Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 762 papers

Conversion of a soluble diazepam prodrug to supersaturated diazepam for rapid intranasal delivery: Kinetics and stability.

  • Davin Rautiola‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2018‎

The low aqueous solubility of diazepam (DZP) presents a challenge in formulating nasal sprays without the use of organic solvents. One approach to overcome this challenge involves co-administration of a soluble prodrug, avizafone (AVF), with a converting enzyme to produce supersaturated DZP at the site of administration. In addition to overcoming solubility issues, the supersaturated state of DZP provides an increased driving force for enhanced permeation across nasal mucosa. However, supersaturated solutions are metastable, and there is a limit to the degree of supersaturation (S) that can be reached without causing spontaneous phase separation of the solute. The aim of this article was to determine how formulation parameters affect the rate of DZP supersaturation, maximum degree of supersaturation, and phase separation kinetics. A model enzyme, Aspergillus oryzae protease (AOP), was used to convert AVF to DZP, via an open ring intermediate (ORI). A second derivative UV spectroscopic method was developed to simultaneously monitor DZP solution concentration and the time course of DZP phase separation. Fitting a kinetic model, with prior knowledge of the enzyme kinetic parameters, the rate constant for conversion of ORI to DZP was found to be 0.470 ± 0.012 min-1. Kinetics and supersaturated solution stability were studied as a function of formulation parameters, including temperature, pH, buffering agent, AVF concentration, and enzyme concentration. The maximum aqueous solution concentration for DZP at 32 °C was determined to be 1.22 ± 0.03 mM DZP (S = 9.38) and was insensitive to changes in formulation parameters, excepting temperature. Supersaturated solutions of DZP could be maintained at the maximum concentration for >24 h, even in the presence of phase separated DZP. Polarized light microscopy, PXRD, and DSC analysis indicated that the phase separated DZP was amorphous upon formation and remained so for >24 h. Our findings suggest that co-administration of AVF with a suitable human converting enzyme will provide a viable mechanism for IN delivery of DZP and result in very rapid and complete absorption to quickly terminate seizure emergencies.


Diazepam Premedication in Primary Augmentation Mammoplasty.

  • Elizabeth A Lucich‎ et al.
  • Eplasty‎
  • 2020‎

Goals/Purpose: To evaluate the effects of preoperative oral diazepam on the postoperative course of patients undergoing primary augmentation mammoplasty in an outpatient surgical center. Methods/Technique: A retrospective review was conducted of 189 patients undergoing primary breast augmentation at an outpatient surgical center from 2012 to 2015. Patients receiving same-day premedication with oral diazepam were compared with a control group without premedication. Patients with combined surgical procedures were excluded with the exception of minor, superficial procedures. Patient demographics, perioperative medication use, operative details, and postoperative numeric pain scale (0-10) scores were collected. Results/Complications: Ninety-three patients (49%) were included in the premedication group and 96 (51%) in the control group. Difference in age, body mass index, implant size, and intraoperative opioid use were not statistically significantly different between the treatment and control groups (P > .05). No difference was noted in postoperative nausea, emesis, or antiemetic use between the 2 groups. The operative time was slightly longer in the control group (64.5 minutes vs 58.5 minutes, P = .006). Immediate postoperative pain (3.6 vs 4.4) and time to discharge (101 minutes vs 110 minutes) were slightly decreased in the premedication group; however, these values did not reach statistical significance. Intraoperative narcotic use was the same between groups, but postoperative narcotic pain medication use was higher in the premedication group (9.68 mg vs 8.26 mg, P = .036). Predischarge pain scores (2.87 vs 2.29, P = .006) were also noted to be slightly higher in the premedication group. Conclusions: Preoperative diazepam administration does not significantly decrease time to discharge in primary breast augmentation mammoplasty. Furthermore, its use may result in increased postoperative narcotic use and higher pain scores at the time of discharge.


Diazepam Monotherapy or Diazepam-Ketamine Dual Therapy at Different Time Points Terminates Seizures and Reduces Mortality in a Status Epilepticus Animal Model.

  • Ruijiao Zhou‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2021‎

BACKGROUND Being refractory to drugs remains an urgent treatment problem in status epilepticus (SE). The fact that γ-aminobutyric acid A receptors (GABAARs) become internalized and inactive, N-methyl-D-aspartate receptors (NMDARs) become externalized and active during SE may explain the refractoriness to benzodiazepine. However, the real-time dynamic efficacy of antiepileptic drugs remains unclear. Therefore, we propose a hypothesis that diazepam monotherapy or diazepam-ketamine dual therapy could terminate seizures and reduce mortality in the SE model at different time points during ongoing SE. MATERIAL AND METHODS An SE model was established in adult Sprague-Dawley rats with lithium and pilocarpine. The GABAAR agonist diazepam was injected at 5, 10, 20, or 30 min when SE continued. In addition, diazepam and the NMDAR antagonist ketamine were injected at 10 to 60 min at 6 different time points. We measured seizure-free rates, seizure duration, degree of behavioral seizure, and mortality. RESULTS Diazepam monotherapy at 5 min and 10 min from the beginning of SE was able to terminate seizures and improved survival rates. Diazepam-ketamine dual therapy at 10 min, 20 min, and 30 min from the beginning of SE terminated seizures and achieved high survival rates. CONCLUSIONS In this parallel randomized controlled trial with a rat model, we found that diazepam monotherapy was an effective antiepileptic strategy at the early stage of SE less than 10 min after SE onset. If SE lasts more than 10 min but less than 30 min, the diazepam-ketamine dual therapy strategy may be an appropriate choice.


Diazepam Accelerates GABAAR Synaptic Exchange and Alters Intracellular Trafficking.

  • Joshua M Lorenz-Guertin‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

Despite 50+ years of clinical use as anxiolytics, anti-convulsants, and sedative/hypnotic agents, the mechanisms underlying benzodiazepine (BZD) tolerance are poorly understood. BZDs potentiate the actions of gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, through positive allosteric modulation of γ2 subunit containing GABA type A receptors (GABAARs). Here we define key molecular events impacting γ2 GABAAR and the inhibitory synapse gephyrin scaffold following initial sustained BZD exposure in vitro and in vivo. Using immunofluorescence and biochemical experiments, we found that cultured cortical neurons treated with the classical BZD, diazepam (DZP), presented no substantial change in surface or synaptic levels of γ2-GABAARs. In contrast, both γ2 and the postsynaptic scaffolding protein gephyrin showed diminished total protein levels following a single DZP treatment in vitro and in mouse cortical tissue. We further identified DZP treatment enhanced phosphorylation of gephyrin Ser270 and increased generation of gephyrin cleavage products. Selective immunoprecipitation of γ2 from cultured neurons revealed enhanced ubiquitination of this subunit following DZP exposure. To assess novel trafficking responses induced by DZP, we employed a γ2 subunit containing an N terminal fluorogen-activating peptide (FAP) and pH-sensitive green fluorescent protein (γ2pHFAP). Live-imaging experiments using γ2pHFAP GABAAR expressing neurons identified enhanced lysosomal targeting of surface GABAARs and increased overall accumulation in vesicular compartments in response to DZP. Using fluorescence resonance energy transfer (FRET) measurements between α2 and γ2 subunits within a GABAAR in neurons, we identified reductions in synaptic clusters of this subpopulation of surface BZD sensitive receptor. Additional time-series experiments revealed the gephyrin regulating kinase ERK was inactivated by DZP at multiple time points. Moreover, we found DZP simultaneously enhanced synaptic exchange of both γ2-GABAARs and gephyrin using fluorescence recovery after photobleaching (FRAP) techniques. Finally we provide the first proteomic analysis of the BZD sensitive GABAAR interactome in DZP vs. vehicle treated mice. Collectively, our results indicate DZP exposure elicits down-regulation of gephyrin scaffolding and BZD sensitive GABAAR synaptic availability via multiple dynamic trafficking processes.


Diazepam induces FGF-2 mRNA in the hippocampus and striatum.

  • F Gómez-Pinilla‎ et al.
  • Brain research bulletin‎
  • 2000‎

starting by 6 h following diazepam injection and returning to approximately control values by 24 h. In situ hybridization showed elevated FGF-2 mRNA labeling in the hippocampal formation, mostly in the pyramidal layer of the CA1 and CA2 subfields and in the dentate gyrus hilar region. These results indicate that diazepam treatment up-regulates FGF-2 expression in select regions of the brain and suggest that GABA may promote neuroplasticity in concert with FGF-2.


Supersaturated state of diazepam injection following dilution with infusion fluid.

  • Yoshinori Onuki‎ et al.
  • Journal of pharmaceutical health care and sciences‎
  • 2015‎

Significant precipitation produced by the dilution of diazepam (DZP) injection with an infusion fluid is a great concern for the clinical practice. In this study, the precipitation behavior under different conditions was investigated.


Diazepam effect during early neonatal development correlates with neuronal Cl(.).

  • Joseph Glykys‎ et al.
  • Annals of clinical and translational neurology‎
  • 2015‎

Although benzodiazepines and other GABAA receptors allosteric modulators are used to treat neonatal seizures, their efficacy may derive from actions on subcortical structures. Side effects of benzodiazepines in nonseizing human neonates include myoclonus, seizures, and abnormal movements. Excitatory actions of GABA may underlie both side effects and reduced anticonvulsant activity of benzodiazepines. Neocortical organotypic slice cultures were used to study: (1) spontaneous cortical epileptiform activity during early development; (2) developmental changes in [Cl(-)]i and (3) whether diazepam's anticonvulsant effect correlated with neuronal [Cl(-)]i.


Effects of Diazepam on Reaction Times to Stop and Go.

  • Swagata Sarkar‎ et al.
  • Frontiers in human neuroscience‎
  • 2020‎

Introduction: The ability to stop the execution of a movement in response to an external cue requires intact executive function. The effect of psychotropic drugs on movement inhibition is largely unknown. Movement stopping can be estimated by the Stop Signal Reaction Time (SSRT). In a recent publication, we validated an improved measure of SSRT (optimum combination SSRT, ocSSRT). Here we explored how diazepam, which enhances transmission at GABAA receptors, affects ocSSRT. Methods: Nine healthy individuals were randomized to receive placebo, 5 mg or 10 mg doses of diazepam. Each participant received both the dosage of drug and placebo orally on separate days with adequate washout. The ocSSRT and simple reaction time (RT) were estimated through a stop-signal task delivered via a battery-operated box incorporating green (Go) and red (Stop) light-emitting diodes. The task was performed just before and 1 h after dosing. Result: The mean change in ocSSRT after 10 mg diazepam was significantly higher (+27 ms) than for placebo (-1 ms; p = 0.012). By contrast, the mean change in simple response time remained comparable in all three dosing groups (p = 0.419). Conclusion: Our results confirm that a single therapeutic adult dose of diazepam can alter motor inhibition in drug naïve healthy individuals. The selective effect of diazepam on ocSSRT but not simple RT suggests that GABAergic neurons may play a critical role in movement-stopping.


Biochemical and toxicological effect of diazepam in stress-induced cardiac dysfunctions.

  • Fahad A Al-Abbasi‎ et al.
  • Toxicology reports‎
  • 2020‎

Diazepam is a medicine of the family benzodiazepine, used to treat various CNS disorders. To date, no study is available for biochemical analysis of diazepam in cardiac dysfunction. This study aimed to determine the effect of diazepam in stress-induced cardiac dysfunctions in rats. Male Wistar Albino rats were divided into four groups with six animals in each group for 90 days of the experimental protocol. Group1 served as a Normal Control (NC), Groups 2, as a Disease Control (DC), Group 3 as a Diazepam Control (DIC), and Group 4 as a Disease + Diazepam Treatment (DDT). Disease Control and Disease + Diazepam Treatment animals exposed to regular stress by forced swimming exercise method for 3 months. Diazepam Control and Disease + Diazepam Treatment received 5 mg/kg/p.o the daily dose of diazepam. At the end of the protocol, animals were sacrificed, heart preserved, blood collected, and utilized for biochemical estimations. Heart weight was increased in DC as compared to NC. Serum levels of cardiac biomarkers, creatine phosphokinase (CPK), creatine kinase-MB (CPK-MB), lactate dehydrogenase (LDH), High sensitivity C-reactive protein (hs-CRP) and troponin I (TnI) were significantly increased in DC as compared to NC. Heart tissue examined for histological changes. The altered serum levels of CPK, CPK-MB, LDH, hs-CRP, and TnI were significantly restored by the treatment of diazepam. Serum levels of Sodium, Potassium, Calcium, and Magnesium was increased in DC animals as compared to NC. The altered ionic level was also restored by the treatment of diazepam. Level of various cardiac markers and ions in the plasma were also slightly elevated in DIC. Histopathological studies are also in agreement with serological examinations and bonafide cardioprotective influences of diazepam in cardiac dysfunction. Conclusively research findings endorse the cardioprotective effect of diazepam in stress-induced cardiac dysfunction in rats.


Diazepam causes sedative rather than anxiolytic effects in C57BL/6J mice.

  • Marina Pádua-Reis‎ et al.
  • Scientific reports‎
  • 2021‎

Diazepam has been broadly accepted as an anxiolytic drug and is often used as a positive control in behavioral experiments with mice. However, as opposed to this general assumption, the effect of diazepam on mouse behavior can be considered rather controversial from an evidence point of view. Here we revisit this issue by studying the effect of diazepam on a benchmark task in the preclinical anxiety literature: the elevated plus maze. We evaluated the minute-by-minute time-course of the diazepam effect along the 10 min of the task at three different doses (0.5, 1 and 2 mg/kg i.p. 30 min before the task) in female and male C57BL/6J mice. Furthermore, we contrasted the effects of diazepam with those of a selective serotoninergic reuptake inhibitor (paroxetine, 10 mg/kg i.p. 1 h before the task). Diazepam had no anxiolytic effect at any of the tested doses, and, at the highest dose, it impaired locomotor activity, likely due to sedation. Noteworthy, our results held true when examining male and female mice separately, when only examining the first 5 min of the task, and when animals were subjected to one hour of restrain-induced stress prior to diazepam treatment. In contrast, paroxetine significantly reduced anxiety-like behavior without inducing sedative effects. Our results therefore suggest that preclinical studies for screening new anxiolytic drugs should be cautious with diazepam use as a potential positive control.


Diazepam delays the death of hippocampal CA1 neurons following global ischemia.

  • Dale Corbett‎ et al.
  • Experimental neurology‎
  • 2008‎

Although diazepam provides limited long term neuroprotection, it may be useful for expanding the therapeutic time window after stroke by delaying neuronal death. However, it is not known to what extent diazepam maintains normal cellular structure and function in the first few days after ischemia. We used histological, immunohistochemical and electrophysiological endpoints to address this question. Gerbils underwent 5 min of global ischemia followed by 10 mg/kg diazepam (D) given 30 and 90 min later. Other animals were subjected to sham surgery, normothermic ischemia (I) or ischemia at 32 degrees C (Hypo). Postischemic brain temperature was regulated at approximately 37 degrees C for 24 h. Gerbils in the D and I groups were sacrificed 1, 2 and 3 days after ischemia. Sham and Hypo gerbils were sacrificed on day 3. CA1 cell counts, MAP2 staining and CA1 field potentials were performed at each survival time. Hypothermia prevented CA1 necrosis, preserved MAP2 integrity and maintained CA1 field potential amplitude. Ischemic gerbils showed a significant reduction in these 3 outcome measures by day 3. Diazepam-treated gerbils exhibited near normal levels of CA1 neurons and MAP2 staining. Most importantly, CA1 field potentials were similar to sham values and significantly preserved relative to non-treated ischemic gerbils. Diazepam maintains near normal structural and functional integrity up to 3 days after a global ischemic insult. As such, this drug may be useful for extending the therapeutic time window after cardiac arrest, stroke and related disorders.


Determination of emerging chlorinated byproducts of diazepam in drinking water.

  • Xin Zhang‎ et al.
  • Chemosphere‎
  • 2019‎

Diazepam (DZP) is often found in source water and drinking water at dozens of nanograms per liter levels. The transformation of DZP in water chlorination disinfection process has aroused new concern because the toxic disinfection byproducts (DBPs) might be produced. However, the DBPs of DZP have not been fully identified, and their occurrence levels in drinking water have not been reported. In our chlorination experiment, five emerging DBPs of diazepam: (5-chloro-2-(methylamino) phenyl) (phenyl)methanone (BP-246), 6-chloro-1-methyl-4-phenylquinazolin-2(1H)-one (BP-271), N-(2-benzoyl-4,6-dichlorophenyl)formamide (BP-294), methyl-(2-benzoyl-4-chlorophenyl) (methyl)carbamate (BP-304 (1)) and 6-chloro-4-methoxy-1-methyl-4-phenyl-1,4-dihydro2H -benzo[d][1,3]oxazin-2-one (BP-304 (2)), were tentatively identified by high-resolution mass spectrometry and further characterized by nuclear magnetic resonance spectroscopy. We developed a trace analytical method for the analysis of these five DBPs in drinking water based on solid-phase extraction (SPE) followed liquid chromatography coupled with electrospray ionization tandem mass spectrometric detection. Ultrahigh sensitivities were achieved with limits of detection as low as 7 pg per liter. The recoveries at different spiking levels were all higher than 80% except for that of BP-246. Four of the DBPs and DZP were detected in real drinking water samples at concentrations ranging from several to dozens of nanograms per liter with relatively high detection frequencies. This is the first report on the existence of DZP-DBPs in drinking water. The method and results will be useful for further studies on the occurrence, toxicity, human exposure and control measures of these DBPs.


Inhibitory and excitatory synaptic neuroadaptations in the diazepam tolerant brain.

  • Joshua M Lorenz-Guertin‎ et al.
  • Neurobiology of disease‎
  • 2023‎

Benzodiazepine (BZ) drugs treat seizures, anxiety, insomnia, and alcohol withdrawal by potentiating γ2 subunit containing GABA type A receptors (GABAARs). BZ clinical use is hampered by tolerance and withdrawal symptoms including heightened seizure susceptibility, panic, and sleep disturbances. Here, we investigated inhibitory GABAergic and excitatory glutamatergic plasticity in mice tolerant to benzodiazepine sedation. Repeated diazepam (DZP) treatment diminished sedative effects and decreased DZP potentiation of GABAAR synaptic currents without impacting overall synaptic inhibition. While DZP did not alter γ2-GABAAR subunit composition, there was a redistribution of extrasynaptic GABAARs to synapses, resulting in higher levels of synaptic BZ-insensitive α4-containing GABAARs and a concomitant reduction in tonic inhibition. Conversely, excitatory glutamatergic synaptic transmission was increased, and NMDAR subunits were upregulated at synaptic and total protein levels. Quantitative proteomics further revealed cortex neuroadaptations of key pro-excitatory mediators and synaptic plasticity pathways highlighted by Ca2+/calmodulin-dependent protein kinase II (CAMKII), MAPK, and PKC signaling. Thus, reduced inhibitory GABAergic tone and elevated glutamatergic neurotransmission contribute to disrupted excitation/inhibition balance and reduced BZ therapeutic power with benzodiazepine tolerance.


Diazepam ameliorates altered proinflammatory and cardiac markers in stress exposed rats.

  • Fahad A Al-Abbasi‎
  • Saudi journal of biological sciences‎
  • 2021‎

Regular exposure to stress causes alteration in biochemical parameter but till date no specific medicine prescribed for controlling it. Current study aimed to determine the effect of Diazepam on proinflammatory and cardiac markers in stress exposed rats. Male Wistar rats were divided into four groups with six animals in each group for 90 days study. Group-1 served as a Normal Control (NC), Groups-2, as a Disease Control (DC), Group-3 as a Diazepam Control (DMC) and Group-4 as a Disease + Diazepam Treatment (DT). DMC and DT animals exposed to regular stress by forced swimming exercise method for 90 days. DMC and DT received 5 mg/kg, p.o the daily dose of Diazepam. At the end of the protocol, animals were sacrificed. The level of serum proinflammatory marker interleukin-6 in DC increased significantly (p < 0.001) while restored significantly (p < 0.001) in DT. Level of interleukin-10 in DC decreased significantly (p < 0.001) while restored significantly (p < 0.001) in DT. Level of fibrinogen was also increased by stress, which was restored significantly (p < 0.05) by diazepam. Increased level of Creatine kinase-MB (CK-MB) by stress was restored significantly (p < 0.05) by diazepam. The level of cortisol was increased also significantly (p < 0.001) and restored to normal by diazepam. The level of C-reactive protein (CRP) and cholesterol was increased significantly (p < 0.01; p < 0.001) by stress while restored significantly (p < 0.01; p < 0.001) by diazepam. Findings from results suggest that diazepam ameliorates altered proinflammatory and cardiac markers in stress exposed rats.


Enhanced efficacy and reduced side effects of diazepam by kava combination.

  • Rasha A Tawfiq‎ et al.
  • Journal of advanced research‎
  • 2014‎

The long term use of antiepileptic drugs possesses many unwanted effects; thus, new safe combinations are urgently mandated. Hence, the present study aimed to investigate the anticonvulsant effect of kava alone or in combination with a synthetic anticonvulsant drug, diazepam (DZ). To this end, female Wistar rats were divided into two subsets, each comprising 6 groups as follows: group (i) received 1% Tween 80 p.o. and served as control, while groups (ii) and (iii) received kava at two dose levels (100 and 200 mg/kg, p.o.). The remaining three groups received (iv) DZ alone (10 mg/kg p.o.) or kava in combination with DZ (v) (5 mg/kg, p.o.) or (vi) (10 mg/kg, p.o.). Results of the present study revealed that kava increased the maximal electroshock seizure threshold (MEST) and enhanced the anticonvulsant effect of diazepam following both acute and chronic treatment. Moreover, neither kava nor its combination with DZ impaired motor co-ordination either acutely or chronically. Furthermore, kava ameliorated both the reduction in locomotor activity as well as changes in liver function tests induced by chronic administration of DZ. Moreover, no elevation was shown in the creatinine concentration vs. control group following chronic administration of kava or DZ either alone or in combination with kava. In conclusion, the present study suggests the possibility of combining a low dose DZ with kava to reduce harmful effects and might be recommended for clinical use in patients chronically treated with this synthetic anticonvulsant drug.


Diazepam Binding Inhibitor Promotes Stem Cell Expansion Controlling Environment-Dependent Neurogenesis.

  • Ionut Dumitru‎ et al.
  • Neuron‎
  • 2017‎

Plasticity of adult neurogenesis supports adaptation to environmental changes. The identification of molecular mediators that signal these changes to neural progenitors in the niche has remained elusive. Here we report that diazepam binding inhibitor (DBI) is crucial in supporting an adaptive mechanism in response to changes in the environment. We provide evidence that DBI is expressed in stem cells in all neurogenic niches of the postnatal brain. Focusing on the hippocampal subgranular zone (SGZ) and employing multiple genetic manipulations in vivo, we demonstrate that DBI regulates the balance between preserving the stem cell pool and neurogenesis. Specifically, DBI dampens GABA activity in stem cells, thereby sustaining the proproliferative effect of physical exercise and enriched environment. Our data lend credence to the notion that the modulatory effect of DBI constitutes a general mechanism that regulates postnatal neurogenesis.


Chronic diazepam administration increases the expression of Lcn2 in the CNS.

  • Tomonori Furukawa‎ et al.
  • Pharmacology research & perspectives‎
  • 2017‎

Benzodiazepines (BZDs), which bind with high affinity to gamma-aminobutyric acid type A receptors (GABAA-Rs) and potentiate the effects of GABA, are widely prescribed for anxiety, insomnia, epileptic discharge, and as anticonvulsants. The long-term use of BZDs is limited due to adverse effects such as tolerance, dependence, withdrawal effects, and impairments in cognition and learning. Additionally, clinical reports have shown that chronic BZD treatment increases the risk of Alzheimer's disease. Unusual GABAA-R subunit expression and GABAA-R phosphorylation are induced by chronic BZD use. However, the gene expression and signaling pathways related to these effects are not completely understood. In this study, we performed a microarray analysis to investigate the mechanisms underlying the effect of chronic BZD administration on gene expression. Diazepam (DZP, a BZD) was chronically administered, and whole transcripts in the brain were analyzed. We found that the mRNA expression levels were significantly affected by chronic DZP administration and that lipocalin 2 (Lcn2) mRNA was the most upregulated gene in the cerebral cortex, hippocampus, and amygdala. Lcn2 is known as an iron homeostasis-associated protein. Immunostained signals of Lcn2 were detected in neuron, astrocyte, microglia, and Lcn2 protein expression levels were consistently upregulated. This upregulation was observed without proinflammatory genes upregulation, and was attenuated by chronic treatment of deferoxamine mesylate (DFO), iron chelator. Our results suggest that chronic DZP administration regulates transcription and upregulates Lcn2 expression levels without an inflammatory response in the mouse brain. Furthermore, the DZP-induced upregulation of Lcn2 expression was influenced by ambient iron.


Effects of Diazepam and Ketamine on Pilocarpine-Induced Status Epilepticus in Mice.

  • Siyan Wang‎ et al.
  • Neuroscience‎
  • 2019‎

Status epilepticus (SE) is a life-threatening condition needing immediate care to prevent brain damage. SE with electrographic and behavioral features similar to those seen in humans is reproduced in rodents by i.p. pilocarpine injection, and can be terminated by diazepam and ketamine treatment but only behaviourally, not electrographically. Little is known on the behavioral and EEG effects induced by a delayed administration of ketamine (25 mg/kg) after diazepam (10 mg/kg) or vice versa. Therefore, we analysed behavior and EEG activity recorded from the mouse hippocampal CA3 region before, during SE and after anticonvulsant treatments. In the first group (n = 4), diazepam was administered one hour before ketamine whereas in the second group (n = 4) ketamine was administered one hour before diazepam. The EEG SE did not disappear after each of the two treatments but progressed within 4 h to a pattern of interictal discharges. However, diazepam administration before ketamine significantly shortened the time of behavioral recovery compared to when ketamine was administered before diazepam (p < 0.05). The two protocols were also associated to distinct EEG changes in gamma and high frequency oscillations. In conclusion, although diazepam and ketamine are not effective in stopping EEG SE, diazepam administration one hour before ketamine shortens behavioral recovery in pilocarpine-treated mice.


Pharmacokinetics of Diazepam and Its Metabolites in Urine of Chinese Participants.

  • Le-le Wang‎ et al.
  • Drugs in R&D‎
  • 2022‎

Urine is conventionally used as a specimen to document diazepam-related crimes; however, few reports have described the pharmacokinetics of diazepam and its metabolites in urine.


Diazepam and ethanol differently modulate neuronal activity in organotypic cortical cultures.

  • Matthias Kreuzer‎ et al.
  • BMC neuroscience‎
  • 2019‎

The pharmacodynamic results of diazepam and ethanol administration are similar, in that each can mediate amnestic and sedative-hypnotic effects. Although each of these molecules effectively reduce the activity of central neurons, diazepam does so through modulation of a more specific set of receptor targets (GABAA receptors containing a γ-subunit), while alcohol is less selective in its receptor bioactivity. Our investigation focuses on divergent actions of diazepam and ethanol on the firing patterns of cultured cortical neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: