Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,655 papers

Dietary Fiber Intake (Supplemental or Dietary Pattern Rich in Fiber) and Diabetic Kidney Disease: A Systematic Review of Clinical Trials.

  • Cláudia Mesquita de Carvalho‎ et al.
  • Nutrients‎
  • 2019‎

Fiber intake is associated with better glycemic control being an important nonpharmacologicaltreatment for diabetes (DM). We hypothesize that a dietary fiber intake can bringbenefits to diabetic kidney disease (DKD), improving renal outcomes. This systematic review aimedto evaluate the effect of dietary fiber (supplemental or dietary pattern rich in fiber) on DKD. Wesearched six databases to identify clinical trials that reported fiber intake and renal outcomes(albuminuria, proteinuria, estimated glomerular filtration rate (eGFR) dialysis) in patients with DM.From 1814 studies, 48 papers were fully evaluated. In the end, seven trials (161 patients, aged 58.3years, 49% females) were included. The studies were organized into three categories (vegetarian,Dietary Approaches to Stop Hypertension (DASH) diet, and fiber supplement), two evaluatedsupplements and five dietary patterns. Vegetarian diet reduced albuminuria in three trials, two inpatients with type 1 DM and one in patients with type 2 DM; and one study demonstrated a change inthe eGFR in type 1 DM. The individual quality of the studies was low/uncertain. A vegetarian dietarypattern may have a beneficial effect on these renal outcomes. However, the individual effect of theintake of fiber on DKD not was possible to be evaluated.


Biomedical issues of dietary fiber beta-glucan.

  • Soo Young Kim‎ et al.
  • Journal of Korean medical science‎
  • 2006‎

Beta-glucan is a polysaccharide in the form of fiber and the main element of fiber in grains such as barley, oats, yeast and mushrooms. Many studies have examined the efficacy of beta-glucan in terms of the lipid lowering effects, blood sugar reduction, weight reduction, immune modulator, and anticarcinogenic effect. However, there is no comprehensive review article on the biomedical issues regarding beta-glucan. The authors searched for systematic reviews and clinical experiments for each relevant topic and reviewed the biomedical effects of beta-glucan, for the purpose of developing research strategies for the future.


Dietary fiber metabolites regulate innate lymphoid cell responses.

  • Ali Sepahi‎ et al.
  • Mucosal immunology‎
  • 2021‎

Innate lymphoid cells (ILCs) rapidly undergo expansion in population size and functional maturation in response to cytokines that signal infection, tissue damage, or changes in physiology. Optimal ILC responses are shaped, in part, by the microbiota but the mechanisms remain unclear. We report that short-chain fatty acids (SCFAs), produced by the commensal microbiota from dietary fibers, support optimal expansion of ILCs, including ILC1, ILC2, and ILC3 in the intestines through their G-protein-coupled receptors (GPCRs). While this function is primarily important for intestinal ILC populations, it can also boost ILC responses in other tissues depending on host condition. ILCs express multiple GPCRs that detect SCFAs. Interestingly, we found that the expression of SCFA receptors, such as Ffar2 and Ffar3, by ILCs is induced by SCFAs. GPCR triggering by SCFAs co-stimulates the activation of phosphoinositide 3-kinase (PI3K), Stat3, Stat5, and mammalian target of rapamycin (mTOR), which is important for ILC proliferation. While Ffar2 signaling promotes ILC2 proliferation, SCFAs can suppress ILC2 proliferation through a non-Ffar2-mediated mechanism. In conclusion, our findings indicate that SCFAs, as the major mediator of healthy microbiota and nutritional status, function to maintain optimal numbers of ILCs in peripheral tissues during infection and inflammatory responses.


Effect of thermally treated barley dietary fiber against hypercholesterolemia.

  • Huma Bader Ul Ain‎ et al.
  • Food science & nutrition‎
  • 2020‎

Dietary fiber is a nondigestible constituent of vegetal foods, formed by insoluble and soluble dietary fiber. The intake of dietary fiber, especially soluble dietary fiber, is limited and demands researcher's attention. The modification of cereal's dietary fiber, predominantly insoluble fiber, could be one possible solution. The current study evaluated the comparative effects of several thermal treatments on the modification of insoluble dietary fiber in barley and explored their therapeutic potential in vivo against hypercholesterolemia. The two cultivars of barley, Haider-93 and Jau-87, were thermally treated using different techniques, and dietary fiber was extracted. Successively, the intake of these dietary fibers was evaluated for its antilipidemic activity in normal and hypercholesterolemic rats. In the first phase, thermal treatments especially cooking without soaking increased the soluble fiber (68.08%). The roasting all increased the soluble fiber contents, however, at relatively lower rate (53.91%). The results of efficacy study revealed that biochemical parameters in control animals were within the normal clinical ranges, thus appraising the safe status of the experimental diets. The thermally treated barley fiber decreased total cholesterol (12.14%-12.63%), low-density lipoprotein (14.12%-14.85%), and triglycerides (2.25%-4.32%). The study recorded increasing trends for high-density lipoprotein in both normal and hypercholesterolemic rats. In the nutshell, thermal modification of dietary fiber increased the ratio of soluble to insoluble dietary fiber that improved its hypocholesterolemic potential. The thermally treated barley dietary fiber is effective in reducing the lipid profile in Sprague-dawley rats than untreated dietary fiber and, therefore, can be considered as a functional food and ingredient to cope different lifestyle diseases.


Impact of Dietary Fiber on West Nile Virus Infection.

  • Duan Ni‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Dietary fiber supports healthy gut bacteria and their production of short-chain fatty acids (SCFA), which promote anti-inflammatory cell development, in particular, regulatory T cells. It is thus beneficial in many diseases, including influenza infection. While disruption of the gut microbiota by antibiotic treatment aggravates West Nile Virus (WNV) disease, whether dietary fiber is beneficial is unknown. WNV is a widely-distributed neurotropic flavivirus that recruits inflammatory monocytes into the brain, causing life-threatening encephalitis. To investigate the impact of dietary fiber on WNV encephalitis, mice were fed on diets deficient or enriched with dietary fiber for two weeks prior to inoculation with WNV. To induce encephalitis, mice were inoculated intranasally with WNV and maintained on these diets. Despite increased fecal SCFA acetate and changes in gut microbiota composition, dietary fiber did not affect clinical scores, leukocyte infiltration into the brain, or survival. After the brain, highest virus loads were measured in the colon in neurons of the submucosal and myenteric plexuses. Associated with this, there was disrupted gut homeostasis, with shorter colon length and higher local inflammatory cytokine levels, which were not affected by dietary fiber. Thus, fiber supplementation is not effective in WNV encephalitis.


Deprivation of dietary fiber enhances susceptibility of mice to cryptosporidiosis.

  • Bruno César Miranda Oliveira‎ et al.
  • PLoS neglected tropical diseases‎
  • 2019‎

Based on our initial observations showing that mice consuming a probiotic product develop more severe cryptosporidiosis, we investigated the impact of other dietary interventions on the intracellular proliferation of Cryptosporidium parvum and C. tyzzeri in the mouse. Mice were orally infected with oocysts and parasite multiplication measured by quantifying fecal oocyst output. High-throughput sequencing of 16S ribosomal RNA amplicons was used to correlate oocyst output with diet and with the composition of the intestinal microbiota. On average, mice fed a diet without fiber (cellulose, pectin and inulin) developed more severe infections. As expected, a diet without fibers also significantly altered the fecal microbiota. Consistent with these observations, mice fed a prebiotic product sold for human consumption excreted significantly fewer oocysts. The fecal microbiota of mice consuming no plant polysaccharides was characterized by a lower relative abundance of Bacteroidetes bacteria. Since bacterial metabolites play an important role in the physiology of intestinal enterocytes, we hypothesize based on these observations that the impact of diet on parasite proliferation is mediated primarily by the metabolic activity of the anaerobic microbiota, specifically by the effect of certain metabolites on the host. This model is consistent with the metabolic dependence of intracellular stages of the parasite on the host cell. These observations underscore the potential of dietary interventions to alleviate the impact of cryptosporidiosis, particularly in infants at risk of recurrent enteric infections.


Dietary Fiber Inulin Improves Murine Imiquimod-Induced Psoriasis-like Dermatitis.

  • Mai Yoshida‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Psoriasis is a chronic skin disease with interleukin (IL)-17-dominated inflammation and hyperproliferation of epidermis. Dietary fiber is fermented by the gut microbiome into short-chain fatty acids (SCFAs) that manifest anti-inflammatory effects. We examined if feeding with an inulin-enriched high-fiber diet (HFD) might improve topical imiquimod-induced psoriasis-like dermatitis in mice. HFD reduced thickening and total severity scores of imiquimod-induced dermatitis and reduced epidermal thickness, inflammatory infiltrates, including Ly6G+ neutrophils, and epidermal Ki67+ proliferating cells. HFD reduced mRNA levels of IL-17A, IL-17F, IL-22, IL-1β, tumor necrosis factor (TNF)-α, CXCL1, CXCL2, and keratin 16 and increased those of transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1A in imiquimod-induced dermatitis. In 16S rRNA sequencing of the gut microbiome, imiquimod increased relative abundance of phylum Firmicutes, while HFD increased that of phylum Bacteroidota and genus Bacteroides. HFD increased serum and fecal concentrations of SCFA propionate. Oral propionate reduced inflammatory infiltrates and epidermal Ki67+ cells and reduced mRNA levels of IL-17A, IL-17F, IL-17C, IL-22, IL-1β, IL-6, TNF-α, CXCL1, CCL20 and increased those of TGF-β1and IL-10 in imiquimod-indued dermatitis. Dietary inulin supplementation improves imiquimod-induced psoriasis-like dermatitis partially via propionate, and may be a promising adjunctive therapy for psoriasis.


Maternal Fiber Dietary Intakes during Pregnancy and Infant Allergic Disease.

  • Rachelle A Pretorius‎ et al.
  • Nutrients‎
  • 2019‎

Maternal diet during pregnancy plays a likely role in infant immune development through both direct nutrient specific immunomodulatory effects and by modulating the composition and metabolic activity of the maternal gut microbiome. Dietary fibers, as major substrates for microbial fermentation, are of interest in this context. This is the first study to examine maternal intakes of different fiber sub-types and subsequent infant allergic disease. In an observational study of 639 mother-infant pairs (all infants had a family history of allergic disease) we examined maternal intakes of total fiber, soluble fiber, insoluble fiber, resistant starch, and prebiotic fiber, by a semi-quantitative food frequency questionnaire at 36-40 weeks' gestation. Infants attended an allergy clinical assessment at 12 months of age, including skin prick testing to common allergens. Higher maternal dietary intakes of resistant starch were associated with reduced doctor diagnosed infant wheeze, adjusted odds ratio (aOR) 0.68 (95% CI 0.49, 0.95, p = 0.02). However, in contrast, higher maternal intakes of resistant starch were associated with higher risk of parent reported eczema aOR 1.27 (95% CI 1.09, 1.49, p < 0.01) and doctor diagnosed eczema aOR 1.19 (95% CI 1.01, 1.41, p = 0.04). In conclusion, maternal resistant starch consumption was differentially associated with infant phenotypes, with reduced risk of infant wheeze, but increased risk of eczema.


Dietary Fiber Is Inversely Associated With Depressive Symptoms in Premenopausal Women.

  • Di Li‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

An inverse association between dietary fiber intake and depressive symptoms was reported in the general population, but this association is unstudied in midlife women. This study was designed to investigate the association of dietary fiber intake with depressive symptoms in midlife women.


Dietary fiber intake and risk of gallstone: a case-control study.

  • Asal Neshatbini Tehrani‎ et al.
  • BMC gastroenterology‎
  • 2023‎

Gallstone disease (GSD) and its complications are major public health issues globally. Although many community-based studies had addressed the risk factors for GSD, little is known about the associations between dietary factors and risk of disease. The present study aimed to investigate the potential associations between dietary fibers with the risk of gallstone disease.


Increasing Dietary Fiber Intake Is Associated with a Distinct Esophageal Microbiome.

  • Yael R Nobel‎ et al.
  • Clinical and translational gastroenterology‎
  • 2018‎

There is increasing evidence that the microbiome contributes to esophageal disease. Diet, especially fiber and fat intake, is a known potent modifier of the colonic microbiome, but its impact on the esophageal microbiome is not well described. We hypothesized that dietary fiber and fat intake would be associated with a distinct esophageal microbiome.


Optimization of Mixed Fermentation Conditions of Dietary Fiber from Soybean Residue and the Effect on Structure, Properties and Potential Biological Activity of Dietary Fiber from Soybean Residue.

  • Xifei Xu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Soybean residue is a by-product of soybean product production that is wasted unreasonably at present. Accomplishing the efficient utilization of soybean residue can save resources. A composite microbial system was constructed using lactic acid bacteria (LAB) and Saccharomyces cerevisiae (SC), and modified soybean residue was prepared by solid fermentation. In order to explore the value of modified soybean residue as a food raw material, its physical and chemical properties, adsorption properties, and antioxidant properties were studied. The results showed that the soluble dietary fiber (SDF) yield of mixed fermentation (MF) increased significantly. Both groups of soybean residues had representative polysaccharide infrared absorption peaks, and MF showed a looser structure and lower crystallinity. In terms of the adsorption capacity index, MF also has a higher adsorption capacity for water molecules, oil molecules, and cholesterol molecules. In addition, the in vitro antioxidant capacity of MF was also significantly higher than that of unfermented soybean residue (UF). In conclusion, our study shows that mixed fermentation could increase SDF content and improve the functional properties of soybean residue. Modified soybean residue prepared by mixed fermentation is the ideal food raw material.


Low Dietary Fiber Intake Links Development of Obesity and Lupus Pathogenesis.

  • Anna-Lena Schäfer‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Changed dietary habits in Western countries such as reduced fiber intake represent an important lifestyle factor contributing to the increase in inflammatory immune-mediated diseases. The mode of action of beneficial fiber effects is not fully elucidated, but short-chain fatty acids (SCFA) and gut microbiota have been implicated. The aim of this study was to explore the impact of dietary fiber on lupus pathology and to understand underlying mechanisms. Here, we show that in lupus-prone NZB/WF1 mice low fiber intake deteriorates disease progression reflected in accelerated mortality, autoantibody production and immune dysregulation. In contrast to our original assumption, microbiota suppression by antibiotics or direct SCFA feeding did not influence the course of lupus-like disease. Mechanistically, our data rather indicate that in low fiber-fed mice, an increase in white adipose tissue mass, fat-inflammation and a disrupted intestinal homeostasis go along with systemic, low-grade inflammation driving autoimmunity. The links between obesity, intestinal leakage and low-grade inflammation were confirmed in human samples, while adaptive immune activation predominantly correlated with lupus activity. We further propose that an accelerated gastro-intestinal passage along with energy dilution underlies fiber-mediated weight regulation. Thus, our data highlight the often-overlooked effects of dietary fiber on energy homeostasis and obesity prevention. Further, they provide insight into how intricately the pathologies of inflammatory immune-mediated conditions, such as obesity and autoimmunity, might be interlinked, possibly sharing common pathways.


Individualized microbiotas dictate the impact of dietary fiber on colitis sensitivity.

  • Erica Bonazzi‎ et al.
  • Microbiome‎
  • 2024‎

The observation that the intestinal microbiota is  central in the development of IBD suggests that dietary fiber, the microbiota's primary source of nourishment, could play a central role in these diseases. Accordingly, enriching diets with specific soluble fibers remodels microbiota and modulates colitis sensitivity. In humans, a recent study suggests that the microbiota of select IBD patients might influence the impacts they would experience upon fiber exposure. We sought here to define the extent to which individual microbiotas varied in their responsiveness to purified soluble fiber inulin and psyllium. Moreover, the extent to which such variance might impact proneness to colitis.


Oxidized konjac glucomannan: A safe dietary fiber influencing mouse gut microbiota.

  • Yao Li‎ et al.
  • Food chemistry: X‎
  • 2024‎

In this 13-week study, the potential effects of oxidized konjac glucomannan (OKGM) on ICR mice's metabolic health and gut microbiota were investigated and contrasted with enzyme-hydrolyzed KGM (EKGM) at a same molecular weight. Mice were fed diets containing 0 %, 2.5 %, 5.0 %, and 7.5 % of OKGM for 13 weeks. Results indicated that OKGM induced no adverse effects, with overall health, body weight gain, food consumption, and clinical pathology parameters being comparable to the control group. The no-observed-adverse-effect-level for OKGM was determined at 7.5 % in the diet, corresponding to 10.21 and 12.01 g/kg/day for male and female mice, respectively. OKGM intake positively regulated gut microbiota, characterized by a reduction in the relative abundance of Firmicutes, an increase in Bacteroidetes, and an enhanced presence of Lactobacillus, particularly Lactobacillus reuteri. In comparison, EKGM differently modulated the microbiota, notably increasing Muribaculaceae. These findings suggest that OKGM has the potential to be a functional food additive.


Dietary Fiber as a Counterbalance to Age-Related Microglial Cell Dysfunction.

  • Mario Vailati-Riboni‎ et al.
  • Frontiers in nutrition‎
  • 2022‎

With increasing age, microglia shift toward a pro-inflammatory phenotype that may predispose individuals to neurodegenerative disease. Because fiber fermentation in the colon produces bioactive short-chain fatty acids (SCFAs; e.g., acetate, butyrate, and propionate) that signal through the gut-brain axis, increasing dietary fiber may prevent or reverse age-related dysregulation of microglia. Adult (3-4 months old) and aged (23-24 months old) male and female mice were given ad libitum access to a modified AIN-93M diet with 1% cellulose or the same diet with 2.5 or 5.0% inulin for 8 weeks. Several adult and aged male mice fed 0 or 5% inulin were randomly selected for whole brain single-cell RNA sequencing (scRNA-seq) and differential gene expression analysis to classify brain microglia according to gene expression profile; and identify additional genetic markers of aging as possible targets for dietary interventions. Microglia were isolated from remaining mice and expression of selected aging-, inflammatory-, and sensome-related genes was assessed by Fluidigm as was the ex vivo secretion of tumor necrosis factor-alpha (TNF-α). SCFAs were measured in samples collected from the cecum. Microglia from adult and aged mice segregated into distinct phenotypes according to their gene expression profile. In aged mice, a considerably greater proportion of the population of microglia was identified being "activated" and a considerably smaller proportion was identified being "quiescent." These findings using whole brain scRNA-seq were largely corroborated using highly purified microglia and Fluidigm analysis to assess a selected panel of genes. Aged mice compared to adults had lower levels of SCFA's in cecum. Dietary inulin increased SCFAs in cecum and mostly restored microglial cell gene expression and TNF-α secretion to that seen in adults. Sex differences were observed with females having lower levels of SCFAs in cecum and increased neuroinflammation. Overall, these data support the use of fiber supplementation as a strategy to counterbalance the age-related microglial dysregulation.


The effects of dietary fiber level on nutrient digestibility in growing pigs.

  • Wenjuan Zhang‎ et al.
  • Journal of animal science and biotechnology‎
  • 2013‎

The objective of this study was to investigate the effects of total dietary fiber level on nutrient digestibility and the relationship between apparent total tract digestibility of total dietary fiber, and soluble dietary fiber, insoluble dietary fiber and available energy. Sugar beet pulp was as the only fiber source. The experiment was designed as a 6 × 6 Latin square with an adaptation period of 7 d followed by a 5-d total collection of feces and urine. Feed intake tended to decrease (P =0.10) as total dietary fiber level increased. The apparent total tract digestibility of dry matter, crude protein and gross energy decreased (P <0.01) when total dietary fiber increased but the digestibility of soluble dietary fiber and insoluble dietary fiber increased (P <0.01). The digestible energy and metabolizable energy content of diets decreased (P <0.01) as the total dietary fiber increased.


Effect of Dietary Fiber on the Composition of the Murine Dental Microbiome.

  • Lea Sedghi‎ et al.
  • Dentistry journal‎
  • 2019‎

The oral cavity houses a diverse consortium of microorganisms, heavily influenced by host diet, that can mediate dental health and disease. While the impact of dietary carbohydrates to the dental microbiome has been well-documented, the effect of fiber as a mechanical influence on the dental microbiome is unexplored. We performed 16S rRNA gene analysis to investigate the response of the dental microbiome to the presence of increased fiber in terms of microbial taxonomic abundance and diversity. Dental microbial community structure was significantly different in mice fed a diet supplemented with increased fiber and/or sugar. Fiber significantly affected measures of beta diversity at the phylum and genus levels, and a strong interactive effect on alpha diversity was observed between sugar and fiber at the phylum level. The addition of fiber also induced significant variation in relative taxonomic abundance. This study demonstrates that fiber can promote significant variations in the mouse dental microbiome.


Gut microbiome variation modulates the effects of dietary fiber on host metabolism.

  • Sofia M Murga-Garrido‎ et al.
  • Microbiome‎
  • 2021‎

There is general consensus that consumption of dietary fermentable fiber improves cardiometabolic health, in part by promoting mutualistic microbes and by increasing production of beneficial metabolites in the distal gut. However, human studies have reported variations in the observed benefits among individuals consuming the same fiber. Several factors likely contribute to this variation, including host genetic and gut microbial differences. We hypothesized that gut microbial metabolism of dietary fiber represents an important and differential factor that modulates how dietary fiber impacts the host.


Short-term dietary fiber interventions produce consistent gut microbiome responses across studies.

  • Cynthia I Rodriguez‎ et al.
  • Research square‎
  • 2023‎

The composition of the human gut microbiome varies tremendously among individuals, making the effects of dietary or treatment interventions difficult to detect and characterize. The consumption of fiber is important for gut health, yet the specific effects of increased fiber intake on the gut microbiome vary across studies. The variation in study outcomes might be due to inter-individual (or inter-population) variation or to the details of the interventions including the types of fiber, length of study, size of cohort, and molecular approaches. Thus, to identify consistent fiber-induced responses in the gut microbiome of healthy individuals, we re-analyzed 16S rRNA sequencing data from 21 dietary fiber interventions from 12 human studies, which included 2564 fecal samples from 538 subjects across all interventions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: