Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Interleukin-38 interacts with destrin/actin-depolymerizing factor in human keratinocytes.

  • Dominique Talabot-Ayer‎ et al.
  • PloS one‎
  • 2019‎

Interleukin (IL)-38 is a member of the IL-1 family of cytokines, which was proposed to exert anti-inflammatory effects. IL-38 is constitutively expressed in the skin, where keratinocytes are the main producing cells. Little information is currently available concerning IL-38 biology. Here, we investigated the subcellular localization and interaction partners of the IL-38 protein in human keratinocytes. IL-38 expression was reduced in primary keratinocytes grown in monolayer (2D) cultures. We thus used IL-38 overexpressing immortalized normal human keratinocytes (NHK/38) to study this cytokine in cell monolayers. In parallel, differentiation of primary human keratinocytes in an in vitro reconstructed human epidermis (RHE) 3D model allowed us to restore endogenous IL-38 expression. In NHK/38 cells and in RHE, IL-38 was mainly cell-associated, rather than released into culture supernatants. Intracellular IL-38 was preferentially, although not exclusively, cytoplasmic. Similarly, in normal human skin sections, IL-38 was predominantly cytoplasmic in the epidermis and essentially excluded from keratinocyte nuclei. A yeast two-hybrid screen identified destrin/actin-depolymerizing factor (DSTN) as a potential IL-38-interacting molecule. Co-immunoprecipitation and proximity ligation assay confirmed this interaction. We further observed partial co-localization of IL-38 and DSTN in NHK/38 cells. Endogenous IL-38 and DSTN were also co-expressed in all epidermal layers in RHE and in normal human skin. Finally, IL-38 partially co-localized with F-actin in NHK/38 cells, in particular along the cortical actin network and in filopodia. In conclusion, IL-38 is found predominantly in the cytoplasm of human keratinocytes, where it interacts with DSTN. The functional relevance of this interaction remains to be investigated.


Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis.

  • Satu Kuure‎ et al.
  • PLoS genetics‎
  • 2010‎

The actin depolymerizing factors (ADFs) play important roles in several cellular processes that require cytoskeletal rearrangements, such as cell migration, but little is known about the in vivo functions of ADFs in developmental events like branching morphogenesis. While the molecular control of ureteric bud (UB) branching during kidney development has been extensively studied, the detailed cellular events underlying this process remain poorly understood. To gain insight into the role of actin cytoskeletal dynamics during renal branching morphogenesis, we studied the functional requirements for the closely related ADFs cofilin1 (Cfl1) and destrin (Dstn) during mouse development. Either deletion of Cfl1 in UB epithelium or an inactivating mutation in Dstn has no effect on renal morphogenesis, but simultaneous lack of both genes arrests branching morphogenesis at an early stage, revealing considerable functional overlap between cofilin1 and destrin. Lack of Cfl1 and Dstn in the UB causes accumulation of filamentous actin, disruption of normal epithelial organization, and defects in cell migration. Animals with less severe combinations of mutant Cfl1 and Dstn alleles, which retain one wild-type Cfl1 or Dstn allele, display abnormalities including ureter duplication, renal hypoplasia, and abnormal kidney shape. The results indicate that ADF activity, provided by either cofilin1 or destrin, is essential in UB epithelial cells for normal growth and branching.


Spontaneous corneal hem- and lymphangiogenesis in mice with destrin-mutation depend on VEGFR3 signaling.

  • Claus Cursiefen‎ et al.
  • The American journal of pathology‎
  • 2005‎

Lymphangiogenesis, the formation of new lymphatic vessels, is important for tumor metastasis and induction of immunity to peripheral antigens including organ transplants. We herein describe a novel mouse model of spontaneous, secondary lymphangiogenesis in the normally avascular cornea. corn1 mice, which suffer from a deletion in the gene encoding the cytoskeletal protein destrin, develop hemangiogenesis as well as spontaneous outgrowth of LYVE-1+++/CD31+ lymphatic vessels into the cornea starting at age 4 weeks. Corneal lymphangiogenesis is delayed in onset, is less intense, and regresses earlier compared with hemangiogenesis. Moreover, the lymphangiogenesis is preceded only by a mild recruitment of CD45+ inflammatory cells into the cornea. In contrast to mice with inflammation-induced hem- and lymphangiogenesis, corn1 mice do not develop breakdown of the blood-aqueous barrier. Finally, in this novel mouse model, a blocking anti-VEGFR3 antibody significantly inhibited not only lymph- but also hemangiogenesis. In summary, destrin deletion has differential effects on spontaneous hem- and lymphangiogenesis in the normally avascular cornea and represents a novel mouse model to study the mechanisms of lymphangiogenesis and to test the antihem- and antilymphangiogenic properties of known or new antiangiogenic agents.


Changes in ADF/destrin expression in the development of hair cells following Atoh1-induced ectopic regeneration.

  • Kai Jin‎ et al.
  • Experimental and therapeutic medicine‎
  • 2013‎

The aim of this study was to investigate the effects of actin depolymerizing factor (ADF)/destrin and position changes of kinetosomes in the development of hair cells following Atoh1-induced ectopic regeneration in the basilar membrane of mice. We observed through immunofluorescence at various time-points the expression of ADF/destrin and the specific kinetosome marker, γ-tubulin, in hair cells following ectopic regeneration induced by adenovirus transfection, overexpression of Atoh1 and in vitro culture. Changes of ADF/destrin distribution and kinetosome position during in vitro culture of new hair cells [Myo7a(+)] following Atoh1-induced ectopic regeneration are consistent with the changes in ADF/destrin expression and the polar migration of kinetosomes in hair cells of the cochlear sensory epithelium in normal development. ADF/destrin is involved in the development of the auditory epithelium and the development and structural rearrangement of ectopically regenerated hair cells in mammals. The kinetosomes of hair cells following Atoh1-induced ectopic regeneration show positional changes in vitro at different time-points.


Differences in corneal phenotypes between destrin mutants are due to allelic difference and modified by genetic background.

  • Sharolyn V Kawakami-Schulz‎ et al.
  • Molecular vision‎
  • 2012‎

Mutations in destrin (Dstn) cause corneal abnormalities in mice. A null mutation, Dstn(corn1), results in corneal epithelial hyperproliferation, inflammation, and neovascularization in the A.BY background (A.BY Dstn(corn1)). Homozygosity for a point mutation, Dstn(corn1-2J), results in mild thickening of the corneal epithelium but no corneal neovascularization in a C57BL/6 (B6) background (B6 Dstn(corn1-2J)). The goal of this study was to determine whether phenotypic differences are due to allelic differences between Dstn(corn1) and Dstn(corn1-2J), or are the result of genetic background effects.


Detection and characterization of a rat parotid gland protein kinase that catalyzes phosphorylation of matured destrin at Ser-2.

  • Seigo Nakano‎ et al.
  • Archives of oral biology‎
  • 2003‎

Destrin, an actin-binding protein, is partly phosphorylated at Ser-2 (numbering on the matured form) in the resting rat parotid gland, and beta-adrenergic or cholinergic stimulation of this gland induces its dephosphorylation. In this study, we searched for the protein kinase involved in phosphorylation of destrin. We developed an assay method for the kinase, using an antibody specific to destrin phosphorylated at Ser-2, and detected the kinase in the rat parotid homogenate. This enzyme was predominantly (93%) present in the soluble fraction, and the enzyme in this fraction was characterized. It had an optimum pH at 6.8 and required 3-5 mM Mg2+ for its maximum activity. Ca2+ (1 mM) had no effect whereas Mn2+ (5 mM) inhibited the enzyme activity by 75%. The apparent Km values for destrin and ATP were 92 microg/ml and 170 microM, respectively. GTP was an inefficient phosphate donor, and cAMP had no effect. Heat-denatured destrin was poorly phosphorylated. Two-dimensional PAGE analysis of destrin phosphorylated with the soluble fraction indicated that it was exclusively phosphorylated at Ser-2. None of the protein kinase inhibitors tested here was specific to this enzyme. At 1 mM, ML-7, Y-27632, KN-93, HA-1077, H-7, and H-8 inhibited the activity by 88, 61, 58, 49, 46, and 42%, respectively. Staurosporine (2 microM) and H-89 (50 microM) inhibited the activity by 48 and 33%, respectively. Heparin (30 microg/ml) had no effect. These results suggest that the rat parotid gland contains a novel, constitutively active, soluble protein kinase catalyzing specific phosphorylation of destrin at Ser-2.


Complete amino acid sequences and phosphorylation sites, determined by Edman degradation and mass spectrometry, of rat parotid destrin- and cofilin-like proteins.

  • T Kanamori‎ et al.
  • Archives of oral biology‎
  • 1998‎

Beta-adrenergic or cholinergic stimulation of the rat parotid gland was earlier shown to induce dephosphorylation of endogenous destrin- and cofilin-like proteins, which are phosphorylated in resting cells at Ser residues probably present near the N-terminals. The primary structures and phosphorylation sites were determined here. The rat destrin-like protein had a sequence 95% identical to the cDNA-derived sequence of porcine destrin. The rat cofilin-like protein was 98% identical to that of porcine cofilin. Each protein lacked the initiator Met and began with an acetylalanine residue followed by a Ser residue. The N-terminal peptides generated with endoproteinase Asp-N were isolated; they were each phosphorylated at Ser-2. Earlier work had shown that partial cleavage of the phosphorylated destrin- and cofilin-like proteins with cyanogen bromide provides unphosphorylated 16.7- and 18.3-kDa fragments, respectively. It was here confirmed that they contained all the Ser residues other than those present in the N-terminal peptides. From these observations, it was now concluded that the destrin- and cofilin-like proteins are rat parotid destrin and cofilin (non-muscle type), respectively, and that each protein is phosphorylated exclusively at Ser-2 in resting cells and dephosphorylated at this site in response to beta-adrenergic or cholinergic stimulation.


Downregulation of LIMK1-ADF/cofilin by DADS inhibits the migration and invasion of colon cancer.

  • Jian Su‎ et al.
  • Scientific reports‎
  • 2017‎

This study aimed to explore whether the downregulation of LIM kinase 1 (LIMK1)-actin depolymerization factor (ADF, also known as destrin)/cofilin by diallyl disulfide (DADS) inhibited the migration and invasion of colon cancer. Previous studies have shown that silencing LIMK1 could significantly enhance the inhibitory effect of DADS on colon cancer cell migration and invasion, suggesting that LIMK1 was a target molecule of DADS, which needed further confirmation. This study reported that LIMK1 and destrin were highly expressed in colon cancer and associated with poor prognosis of patients with colon cancer. Also, the expression of LIMK1 was positively correlated with the expression of destrin. The overexpression of LIMK1 significantly promoted colon cancer cell migration and invasion. DADS obviously inhibited migration and invasion by suppressing the phosphorylation of ADF/cofilin via downregulation of LIMK1 in colon cancer cells. Furthermore, DADS-induced suppression of cell proliferation was enhanced and antagonized by the knockdown and overexpression of LIMK1 in vitro and in vivo, respectively. Similar results were observed for DADS-induced changes in the expression of vimentin, CD34, Ki-67, and E-cadherin in xenografted tumors. These results indicated that LIMK1 was a potential target molecule for the inhibitory effect of DADS on colon cancer cell migration and invasion.


Defects in actin dynamics lead to an autoinflammatory condition through the upregulation of CXCL5.

  • Angela M Verdoni‎ et al.
  • PloS one‎
  • 2008‎

Destrin (DSTN) is a member of the ADF/cofilin family of proteins and is an important regulator of actin dynamics. The primary function of destrin is to depolymerize filamentous actin into its monomeric form and promote filament severing. While progress has been made in understanding the biochemical functions of the ADF/cofilin proteins, the study of an animal model for cells deficient for DSTN provides an opportunity to investigate the physiological processes regulated by proper actin dynamics in vivo. A spontaneous mouse mutant, corneal disease 1(corn1), is deficient for DSTN, which causes epithelial hyperproliferation and neovascularization in the cornea. Dstn(corn1) mice exhibit an actin dynamics defect in the cornea as evidenced by the formation of actin stress fibers in the epithelial cells. Previously, we observed a significant infiltration of leukocytes into the cornea of Dstn(corn1) mice as well as the upregulation of proinflammatory molecules. In this study, we sought to characterize this inflammatory condition and explore the physiological mechanism through which a loss of Dstn function leads to inflammation.


In search of the altering salivary proteome in metastatic breast and ovarian cancers.

  • Kuldeep Giri‎ et al.
  • FASEB bioAdvances‎
  • 2019‎

Breast and ovarian cancers, the most common cancers in women in India, are expected to rise in the next decade. Metastatic organotropism is a nonrandom, predetermined process which represents a more lethal and advanced form of cancer with increased mortality rate. In an attempt to study organotropism, salivary proteins were analyzed by mass spectrometry indicative of pathophysiology of breast and ovarian cancers and were compared to healthy and ovarian chemotherapy subjects. Collectively, 646 proteins were identified, of which 409 proteins were confidently identified across all four groups. Network analysis of upregulated proteins such as coronin-1A, hepatoma-derived growth factor, vasodilator-stimulated phosphoprotein (VASP), and cofilin in breast cancer and proteins like coronin-1A, destrin, and HSP90α in ovarian cancer were functionally linked and were known to regulate cell proliferation and migration. Additionally, proteins namely VASP, coronin-1A, stathmin, and suprabasin were confidently identified in ovarian chemotherapy subjects, possibly in response to combined paclitaxel and carboplatin drug therapy to ovarian cancer. Selected representative differentially expressed proteins (eg, gelsolin, VASP) were validated by western blot analysis. Results of this study provide a foundation for future research to better understand the organotropic behavior of breast and ovarian cancers, as well as neoadjuvant drug response in ovarian cancer.


Cofilin is required for polarization of tension in stress fiber networks during migration.

  • Stacey Lee‎ et al.
  • Journal of cell science‎
  • 2020‎

Cell migration is associated with the establishment of defined leading and trailing edges, which in turn requires polarization of contractile forces. While the actomyosin stress fiber (SF) network plays a critical role in enforcing this polarity, precisely how this asymmetry is established remains unclear. Here, we provide evidence for a model in which the actin-severing protein cofilin (specifically cofilin-1) participates in symmetry breakage by removing low-tension actomyosin filaments during transverse arc assembly. Cofilin knockdown (KD) produces a non-polarized SF architecture that cannot be rescued with chemokines or asymmetric matrix patterns. Whereas cofilin KD increases whole-cell prestress, it decreases prestress within single SFs, implying an accumulation of low-tension SFs. This notion is supported by time-lapse imaging, which reveals weakly contractile and incompletely fused transverse arcs. Confocal and super-resolution imaging further associate this failed fusion with the presence of crosslinker-rich, tropomyosin-devoid nodes at the junctions of multiple transverse arc fragments and dorsal SFs. These results support a model in which cofilin facilitates the formation of high-tension transverse arcs, thereby promoting mechanical asymmetry.


Cofilin1 controls transcolumnar plasticity in dendritic spines in adult barrel cortex.

  • Tadashi Tsubota‎ et al.
  • PLoS biology‎
  • 2015‎

During sensory deprivation, the barrel cortex undergoes expansion of a functional column representing spared inputs (spared column), into the neighboring deprived columns (representing deprived inputs) which are in turn shrunk. As a result, the neurons in a deprived column simultaneously increase and decrease their responses to spared and deprived inputs, respectively. Previous studies revealed that dendritic spines are remodeled during this barrel map plasticity. Because cofilin1, a predominant regulator of actin filament turnover, governs both the expansion and shrinkage of the dendritic spine structure in vitro, it hypothetically regulates both responses in barrel map plasticity. However, this hypothesis remains untested. Using lentiviral vectors, we knocked down cofilin1 locally within layer 2/3 neurons in a deprived column. Cofilin1-knocked-down neurons were optogenetically labeled using channelrhodopsin-2, and electrophysiological recordings were targeted to these knocked-down neurons. We showed that cofilin1 knockdown impaired response increases to spared inputs but preserved response decreases to deprived inputs, indicating that cofilin1 dependency is dissociated in these two types of barrel map plasticity. To explore the structural basis of this dissociation, we then analyzed spine densities on deprived column dendritic branches, which were supposed to receive dense horizontal transcolumnar projections from the spared column. We found that spine number increased in a cofilin1-dependent manner selectively in the distal part of the supragranular layer, where most of the transcolumnar projections existed. Our findings suggest that cofilin1-mediated actin dynamics regulate functional map plasticity in an input-specific manner through the dendritic spine remodeling that occurs in the horizontal transcolumnar circuits. These new mechanistic insights into transcolumnar plasticity in adult rats may have a general significance for understanding reorganization of neocortical circuits that have more sophisticated columnar organization than the rodent neocortex, such as the primate neocortex.


Developmental expression of the actin depolymerizing factor ADF in the mouse inner ear and spiral ganglia.

  • Michel K Herde‎ et al.
  • The Journal of comparative neurology‎
  • 2010‎

Hair cells, the inner ear's sensory cells, are characterized by tens to hundreds of actin-rich stereocilia that form the hair bundle apparatus necessary for mechanoelectrical transduction. Both the number and length of actin filaments are precisely regulated in stereocilia. Proper cochlear and vestibular function also depends on actin filaments in nonsensory supporting cells. The formation of actin filaments is a dynamic, treadmill-like process in which actin-binding proteins play crucial roles. However, little is known about the presence and function of actin binding molecules in the inner ear, which set up, and maintain, actin-rich structures and regulate actin turnover. Here we examined the expression and subcellular location of the actin filament depolymerizing factor (ADF) in the cochlea and vestibular organs. By means of immunocytochemistry and confocal microscopy, we analyzed whole-mount preparations and cross-sections in fetal and postnatal mice (E15-P26). We found a transient ADF expression in immature hair cells of the organ of Corti, the utricle, and the saccule. Interestingly, the stereocilia were not labeled. By P26, ADF expression was restricted to supporting cells. In addition, we localized ADF in presynaptic terminals of medio-olivocochlear projections after hearing onset. A small population of spiral ganglion neurons strongly expressed ADF. Based on their relative number, peripheral location within the ganglion, smaller soma size, and coexpression of neurofilament 200, we identified these cells as Type II spiral ganglion neurons. The developmentally regulated ADF expression suggests a temporally restricted function in the stereocilia and, thus, a hitherto undescribed role of ADF.


KIAA1199 is a secreted molecule that enhances osteoblastic stem cell migration and recruitment.

  • Li Chen‎ et al.
  • Cell death & disease‎
  • 2019‎

Factors mediating mobilization of osteoblastic stem and progenitor cells from their bone marrow niche to be recruited to bone formation sites during bone remodeling are poorly known. We have studied secreted factors present in the bone marrow microenvironment and identified KIAA1199 (also known as CEMIP, cell migration inducing hyaluronan binding protein) in human bone biopsies as highly expressed in osteoprogenitor reversal cells (Rv.C) recruited to the eroded surfaces (ES), which are the future bone formation sites. In vitro, KIAA1199 did not affect the proliferation of human osteoblastic stem cells (also known as human bone marrow skeletal or stromal stem cells, hMSCs); but it enhanced cell migration as determined by scratch assay and trans-well migration assay. KIAA1199 deficient hMSCs (KIAA1199down) exhibited significant changes in cell size, cell length, ratio of cell width to length and cell roundness, together with reduction of polymerization actin (F-actin) and changes in phos-CFL1 (cofflin1), phos-LIMK1 (LIM domain kinase 1) and DSTN (destrin), key factors regulating actin cytoskeletal dynamics and cell motility. Moreover, KIAA1199down hMSC exhibited impaired Wnt signaling in TCF-reporter assay and decreased expression of Wnt target genes and these effects were rescued by KIAA1199 treatment. Finally, KIAA1199 regulated the activation of P38 kinase and its associated changes in Wnt-signaling. Thus, KIAA1199 is a mobilizing factor that interacts with P38 and Wnt signaling, and induces changes in actin cytoskeleton, as a mechanism mediating recruitment of hMSC to bone formation sites.


Comparative analyses of longissimus muscle miRNAomes reveal microRNAs associated with differential regulation of muscle fiber development between Tongcheng and Yorkshire pigs.

  • Yu Xi‎ et al.
  • PloS one‎
  • 2018‎

Tongcheng (TC) and Yorkshire (YK) are two pig breeds with distinctive muscle morphology. Porcine microRNAome (miRNAome) of the longissimus muscle during five developmental stages (40, 55, 63, 70, and 90 days post coitum (dpc)) was explored by Solexa sequencing in the present study to find miRNAs involved in the different regulation of skeletal muscle development between the two breeds. A total of 320 known porcine miRNAs, 64 miRNAs corresponding to other mammals, and 224 potentially novel miRNAs were identified. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggested that the factor "pig breed" affected the miRNA expression profiles to a lesser extent than the factor "developmental stage". Fifty-seven miRNAs were differentially expressed (DE) between the neighbor developmental stages in TC and 45 such miRNAs were found in YK, 34 in common; there were more down-regulated stage-DE miRNAs than up-regulated. And a total of 23, 30, 12, 6, and 30 breed-DE miRNAs between TC and YK were identified at 40, 55, 63, 70, and 90 dpc, respectively, which were mainly involved in cellular protein modification process, protein transport, and metabolic process. As the only highly expressed breed-DE miRNA found in no less than four developmental stages, and also a stage-DE miRNA found both in TC and YK, miR-499-5p could bind the 3'-UTR of a myofibrillogenesis regulator, destrin/actin depolymerizing factor (DSTN), as validated in dual luciferase reporter assay. The results suggested that miR-499-5p possibly play a noteworthy role in the breed-distinctive porcine muscle fiber development associated with the regulation of DSTN.


Identification of biomarkers for childhood obesity based on expressional correlation and functional similarity.

  • Zheng-Lun Zhu‎ et al.
  • Molecular medicine reports‎
  • 2018‎

The aim of the current study was to identify potential biomarkers of childhood obesity, and investigate molecular mechanisms and candidate agents in order to improve therapeutic strategies for childhood obesity. The GSE9624 gene expression profile was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) in omental adipose tissues were analyzed with limma package by comparing samples from obese and normal control children. Two‑way hierarchical clustering was applied using the pheatmap package. The co‑expression (CE) analysis was performed using online CoExpress software. Subsequent to functional classification via the GOSim package, the gene network enriched by DEGs was visualized using the Cytoscape package. The codon usage bias of the DEGs was then examined using the CAI program from the European Molecular Biology Open Software Suite. In total, 583 DEGs (273 upregulated genes and 310 downregulated genes) were observed in the omental adipose tissues between samples from obese and normal control children. Hierarchical clustering identified a significant difference between samples from obese and normal control children. Subsequent to CE analysis, 130 DEGs, which were classified into 4 clusters, were selected. The following 3 upregulated and 2 downregulated genes were identified to be significant: Upregulated genes, microtubule‑associated protein tau (MAPT), destrin (actin depolymerizing factor) (DSTN) and spectrin, β, non‑erythrocytic 1 (SPTBN1); downregulated genes, Rho/Rac guanine nucleotide exchange factor 2 (ARHGEF2) and spindle and kinetochore associated complex subunit 1 (SKA1). The top 3 amino acids were identified to be glycine, leucine and serine with a high bias. The DEGs MAPT, DSTN, SPTBN1, ARHGEF2 and SKA1 are suggested to be candidate biomarkers for childhood obesity.


Neuroprotective Effects of Asparagus officinalis Stem Extract in Transgenic Mice Overexpressing Amyloid Precursor Protein.

  • Zhanglong Peng‎ et al.
  • Journal of immunology research‎
  • 2021‎

To mimic Alzheimer's disease, transgenic mice overexpressing the amyloid precursor protein (APP) were used in this study. We hypothesize that the neuroprotective effects of ETAS®50, a standardized extract of Asparagus officinalis stem produced by Amino Up Co., Ltd. (Sapporo, Japan), are linked to the inhibition of the apoptosis cascade through an enhancement of the stress-response proteins: heat shock proteins (HSPs). APP-overexpressing mice (double-transgenic APP and PS1 mouse strains with a 129s6 background), ages 6-8 weeks old, and weighing 20-24 grams were successfully bred in our laboratory. The animals were divided into 5 groups. APP-overexpressing mice and wild-type (WT) mice were pretreated with ETAS®50 powder (50% elemental ETAS and 50% destrin) at 200 mg/kg and 1000 mg/kg body weight. Saline, the vehicle for ETAS®50, was administered in APP-overexpressing mice and WT mice. ETAS®50 and saline were administered by gavage daily for 1 month. Cognitive assessments, using the Morris Water Maze, demonstrated that memory was recovered following ETAS®50 treatment as compared to nontreated APP mice. At euthanization, the brain was removed and HSPs, amyloid β, tau proteins, and caspase-3 were evaluated through immunofluorescence staining with the appropriate antibodies. Our data indicate that APP mice have cognitive impairment along with elevated amyloid β, tau proteins, and caspase-3. ETAS®50 restored cognitive function in these transgenic mice, increased both HSP70 and HSP27, and attenuated pathogenic level of amyloid β, tau proteins, and caspsase-3 leading to neuroprotection. Our results were confirmed with a significant increase in HSP70 gene expression in the hippocampus.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: