DHA 380 mg, twice a day for 5 weeks or placebo. After 5 weeks of treatment, patients followed a 4-week washout period before crossover. HDLs were isolated using sequential ultracentrifugation for characterization and determination of fatty acid content. Our results showed that n-3 supplementation induced a significant decrease in body mass index, waist circumference as well as triglycerides and HDL-triglyceride plasma concentrations, whilst HDL-cholesterol and HDL-phospholipids significantly increased. On the other hand, HDL, EPA, and DHA content increased by 131% and 62%, respectively, whereas 3 omega-6 fatty acids significantly decreased in HDL structures. In addition, the EPA-to-arachidonic acid (AA) ratio increased more than twice within HDLs suggesting an improvement in their anti-inflammatory properties. All HDL-fatty acid modifications did not affect the size distribution or the stability of these lipoproteins and were concomitant with a significant increase in endothelial function assessed using a flow-mediated dilatation test (FMD) after n-3 supplementation. However, endothelial function was not improved in vitro using a model of rat aortic rings co-incubated with HDLs before or after treatment with n-3. These results suggest a beneficial effect of n-3 on endothelial function through a mechanism independent of HDL composition. In conclusion, we demonstrated that EPA and DHA supplementation for 5 weeks improved vascular function in hypertriglyceridemic patients, and induced enrichment of HDLs with EPA and DHA to the detriment of some n-6 fatty acids. The significant increase in the EPA-to-AA ratio in HDLs is indicative of a more anti-inflammatory profile of these lipoproteins.


Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice.

  • Noriko Suzuki-Kemuriyama‎ et al.
  • PloS one‎
  • 2016‎

Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver damage, such as that from liver cirrhosis and cancer. Recent studies have shown the benefits of consuming n-3 polyunsaturated fatty acids (PUFAs) for the treatment of NAFLD. In the present study, we investigated and compared the effects of the major n-3 PUFAs-eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6)-in preventing atherogenic high-fat (AHF) diet-induced NAFLD. Mice were fed the AHF diet supplemented with or without EPA or DHA for four weeks. Both EPA and DHA reduced the pathological features of AHF diet-induced NASH pathologies such as hepatic lobular inflammation and elevated serum transaminase activity. Intriguingly, EPA had a greater hepatic triacylglycerol (TG)-reducing effect than DHA. In contrast, DHA had a greater suppressive effect than EPA on AHF diet-induced hepatic inflammation and ROS generation, but no difference in fibrosis. Both EPA and DHA could be effective for treatment of NAFLD and NASH. Meanwhile, the two major n-3 polyunsaturated fatty acids might differ in a relative contribution to pathological intermediate steps towards liver fibrosis.


Quantitation of alpha-linolenic acid elongation to eicosapentaenoic and docosahexaenoic acid as affected by the ratio of n6/n3 fatty acids.

  • Kerstin Harnack‎ et al.
  • Nutrition & metabolism‎
  • 2009‎

Conversion of linoleic acid (LA) and alpha-linolenic acid (ALA) to their higher chain homologues in humans depends on the ratio of ingested n6 and n3 fatty acids.


Docosahexaenoic and Eicosapentaenoic Acids Prevent Altered-Muc2 Secretion Induced by Palmitic Acid by Alleviating Endoplasmic Reticulum Stress in LS174T Goblet Cells.

  • Quentin Escoula‎ et al.
  • Nutrients‎
  • 2019‎

Diets high in saturated fatty acids (FA) represent a risk factor for the development of obesity and associated metabolic disorders, partly through their impact on the epithelial cell barrier integrity. We hypothesized that unsaturated FA could alleviate saturated FA-induced endoplasmic reticulum (ER) stress occurring in intestinal secretory goblet cells, and consequently the reduced synthesis and secretion of mucins that form the protective mucus barrier. To investigate this hypothesis, we treated well-differentiated human colonic LS174T goblet cells with palmitic acid (PAL)-the most commonly used inducer of lipotoxicity in in vitro systems-or n-9, n-6, or n-3 unsaturated fatty acids alone or in co-treatment with PAL, and measured the impact of such treatments on ER stress and Muc2 production. Our results showed that only eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids protect goblet cells against ER stress-mediated altered Muc2 secretion induced by PAL, whereas neither linolenic acid nor n-9 and n-6 FA are able to provide such protection. We conclude that EPA and DHA could represent potential therapeutic nutrients against the detrimental lipotoxicity of saturated fatty acids, associated with type 2 diabetes and obesity or inflammatory bowel disease. These in vitro data remain to be explored in vivo in a context of dietary obesity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: