Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 3,298 papers

Heparin cofactor II is degraded by heparan sulfate and dextran sulfate.

  • Akio Saito‎
  • Biochemical and biophysical research communications‎
  • 2015‎

Heparan sulfate normally binds to heparin cofactor II and modulates the coagulation pathway by inhibiting thrombin. However, when human heparin cofactor II was incubated with heparan sulfate, heparin cofactor II became degraded. Other glycosaminoglycans were tested, including hyaluronic acid, chondroitin sulfates, dermatan sulfate, and heparin, but only dextran sulfate also degraded heparin cofactor II. Pretreatment of heparan sulfate with heparinase reduced its heparin cofactor II-degrading activity. Heparan sulfate and dextran sulfate diminished the thrombin inhibitory activity of heparin cofactor II. Other serpins, including antithrombin III and pigment epithelium-derived factor, were also degraded by heparan sulfate. This is the first evidence of acidic polysaccharides exhibiting protein-degrading activity without the aid of other proteins.


Alloferon Alleviates Dextran Sulfate Sodium-induced Colitis.

  • Hyemin Kim‎ et al.
  • Immune network‎
  • 2015‎

Dysfunction of gut immune regulation is involved in mucosal damage in inflammatory bowel disease (IBD). However, there is still no efficacious immune-regulator for the treatment of IBD. Alloferon is a novel immune-modulatory peptide that was originally isolated from infected insects. It shows anti-inflammatory effects by the regulation of cytokine production by immune cells and their activities. Therefore, we investigated the effect of alloferon in a mouse model of colitis using dextran sulfate sodium (DSS). Colitis was induced by administration of DSS in drinking water for 7 consecutive days. It was confirmed by the presence of weight loss, diarrhea, hematochezia, and colon contraction. Alloferon was injected 4 days after DSS administration. We found that alloferon improved the pathogenesis of IBD based on the reduced disease activity index (DAI) and colon contraction. Edema, epithelial erosion, and immune cell infiltration were found in mice administered DSS, but the phenomena were reduced following alloferon treatment. The plasma level of IL-6, a classical pro-inflammatory cytokine in colitis, was also decreased by alloferon. Moreover, alloferon inhibited the TNF-α-induced degradation and phosphorylation of IκB in Colo205 colon cancer cells. Taken together, these results show that alloferon has anti-inflammatory effects and attenuates DSS-induced colitis.


Dextran Sulfate Polymer Wafer Promotes Corneal Wound Healing.

  • Remya Ammassam Veettil‎ et al.
  • Pharmaceutics‎
  • 2021‎

Eye injuries due to corneal abrasions, chemical spills, penetrating wounds, and microbial infections cause corneal scarring and opacification that result in impaired vision or blindness. However, presently available eye drop formulations of anti-inflammatory and antibiotic drugs are not effective due to their rapid clearance from the ocular surface or due to drug-related side effects such as cataract formation or increased intraocular pressure. In this article, we presented the development of a dextran sulfate-based polymer wafer (DS-wafer) for the effective modulation of inflammation and fibrosis and demonstrated its efficacy in two corneal injury models: corneal abrasion mouse model and alkali induced ocular burn mouse model. The DS-wafers were fabricated by the electrospinning method. We assessed the efficacy of the DS-wafer by light microscopy, qPCR, confocal fluorescence imaging, and histopathological analysis. These studies demonstrated that the DS-wafer treatment is significantly effective in modulating corneal inflammation and fibrosis and inhibited corneal scarring and opacification compared to the unsulfated dextran-wafer treated and untreated corneas. Furthermore, these studies have demonstrated the efficacy of dextran sulfate as an anti-inflammatory and antifibrotic polymer therapeutic.


Baicalein Inhibits Dextran Sulfate Sodium-induced Mouse Colitis.

  • Xiancai Zhong‎ et al.
  • Journal of cancer prevention‎
  • 2019‎

Baicalein is a bioactive flavone that is originally extracted from the root of Scutellaria baicalensis Georgi. This plant has long served as Chinese herbal medicine in the management of multiple diseases including inflammatory bowel diseases. Although it has been revealed that baicalein inhibits experimental colitis in mice, the molecular mechanisms still remain largely unrecognized.


Dextran sulfate inhibits acute Toxoplama gondii infection in pigs.

  • Kentaro Kato‎ et al.
  • Parasites & vectors‎
  • 2016‎

Toxoplasma gondii is a highly prevalent protozoan that can infect all warm-blooded animals, including humans. Its definitive hosts are Felidae and its intermediate hosts include various other mammals and birds, including pigs. It is found in the meat of livestock which is a major source of human infection. Hence the control of toxoplasmosis in pigs is important for public health. We previously showed that dextran sulfate (DS), especially DS10 (dextran sulfate MW 10 kDa), is effective against T. gondii infection both in vitro and in mice. In this study, we asked whether DS affects T. gondii infection of pigs, one of the main animal sources of toxoplasmosis transmission to humans.


Oleoylethanolamide Ameliorates Dextran Sulfate Sodium-Induced Colitis in Rats.

  • Shinsuke Otagiri‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Oleoylethanolamide (OEA) is an endogenous fatty acid ethanolamide known for its anti-inflammatory effects and its influence on gut microbiota composition; however, the effects of OEA in inflammatory bowel disease (IBD) remain unknown. During in vitro experiments, OEA downregulated the expression of tumor necrosis factor (TNF)-α and reduced phosphorylation of inhibitor of kappa (Iκ) Bα induced by lipopolysaccharide in human embryonic kidney cells. Moreover, OEA downregulated the expression of interleukin (IL)-8 and IL-1β and inhibited the phosphorylation of IκBα and p65 induced by TNF-α in human enterocytes (Caco-2). The effect of OEA in reducing the expression of IL-8 was blocked by the peroxisome proliferator-activated receptor (PPAR)-α antagonist. During in vivo experiments on rats, colitis was induced by the oral administration of 8% dextran sulfate sodium from day 0 through day 5, and OEA (20 mg/kg) was intraperitoneally injected once a day from day 0 for 6 days. OEA administration significantly ameliorated the reduction in body weight, the increase in disease activity index score, and the shortening of colon length. In rectums, OEA administration reduced the infiltration of macrophages and neutrophils and tended to reduce the histological score and the expression of inflammatory cytokines. Administration of OEA produced significant improvement in a colitis model, possibly by inhibiting the nuclear factor kappa B signaling pathway through PPAR-α receptors. OEA could be a potential new treatment for IBD.


Mechanical Stability of Lipid Membranes Decorated with Dextran Sulfate.

  • Candelaria I Cámara‎ et al.
  • ACS omega‎
  • 2018‎

Lipid vesicles decorated with polysaccharides have been proposed as vehicles for drug delivery because the polymers confer to the vesicles an enhanced stability, increasing the probability of the drug for reaching the target cell. Here, we first test the affinity of dextran sulfate (DS) for two different vesicle composition, and afterward, we study the effect of DS on the liposome mechanical properties. We found that DS binds to both tested membrane compositions. The interaction of DS with the anionic membranes studied here is mediated by the metal ions present in the aqueous solution (Na+ and Ca2+), being higher in the presence of Ca2+. Binding occurs preferentially in regions of closely packed lipids. Strikingly, DS did not affect the stability against detergent and the membrane rigidity of none of the vesicles. Thus, the proposed stability increase induced by this kind of polymers in drug delivery systems is not related with a modulation of the membrane thermodynamic properties but to other biochemical factors.


Calycosin attenuates dextran sulfate sodium (DSS)-induced experimental colitis.

  • Liu Chao‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2017‎

Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immunity. It is an incurable disease that affects millions of people worldwide. Developing new strategies for the treatment of colitis has been a major challenge. Here, we report the effect of calycosin, a plant-derived flavonoid, in successfully managing colitis in murine model.


Colonic Epithelial Circadian Disruption Worsens Dextran Sulfate Sodium-Induced Colitis.

  • Sarah B Jochum‎ et al.
  • Inflammatory bowel diseases‎
  • 2023‎

Disruption of central circadian rhythms likely mediated by changes in microbiota and a decrease in gut-derived metabolites like short chain fatty acids (SCFAs) negatively impacts colonic barrier homeostasis. We aimed to explore the effects of isolated peripheral colonic circadian disruption on the colonic barrier in a mouse model of colitis and explore the mechanisms, including intestinal microbiota community structure and function.


Melatonin Attenuates Dextran Sodium Sulfate Induced Colitis in Obese Mice.

  • Shijia Pan‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2021‎

Epidemiological studies have indicated that obesity is an independent risk factor for colitis and that a high-fat diet (HFD) increases the deterioration of colitis-related indicators in mice. Melatonin has multiple anti-inflammatory effects, including inhibiting tumor growth and regulating immune defense. However, the mechanism of its activity in ameliorating obesity-promoted colitis is still unclear. This study explored the possibility that melatonin has beneficial functions in HFD-induced dextran sodium sulfate (DSS)-induced colitis in mice. Here, we revealed that HFD-promoted obesity accelerated DSS-induced colitis, while melatonin intervention improved colitis. Melatonin significantly alleviated inflammation by increasing anti-inflammatory cytokine release and reducing the levels of proinflammatory cytokines in HFD- and DSS-treated mice. Furthermore, melatonin expressed antioxidant activities and reversed intestinal barrier integrity, resulting in improved colitis in DSS-treated obese mice. We also found that melatonin could reduce the ability of inflammatory cells to utilize fatty acids and decrease the growth-promoting effect of lipids by inhibiting autophagy. Taken together, our study indicates that the inhibitory effect of melatonin on autophagy weakens the lipid-mediated prosurvival advantage, which suggests that melatonin-targeted autophagy may provide an opportunity to prevent colitis in obese individuals.


Dextran sulfate provides a quantitative and quick microarray hybridization reaction.

  • Wei-Chi Ku‎ et al.
  • Biochemical and biophysical research communications‎
  • 2004‎

Microarray technology is a powerful tool to speed up genomics study, yet many technical aspects need to be improved. The hybridization reaction of microarray experiments is carried out for 16h or overnight in order to obtain reasonably strong signals for analysis in the presence of high salt buffer, like SSC. However, the quantitative aspect of microarray hybridization has seldom been investigated. In this study, we showed that higher overall signals from hybridization were achieved in a buffer system containing dextran sulfate, which can accelerate the kinetics of reaction by increasing the local concentration of the reactants. The dextran sulfate containing hybridization solution increases the reaction 4-fold (median) for cDNA microarray and 29-fold for oligonucleotide microarray. More importantly, the solution also provides a quantitative hybridization reaction, where the hybridization signals are proportional to the abundance of transcript added. The enhancement in the kinetics of hybridization is due to both dextran sulfate and formamide present in the solution, but the effect is not due to the higher temperature used during the reaction. With a slightly longer reaction time the hybridization reaction with the solution allows the detection of hybridization signals from rare transcripts that is not possible with regular hybridization buffers. With appropriate washing, the enhancement of kinetics by the solution does not increase the background signals at all, allowing higher signal-to-noise ratios to be achieved.


Dietary red raspberries attenuate dextran sulfate sodium-induced acute colitis.

  • Shima Bibi‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2018‎

Persistent intestinal inflammation severely impairs intestinal integrity resulting in inflammatory bowel disease. Red raspberries (RB) are a rich source of bioactive compounds; their beneficial effect on the colitis protection was evaluated in the current study using a dextran sulfate sodium (DSS)-induced acute colitis mouse model. Six-week-old mice were fed a standard rodent research diet supplemented with RB (0 or 5% w/w, n=20 each group) for 6 weeks. At the 4th week of dietary treatment, approximately half of mice in each dietary group (n=12 each group) were subjected to 2.5% DSS induction for 6 days, followed by 6 days of recovery, to induce colitis. RB supplementation decreased body weight loss (P≤.01), disease activity index (P≤.01), and colon shortening (P≤.05) in DSS-treated mice. In addition, RB supplementation protected the colonic structure (P≤.01), associated with suppressed NF-κB signaling and reduced expression of inflammatory interleukin (IL)-1β, IL-6, IL-17, cyclooxegenase-2, and tumor necrosis factor-α in DSS-treated mice. RB supplementation reduced neutrophil infiltration, monocyte chemoattractant protein-1 mRNA expression, and xanthine oxidase content, but enhanced catalase content in DSS-treated mice. Consistently, RB supplementation reduced pore forming tight junction protein claudin-2, increased barrier strengthening claudin-3, zonula occluden-1 protein content and mucin (MUC)-2 mRNA level, and activated AMP-activated protein kinase (AMPK) in DSS-treated mice. In conclusion, dietary RB protected against inflammation and colitis symptoms induced by DSS, providing a promising dietary approach for the management of colitis.


Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis.

  • Roun Heo‎ et al.
  • Biomaterials‎
  • 2017‎

With the aim of developing nanoparticles for targeted delivery of methotrexate (MTX) to inflamed joints in rheumatoid arthritis (RA), an amphiphilic polysaccharide was synthesized by conjugating 5β-cholanic acid to a dextran sulfate (DS) backbone. Due to its amphiphilic nature, the DS derivative self-assembled into spherical nanoparticles (220 nm in diameter) in aqueous conditions. The MTX was effectively loaded into the DS nanoparticles (loading efficiency: 73.0%) by a simple dialysis method. Interestingly, the DS nanoparticles were selectively taken up by activated macrophages, which are responsible for inflammation and joint destruction, via scavenger receptor class A-mediated endocytosis. When systemically administrated into mice with experimental collagen-induced arthritis (CIA), the DS nanoparticles effectively accumulated in inflamed joints (12-fold more than wild type mice (WT)), implying their high targetability to RA tissues. Moreover, the MTX-loaded DS nanoparticles exhibited significantly improved therapeutic efficacy against CIA in mice compared to free MTX alone. Overall, the data presented here indicate that DS nanoparticles are potentially useful nanomedicines for RA imaging and therapy.


TDAG51 deficiency attenuates dextran sulfate sodium-induced colitis in mice.

  • Hyoeun Jeon‎ et al.
  • Scientific reports‎
  • 2022‎

Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of chronic inflammatory diseases of the gastrointestinal tract. Although the multifactorial etiology of IBD pathogenesis is relatively well documented, the regulatory factors that confer a risk of IBD pathogenesis remain less explored. In this study, we report that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the development of dextran sulfate sodium (DSS)-induced colitis in mice. TDAG51 expression was elevated in the colon tissues of DSS-induced experimental colitis mice. TDAG51 deficiency protected mice against acute DSS-induced lethality and body weight changes and disease severity. DSS-induced structural damage and mucus secretion in colon tissues were significantly reduced in TDAG51-deficient mice compared with wild-type mice. We observed similar results in a DSS-induced chronic colitis mouse model. Finally, we showed that the production of inflammatory mediators, including proinflammatory enzymes, molecules and cytokines, was decreased in DSS-treated TDAG51-deficient mice compared with DSS-treated wild-type mice. Thus, we demonstrated that TDAG51 deficiency plays a protective role against DSS-induced colitis by decreasing the production of inflammatory mediators in mice. These findings suggest that TDAG51 is a novel regulator of the development of DSS-induced colitis and is a potential therapeutic target for IBD.


Blackcurrant Alleviates Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice.

  • Hye-Jung Moon‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2023‎

Previous studies have reported that anthocyanin (ACN)-rich materials have beneficial effects on ulcerative colitis (UC). Blackcurrant (BC) has been known as one of the foods rich in ACN, while studies demonstrating its effect on UC are rare. This study attempted to investigate the protective effects of whole BC in mice with colitis using dextran sulfate sodium (DSS). Mice were orally given whole BC powder at a dose of 150 mg daily for four weeks, and colitis was induced by drinking 3% DSS for six days. Whole BC relieved symptoms of colitis and pathological changes in the colon. The overproduction of pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-6 in serum and colon tissues was also reduced by whole BC. In addition, whole BC significantly lowered the levels of mRNA and protein of downstream targets in the NF-κB signaling pathway. Furthermore, BC administration increased the expression of genes related to barrier function: ZO-1, occludin, and mucin. Moreover, the whole BC modulated the relative abundance of gut microbiota altered with DSS. Therefore, the whole BC has demonstrated the potential to prevent colitis through attenuation of the inflammatory response and regulation of the gut microbial composition.


Dextran sulfate sodium inhibits alanine synthesis in Caco-2 cells.

  • Zhong Ye‎ et al.
  • International journal of molecular sciences‎
  • 2011‎

To understand and characterize the pathogenic mechanisms of inflammatory bowel disease, dextran sulfate sodium (DSS) has been used to induce acute and chronic colitis in animal models by causing intestinal epithelium damage. The mechanism of action of DSS in producing this outcome is not well understood. In an effort to understand how DSS might impact epithelial cell metabolism, we studied the intestinal epithelial cell line Caco-2 incubated with 1% DSS over 56 hours using (1)H NMR spectroscopy. We observed no difference in cell viability as compared to control cultures, and an approximately 1.5-fold increase in IL-6 production upon incubation with 1% DSS. The effect on Caco-2 cell metabolism as measured through changes in the concentration of metabolites in the cell supernatant included a three-fold decrease in the concentration of alanine. Given that the concentrations of other amino acids in the cell culture supernatant were not different between treated and control cultures over 56 hours suggest that DSS inhibits alanine synthesis, specifically alanine aminotransferase, without affecting other key metabolic pathways. The importance of alanine aminotransferase in inflammatory bowel disease is discussed.


Effect of live Salmonella Ty21a in dextran sulfate sodium-induced colitis.

  • Gunnar Nysœter‎ et al.
  • Drug target insights‎
  • 2007‎

Intestinal microbiota seems to play an essential role in the development of inflammatory bowel diseases (IBD). We hypothesised that an oral vaccine based on live Salmonella typhi would be well tolerated and could even attenuate dextran sulfate sodium (DSS) induced colitis in rats, an animal model of IBD.


Curcumin and resveratrol suppress dextran sulfate sodium‑induced colitis in mice.

  • Lize Zhang‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Curcumin and resveratrol are two natural products, which have been described as potential anti‑inflammatory, anti‑tumor, and anti‑oxidant molecules. The aims of the present study were to investigate the protective effect of curcumin and resveratrol on dextran sulfate sodium (DSS)‑induced ulcerative colitis (UC) in mice, in addition to understanding the underlying molecular mechanisms. In order to accomplish this, BALB/c mice received drinking water containing 3.5% DSS. Curcumin (50 mg/kg/day) or resveratrol (80 mg/kg/day) were administered orally for 7 days. Survival rate, body weight, disease activity index score, colon length, pro‑inflammatory cytokines, and the expression autophagy‑associated proteins, and mechanistic target of rapamycin (mTOR) and sirtuin 1 (SIRT1) were measured. Curcumin or resveratrol treatment prolonged the survival of mice with UC, reduced body weight loss and attenuated the severity of the disease compared with the DSS‑treated mice. This effect was associated with a substantial clinical amelioration of the disruption of the colonic architecture and a significant reduction in pro‑inflammatory cytokine production. Furthermore, curcumin or resveratrol significantly downregulated the expression of autophagy‑related 12, Beclin‑1 and microtubule‑associated protein light chain 3 II, and upregulated the expression of phosphorylated mTOR and SIRT1 in the colon tissue, compared with those in the DSS‑treated group. These results suggest that curcumin and resveratrol exert protective effects on DSS‑induced UC, partially through suppressing the intestinal inflammatory cascade reaction, reducing autophagy and regulating SIRT1/mTOR signaling.


Systematic Metabolic Profiling of Mice with Dextran Sulfate Sodium-Induced Colitis.

  • Dadi Xie‎ et al.
  • Journal of inflammation research‎
  • 2021‎

Inflammatory bowel diseases (IBD) are a chronic inflammatory disease, which affects almost all tissues in the body. Previous studies mainly focused on breathing, fecal, and urine samples of patients with IBD. However, there is no comprehensive metabolomic analysis of the serum, colon, heart, liver, kidney, cortex, hippocampus, and brown fat tissues. Therefore, the aim of our study is to evaluate the utility metabolomic analysis of target tissues in the pathogenesis of IBD in exploring new biomarkers for early diagnosis and treatment.


Incorporation of heparin-binding proteins into preformed dextran sulfate-chitosan nanoparticles.

  • Paula Zaman‎ et al.
  • International journal of nanomedicine‎
  • 2016‎

Incorporation of proteins into dextran sulfate (DS)-chitosan (CS) nanoparticles (DSCS NPs) is commonly performed using entrapment procedures, in which protein molecules are mixed with DS and CS until particle formation occurs. As DS is an analog of heparin, the authors examined whether proteins could be directly incorporated into preformed DSCS NPs through a heparin binding domain-mediated interaction. The authors formulated negatively-charged DSCS NPs, and quantified the amount of charged DS in the outer shell of the particles. The authors then mixed the DSCS NPs with heparin-binding proteins (SDF-1α, VEGF, FGF-2, BMP-2, or lysozyme) to achieve incorporation. Data show that for DSCS NPs containing 100 nmol charged glucose sulfate units in DS, up to ~1.5 nmol of monomeric or ~0.75 nmol of dimeric heparin-binding proteins were incorporated without significantly altering the size or zeta potential of the particles. Incorporation efficiencies of these proteins were 95%-100%. In contrast, serum albumin or serum globulin showed minimal incorporation (8% and 4%, respectively) in 50% physiological saline, despite their large adsorption in water (80% and 92%, respectively). The NP-incorporated SDF-1α and VEGF exhibited full activity and sustained thermal stability. An in vivo aerosolization study showed that NP-incorporated SDF-1α persisted in rat lungs for 72 h (~34% remaining), while free SDF-1α was no longer detectable after 16 h. As many growth factors and cytokines contain heparin-binding sites/domains, incorporation into preformed DSCS NPs could facilitate in vivo applications of these proteins.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: