Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Thalamic Structural Connectivity Abnormalities in Minimal Hepatic Encephalopathy.

  • Hua-Jun Chen‎ et al.
  • Frontiers in neuroanatomy‎
  • 2021‎

Background and Aims: Numerous studies have demonstrated thalamus-related structural, functional, and metabolic abnormalities in minimal hepatic encephalopathy (MHE). We conducted the first study to investigate thalamic structural connectivity alterations in MHE.


Oncogenic splicing abnormalities induced by DEAD-Box Helicase 56 amplification in colorectal cancer.

  • Yuta Kouyama‎ et al.
  • Cancer science‎
  • 2019‎

Alternative splicing, regulated by DEAD-Box Helicase (DDX) families, plays an important role in cancer. However, the relationship between the DDX family and cancer has not been fully elucidated. In the present study, we identified a candidate oncogene DDX56 on Ch.7p by a bioinformatics approach using The Cancer Genome Atlas (TCGA) dataset of colorectal cancer (CRC). DDX56 expression was measured by RT-qPCR and immunochemical staining in 108 CRC patients. Clinicopathological and survival analyses were carried out using three CRC datasets. Biological roles of DDX56 were explored by gene set enrichment analysis (GSEA), and cell proliferation in vitro and in vivo, cell cycle assays, and using DDX56-knockdown or overexpressed CRC cells. RNA sequencing was carried out to elucidate the effect of DDX56 on mRNA splicing. We found that DDX56 expression was positively correlated with the amplification of DDX56 and was upregulated in CRC cells. High DDX56 expression was associated with lymphatic invasion and distant metastasis and was an independent poor prognostic factor. In vitro analysis, in vivo analysis and GSEA showed that DDX56 promoted proliferation ability through regulating the cell cycle. DDX56 knockdown reduced intron retention and tumor suppressor WEE1 expression, which functions as a G2-M DNA damage checkpoint. We have identified DDX56 as a novel oncogene and prognostic biomarker of CRC that promotes alternative splicing of WEE1.


Expanding the mutational spectrum of ZTTK syndrome: A de novo variant with global developmental delay and malnutrition in a Chinese patient.

  • Shuo Tang‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2023‎

Zhu-Tokita-Takenouchi-Kim (ZTTK, OMIM 617140) syndrome is a severe multisystem developmental disorder characterized by intellectual disability, developmental delay, cortical malformations, epilepsy, visual problems, musculoskeletal abnormalities, and congenital malformations. ZTTK syndrome is caused by a heterozygous pathogenic variant of the SON gene (NM_138927) at chromosome 21q22.1. The purpose of this study was to investigate the pathogenesis of a 6-month-old Chinese child who exhibited global developmental delay, muscle weakness, malnutrition, weight loss, and strabismus, brain abnormality, immunological system abnormalities.


miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea.

  • Cristina Martínez‎ et al.
  • Gut‎
  • 2017‎

Micro-RNAs (miRNAs) play a crucial role in controlling intestinal epithelial barrier function partly by modulating the expression of tight junction (TJ) proteins. We have previously shown differential messenger RNA (mRNA) expression correlated with ultrastructural abnormalities of the epithelial barrier in patients with diarrhoea-predominant IBS (IBS-D). However, the participation of miRNAs in these differential mRNA-associated findings remains to be established. Our aims were (1) to identify miRNAs differentially expressed in the small bowel mucosa of patients with IBS-D and (2) to explore putative target genes specifically involved in epithelial barrier function that are controlled by specific dysregulated IBS-D miRNAs.


Signal transduction pathway mutations in gastrointestinal (GI) cancers: a systematic review and meta-analysis.

  • Alireza Tabibzadeh‎ et al.
  • Scientific reports‎
  • 2020‎

The present study was conducted to evaluate the prevalence of the signaling pathways mutation rate in the Gastrointestinal (GI) tract cancers in a systematic review and meta-analysis study. The study was performed based on the PRISMA criteria. Random models by confidence interval (CI: 95%) were used to calculate the pooled estimate of prevalence via Metaprop command. The pooled prevalence indices of signal transduction pathway mutations in gastric cancer, liver cancer, colorectal cancer, and pancreatic cancer were 5% (95% CI: 3-8%), 12% (95% CI: 8-18%), 17% (95% CI: 14-20%), and 20% (95% CI: 5-41%), respectively. Also, the mutation rates for Wnt pathway and MAPK pathway were calculated to be 23% (95% CI, 14-33%) and 20% (95% CI, 17-24%), respectively. Moreover, the most popular genes were APC (in Wnt pathway), KRAS (in MAPK pathway) and PIK3CA (in PI3K pathway) in the colorectal cancer, pancreatic cancer, and gastric cancer while they were beta-catenin and CTNNB1 in liver cancer. The most altered pathway was Wnt pathway followed by the MAPK pathway. In addition, pancreatic cancer was found to be higher under the pressure of mutation compared with others based on pooled prevalence analysis. Finally, APC mutations in colorectal cancer, KRAS in gastric cancer, and pancreatic cancer were mostly associated gene alterations.


The role of the miR-21-5p-mediated inflammatory pathway in ulcerative colitis.

  • Xiaohong Lu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2020‎

Ulcerative colitis (UC), a major type of inflammatory bowel disease, is also a chronic non-specific intestinal inflammation condition of unknown etiology. The pathogenesis of UC is closely associated with immune abnormalities, inflammatory damage and genetics. The present study aimed to explore the effects of microRNA (miR)-21-5p on the interleukin-6 (IL-6) receptor (IL6R)/signal transducer and activator of transcription (STAT3) signal pathway in UC, in order to identify a highly effective treatment for UC. A total of 45 patients with UC and 45 healthy controls were recruited for the present study. The expression levels of miR-21-5p and STAT3 in the sera of patients with UC and healthy controls were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A UC rat model was established using dextran sulfate sodium. Following lipopolysaccharide (LPS) treatment, RAW264.7 cells were transfected with a miR-21-5p inhibitor. The levels of morphological damage and apoptosis of the colonic mucosal epithelial tissue were investigated using hematoxylin and eosin staining and a TUNEL staining assay, and then the colon macroscopic damage index and disease activity index were measured in rats. Western blot analysis was used to detect the protein expression levels of IL6R, STAT3, intracellular adhesion molecule 1 (ICAM-1), NF-κB, cleaved caspase-3, cleaved caspase-9 and Fas ligand (FasL). RT-qPCR detected the mRNA expression levels of miR-21-5p, IL6R, STAT3, ICAM-1, NF-κB, caspase-3, caspase-9 and FasL. An ELISA was performed to measure the levels of inflammatory cytokines. The viability and apoptosis levels of RAW264.7 cells were examined using MTT and flow cytometry assays. Additionally, STAT3 was investigated as a direct target of miR-21-5p in RAW264.7 cells using a dual-luciferase reporter assay. The results of the present study demonstrated that inflammation and apoptotic markers were revealed to be significantly downregulated following transfection with miR-21-5p inhibitors in RAW264.7 cells induced by LPS, and that cell viability was increased. Furthermore, STAT3 was confirmed to be a target of miR-21-5p in RAW264.7 cells. Collectively, these data demonstrated that miR-21-5p inhibition mediated the IL-6/STAT3 pathway in UC rats to decrease the levels of inflammation and apoptosis in RAW264.7 cells, and suggested that miR-21-5p may be an important therapy target in human UC.


Mapping global research trends in stem cell therapy for inflammatory bowel disease: a bibliometric analysis from 1991 to 2019.

  • Yuming Chong‎ et al.
  • The Journal of international medical research‎
  • 2020‎

Inflammatory bowel disease (IBD) represents a series of digestive system abnormalities and parenteral manifestations. Stem cell therapy has been regarded as a promising treatment for IBD.


Deleterious Effects of Chronic Folate Deficiency in the Ts65Dn Mouse Model of Down Syndrome.

  • Susan Helm‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2017‎

Folate is an important B vitamin naturally found in the human diet and plays a critical role in methylation of nucleic acids. Indeed, abnormalities in this major epigenetic mechanism play a pivotal role in the pathogenesis of cognitive deficit and intellectual disability in humans. The most common cause of cognitive dysfunction in children is Down syndrome (DS). Since folate deficiency is very common among the pediatric population, we questioned whether chronic folate deficiency (CFD) exacerbates cognitive dysfunction in a mouse model of DS. To test this, adult Ts65Dn mice and their disomic littermates were chronically fed a diet free of folic acid while preventing endogenous production of folate in the digestive tract for a period of 8 weeks. Our results show that the Ts65Dn mouse model of DS was significantly more vulnerable to CFD in terms of plasma homocysteine and N5-methyltetrahydrofolate (5-MTHF) levels. Importantly, these changes were linked to degenerative alterations in hippocampal dendritic morphology and impaired nest building behavior in Ts65Dn mice. Based on our results, a rigorous examination of folate intake and its metabolism in individuals with DS is warranted.


Xiaojianzhong decoction prevents gastric precancerous lesions in rats by inhibiting autophagy and glycolysis in gastric mucosal cells.

  • Jia-Xiang Zhang‎ et al.
  • World journal of gastrointestinal oncology‎
  • 2023‎

Gastric precancerous lesions (GPL) precede the development of gastric cancer (GC). They are characterized by gastric mucosal intestinal metaplasia and dysplasia caused by various factors such as inflammation, bacterial infection, and injury. Abnormalities in autophagy and glycolysis affect GPL progression, and their effective regulation can aid in GPL treatment and GC prevention. Xiaojianzhong decoction (XJZ) is a classic compound for the treatment of digestive system diseases in ancient China which can inhibit the progression of GPL. However, its specific mechanism of action is still unclear.


Astragalus Polysaccharides Ameliorate Diet-Induced Gallstone Formation by Modulating Synthesis of Bile Acids and the Gut Microbiota.

  • Qian Zhuang‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Cholesterol gallstone (CG) disease has relationships with several metabolic abnormalities. Astragalus polysaccharides (APS) have been shown to have multiple benefits against metabolic disorders. We attempted to uncover the effect and mechanism of action of APS on diet-induced CG formation in mice. Animals were fed a chow diet or lithogenic diet (LD) with or without APS supplementation. The effect of APS on CG formation was evaluated. The level of individual bile acids (BAs) in gallbladder bile and ileum were measured by liquid chromatography-tandem mass spectrometry. Real-time reverse transcription-quantitative polymerase chain reaction and western blotting were used to assess expression of the genes involved in BA metabolism and the enterohepatic circulation. Cecal contents were collected to characterize microbiota profiles. APS ameliorated LD-induced CG formation in mice. APS reduced the level of total cholesterol, bile acid hydrophobicity index and cholesterol saturation index in gallbladder bile. The protective effect of APS might result from reduced absorption of cholic acid in the intestine and increased hepatic BA synthesis. APS relieved the LD-induced activation of the intestinal farnesoid X receptor and decreased ileal expression of fibroblast growth factor 15. In the liver, expression of cytochrome P450 (Cyp) enzyme Cyp7a1 and Cyp7b1 was increased, whereas expression of adenosine triphosphate-binding cassette (Abc) transporters Abcg5 and Abcg8 was decreased by APS. APS improved the diversity of the gut microbiota and increased the relative abundance of the Bacteroidetes phylum. APS had demonstratable benefits against CG disease, which might be associated with enhanced BA synthesis and improved gut microbiota. Our results suggest that APS may be a potential strategy for the prevention of CG disease.


Identification of RSPO2 Fusion Mutations and Target Therapy Using a Porcupine Inhibitor.

  • Chong Li‎ et al.
  • Scientific reports‎
  • 2018‎

Cancers are driven by a variety of somatic gene mutations and identifying these mutations enables the development of novel target drugs. We have sought to identify abnormalities in Wnt pathway-related genes that are sensitive to Wnt inhibitor treatment. We examined Patient Derived Xenograft (PDX) RNA samples and found new R-Spondin 2 (RSPO2) transcript fusions with the EMC2, PVT1 or HNF4G genes. These fusion events were identified in about 1.4% of the digestive system cancer samples. We then examined the oncogenic effects of the RSPO2-EMC2 fusion gene and confirmed that it can drive oncogenesis, sustain tumor growth and promote metastasis. Finally, we used a Wnt pathway Porcupine inhibitor CGX1321 to treat PDX mouse models containing RSPO2 fusion genes. All the RSPO2 fusion tumors responded to the treatment and stopped progression. Our data show that Wnt pathway inhibition could provide an effective treatment for cancers containing RSPO2 fusion. The RSPO2 fusion will serve as a good biomarker for screening patients to support clinical treatment of digestive system cancers using Wnt pathway inhibitors.


Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1.

  • Gijs den Besten‎ et al.
  • PloS one‎
  • 2015‎

The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention.


Etiology and complications of liver cirrhosis in children:report of a single center from southern iran.

  • Seyed Mohsen Dehghani‎ et al.
  • Middle East journal of digestive diseases‎
  • 2013‎

Liver cirrhosis is one of the major causes of hospitalization and mortality in children. A wide spectrum of disorders including developmental abnormalities, infections, metabolic and genetic disorders can lead to liver cirrhosis in pediatric patients. Determination of its etiology is important for treatment, prevention of progressive liver damage, family counseling and prioritizing liver transplantation. The aim of this study is to evaluate causes of liver cirrhosis in children in Southern Iran.


Urinary K+ promotes irritative voiding symptoms and pain in the face of urothelial barrier dysfunction.

  • Nicolas Montalbetti‎ et al.
  • Scientific reports‎
  • 2019‎

The internal surface of the bladder is lined by the urothelium, a stratified epithelium that forms an impermeable barrier to water and urine constituents. Abnormalities in the urothelial barrier have been described in certain forms of cystitis and were hypothesized to contribute to irritative voiding symptoms and pain by allowing the permeation of urinary K+ into suburothelial tissues, which then alters afferent signaling and smooth muscle function. Here, we examined the mechanisms underlying organ hyperactivity and pain in a model of cystitis caused by adenoviral-mediated expression of claudin-2 (Cldn2), a tight junction protein that forms paracellular pores and increases urothelial permeability. We found that in the presence of a leaky urothelium, intravesical K+ sensitizes bladder afferents and enhances their response to distension. Notably, dietary K+ restriction, a maneuver that reduces urinary K+, prevented the development of pelvic allodynia and inflammation seen in rats expressing Cldn2. Most importantly, intravesical K+ causes and is required to maintain bladder hyperactivity in rats with increased urothelial permeability. Our study demonstrates that in the face of a leaky urothelium, urinary K+ is the main determinant of afferent hyperexcitability, organ hyperactivity and pain. These findings support the notion that voiding symptoms and pain seen in forms of cystitis that coexist with urothelial barrier dysfunction could be alleviated by cutting urinary K+ levels.


Artificial Intelligence-Based Multiclass Classification of Benign or Malignant Mucosal Lesions of the Stomach.

  • Bowei Ma‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. It takes some time from chronic gastritis to develop in GC. Early detection of GC will help patients obtain timely treatment. Understanding disease evolution is crucial for the prevention and treatment of GC. Here, we present a convolutional neural network (CNN)-based system to detect abnormalities in the gastric mucosa. We identified normal mucosa, chronic gastritis, and intestinal-type GC: this is the most common route of gastric carcinogenesis. We integrated digitalizing histopathology of whole-slide images (WSIs), stain normalization, a deep CNN, and a random forest classifier. The staining variability of WSIs was reduced significantly through stain normalization, and saved the cost and time of preparing new slides. Stain normalization improved the effect of the CNN model. The accuracy rate at the patch-level reached 98.4%, and 94.5% for discriminating normal → chronic gastritis → GC. The accuracy rate at the WSIs-level for discriminating normal tissue and cancerous tissue reached 96.0%, which is a state-of-the-art result. Survival analyses indicated that the features extracted from the CNN exerted a significant impact on predicting the survival of cancer patients. Our CNN model disclosed significant potential for adjuvant diagnosis of gastric diseases, especially GC, and usefulness for predicting the prognosis.


NEDD4-family E3 ligase dysfunction due to PKHD1/Pkhd1 defects suggests a mechanistic model for ARPKD pathobiology.

  • Jun-Ya Kaimori‎ et al.
  • Scientific reports‎
  • 2017‎

Autosomal recessive polycystic kidney disease (ARPKD) is an important childhood nephropathy, occurring 1 in 20,000 live births. The major clinical phenotypes are expressed in the kidney with dilatation of the collecting ducts, systemic hypertension, and progressive renal insufficiency, and in the liver with biliary dysgenesis, portal tract fibrosis, and portal hypertension. The systemic hypertension has been attributed to enhanced distal sodium reabsorption in the kidney, the structural defects have been ascribed to altered cellular morphology, and fibrosis to increased TGF-β signaling in the kidney and biliary tract, respectively. The pathogenic mechanisms underlying these abnormalities have not been determined. In the current report, we find that disrupting PKHD1 results in altered sub-cellular localization and function of the C2-WWW-HECT domain E3 family of ligases regulating these processes. We also demonstrate altered activity of RhoA and increased TGF-β signaling and ENaC activity. Linking these phenomena, we found that vesicles containing the PKHD1/Pkhd1 gene product, FPC, also contain the NEDD4 ubiquitin ligase interacting protein, NDFIP2, which interacts with multiple members of the C2-WWW-HECT domain E3 family of ligases. Our results provide a mechanistic explanation for both the cellular effects and in vivo phenotypic abnormalities in mice and humans that result from Pkhd1/PKHD1 mutation.


Neuroimaging Correlates of Cognitive Deficits in Wilson's Disease.

  • Samuel Shribman‎ et al.
  • Movement disorders : official journal of the Movement Disorder Society‎
  • 2022‎

Cognitive impairment is common in neurological presentations of Wilson's disease (WD). Various domains can be affected, and subclinical deficits have been reported in patients with hepatic presentations. Associations with imaging abnormalities have not been systematically tested.


Trends of Hospital Admissions Due to Congenital Anomalies in England and Wales between 1999 and 2019: An Ecological Study.

  • Abeer F R Alanazi‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

Objectives: To investigate the trends in congenital anomalies-related hospital admissions in England and Wales. Methods: This was an ecological study that was conducted using hospital admission data taken from the Hospital Episode Statistics database in England and the Patient Episode Database for Wales. Congenital malformations, deformations and chromosomal abnormalities hospital admissions data were extracted for the period between April 1999 and March 2019. Results: Hospital admission rate increased by 4.9% [from 198.74 (95% CI 197.53-199.94) in 1999 to 208.55 (95% CI 207.39-209.71) in 2019 per 100,000 persons, trend test, p < 0.01]. The most common hospital admissions causes were congenital malformations of the circulatory system, the musculoskeletal system, genital organs, and the digestive system. The most notable increase in hospital admissions rate was observed in congenital malformations of the respiratory system (1.01-fold). The age group below 15 years accounted for 75.1% of the total number of hospital admissions. Males contributed to 57.5% of the whole number of hospital admission. Hospital admission rate between females was increased by 6.4% [from 162.63 (95% CI 161.10-164.16) in 1999 to 173.05 (95% CI 171.57-174.54) in 2019 per 100,000 persons]. Hospital admission rate between males was increased by 3.4% [from 236.61 (95% CI 234.72-238.50) in 1999 to 244.70 (95% CI 242.92-246.49) in 2019 per 100,000 persons]. Conclusions: Males had a higher percentage of hospitalisation compared to females. Further studies to investigate the factors associated with higher hospitalisation rate among males are needed.


Investigating the Biomarkers of the Sasang Constitution via Network Pharmacology Approach.

  • Won-Yung Lee‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Sasang constitutional (SC) medicine classifies people into Soeum (SE), Soyang (SY), Taeeum (TE), and Taeyang (TY) types based on psychological and physical traits. However, biomarkers of these types are still unclear. We aimed to identify biomarkers among the SC types using network pharmacology methods. Target genes associated with the SC types were identified by grouping herb targets that preserve and strengthen the requisite energy (Bomyeongjiju). The herb targets were obtained by constructing an herb-compound-target network. We identified 371, 185, 146, and 89 target genes and their unique biological processes related to SE, SY, TE, and TY types, respectively. While the targets of SE and SY types were the most similar among the target pairs of the SC types, those of TY type overlapped with only a few other SC-type targets. Moreover, SE, SY, TE, and TY were related to "diseases of the digestive system," "diseases of the nervous system," "endocrine, nutritional, and metabolic diseases," and "congenital malformations, deformations, and chromosomal abnormalities," respectively. We successfully identified the target genes, biological processes, and diseases related to each SC type. We also demonstrated that a drug-centric approach using network pharmacology analysis provides a deeper understanding of the concept of Sasang constitutional medicine at a phenotypic level.


Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth.

  • Esko Kemppainen‎ et al.
  • PloS one‎
  • 2016‎

The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: