Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 6,172 papers

Defense Mechanisms of Hepatocytes Against Burkholderia pseudomallei.

  • Antje Bast‎ et al.
  • Frontiers in microbiology‎
  • 2011‎

The Gram-negative facultative intracellular rod Burkholderia pseudomallei causes melioidosis, an infectious disease with a wide range of clinical presentations. Among the observed visceral abscesses, the liver is commonly affected. However, neither this organotropism of B. pseudomallei nor local hepatic defense mechanisms have been thoroughly investigated so far. Own previous studies using electron microscopy of the murine liver after systemic infection of mice indicated that hepatocytes might be capable of killing B. pseudomallei. Therefore, the aim of this study was to further elucidate the interaction of B. pseudomallei with these cells and to analyze the role of hepatocytes in anti-B. pseudomallei host defense. In vitro studies using the human hepatocyte cell line HepG2 revealed that B. pseudomallei can invade these cells. Subsequently, B. pseudomallei is able to escape from the vacuole, to replicate within the cytosol of HepG2 cells involving its type 3 and type 6 secretion systems, and to induce actin tail formation. Furthermore, stimulation of HepG2 cells showed that IFNγ can restrict growth of B. pseudomallei in the early and late phase of infection whereas the combination of IFNγ, IL-1β, and TNFα is required for the maximal antibacterial activity. This anti-B. pseudomallei defense of HepG2 cells did not seem to be mediated by inducible nitric oxide synthase-derived nitric oxide or NADPH oxidase-derived superoxide. In summary, this is the first study describing B. pseudomallei intracellular life cycle characteristics in hepatocytes and showing that IFNγ-mediated, but nitric oxide- and reactive oxygen species-independent, effector mechanisms are important in anti-B. pseudomallei host defense of hepatocytes.


Mechanisms of beauvericin toxicity and antioxidant cellular defense.

  • Beatriz Mallebrera‎ et al.
  • Toxicology letters‎
  • 2016‎

Beauvericin (BEA) is a secondary metabolite produced by many species of fungus Fusarium. This study determines the injury (cell viability, cell proliferation, mitochondrial membrane potential, cell death and DNA damage) and the intracellular defense mechanisms (catalase and superoxide dismutase) in Chinese Hamster ovary (CHO-K1) cells after BEA exposure. The results obtained in this study demonstrated that BEA induces cytotoxicity in a dose- and time-dependent manner in CHO-K1 cells. Moreover, disruption in mitochondrial enzymatic activity and cell proliferation has been observed after BEA exposure, which can lead or be consequence of cell death. BEA inhibits cell proliferation by arresting cells in G0/G1 and increasing apoptosis. Moreover, at higher exposure times, BEA induces differentiation of CHO-K1 cells through G2/M arrest, preventing that cells entry into mitosis. DNA strand breaks were observed at 1 μM after 24h of exposure. On the other hand, the SOD and CAT activities were increased after BEA exposure and as a defense system they could contribute to eliminate damage produced by BEA and oxidants products generated in CHO-K1 cells.


Defense Mechanisms and Treatment Response in Depressed Inpatients.

  • Yves de Roten‎ et al.
  • Frontiers in psychology‎
  • 2021‎

The study investigated the extent to which defensive functioning and defense mechanisms predict clinically meaningful symptomatic improvement within brief psychodynamic psychotherapy for recurrent and chronic depression in an inpatient setting. Treatment response was defined as a reduction in symptom severity of 46% or higher from the baseline score on the Montgomery-Asberg Depression Rating Scale (MADRS). A subsample of 41 patients (19 responders and 22 non-responders) from an RCT was included. For each case, two sessions (the second and the penultimate) of brief inpatient psychodynamic psychotherapy (a manualized 12-session therapy program developed in Lausanne) were transcribed and then coded using the Defense Mechanism Rating Scales (DMRS) and the Psychotic Defense Mechanism Rating Scales (P-DMRS), an additional scale developed to study psychotic defenses. Results showed that defensive functioning and mature and immature defense changed during psychotherapy and predicted treatment response. Patient's defenses observed throughout therapy also predicted treatment response at 12-month follow-up. The addition of psychotic defenses allows a better prediction of the treatment response. Overall, these results are in line with previous research and provide further validation of defensive functioning as a predictor of outcomes and a mechanism of change in psychotherapy.


Coordination of frontline defense mechanisms under severe oxidative stress.

  • Amardeep Kaur‎ et al.
  • Molecular systems biology‎
  • 2010‎

Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations--this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of gamma rays.


Chemical Defense Mechanisms and Ecological Implications of Indo-Pacific Holothurians.

  • Elham Kamyab‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Sea cucumbers are slow-moving organisms that use morphological, but also a diverse combination of chemical defenses to improve their overall fitness and chances of survival. Since chemical defense compounds are also of great pharmaceutical interest, we pinpoint the importance of biological screenings that are a relatively fast, informative and inexpensive way to identify the most bioactive organisms prior to further costly and elaborate pharmacological screenings. In this study, we investigated the presence and absence of chemical defenses of 14 different sea cucumber species from three families (Holothuriidae, Stichopodidae and Synaptidae) against ecological factors such as predation and pathogenic attacks. We used the different sea cucumber crude extracts as well as purified fractions and pure saponin compounds in a portfolio of ecological activity tests including fish feeding assays, cytotoxicity tests and antimicrobial assays against environmental pathogenic and non-pathogenic bacteria. Furthermore, we quantified and correlated the concentrations of sea cucumber characteristic saponin compounds as effective chemical defensive compounds in all 14 crude extracts by using the vanillin-sulfuric acid test. The initial results revealed that among all tested sea cucumber species that were defended against at least one ecological threat (predation and/or bacterial attack), Bohadschiaargus, Stichopuscholoronotus and Holothuria fuscopunctata were the three most promising bioactive sea cucumber species. Therefore, following further fractionation and purification attempts, we also tested saponin-containing butanol fractions of the latter, as well as two purified saponin species from B. argus. We could demonstrate that both, the amount of saponin compounds and their structure likely play a significant role in the chemical defense strategy of the sea cucumbers. Our study concludes that the chemical and morphological defense mechanisms (and combinations thereof) differ among the ecological strategies of the investigated holothurian species in order to increase their general fitness and level of survival. Finally, our observations and experiments on the chemical ecology of marine organisms can not only lead to a better understanding of their ecology and environmental roles but also can help in the better selection of bioactive organisms/compounds for the discovery of novel, pharmacologically active secondary metabolites in the near future.


Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs.

  • Teresa Donze-Reiner‎ et al.
  • BMC plant biology‎
  • 2017‎

Aphid infestation of switchgrass (Panicum virgatum) has the potential to reduce yields and biomass quality. Although switchgrass-greenbug (Schizaphis graminum; GB) interactions have been studied at the whole plant level, little information is available on plant defense responses at the molecular level.


Tiger Swallowtail Genome Reveals Mechanisms for Speciation and Caterpillar Chemical Defense.

  • Qian Cong‎ et al.
  • Cell reports‎
  • 2015‎

Predicting phenotype from genotype represents the epitome of biological questions. Comparative genomics of appropriate model organisms holds the promise of making it possible. However, the high heterozygosity of many Eukaryotes currently prohibits assembling their genomes. Here, we report the 376 Mb genome sequence of Papilio glaucus (Pgl), the first sequenced genome from the Papilionidae family. We obtained the genome from a wild-caught specimen using a cost-effective strategy that overcomes the high (2%) heterozygosity problem. Comparative analyses suggest the molecular bases of various phenotypic traits, including terpene production in the Papilionidae-specific organ, osmeterium. Comparison of Pgl and Papilio canadensis transcriptomes reveals mutation hotspots (4% genes) associated with their divergence: four key circadian clock proteins are enriched in inter-species mutations and likely responsible for the difference in pupal diapause. Finally, the Pgl genome confirms Papilio appalachiensis as a hybrid of Pgl and Pca, but suggests it inherited 3/4 of its genes from Pca.


Roles of small RNAs in the immune defense mechanisms of crustaceans.

  • Yaodong He‎ et al.
  • Molecular immunology‎
  • 2015‎

Small RNAs, 21-24 nucleotides in length, are non-coding RNAs found in most multicellular organisms, as well as in some viruses. There are three main types of small RNAs including microRNA (miRNA), small-interfering RNA (siRNA), and piwi-interacting RNA (piRNA). Small RNAs play key roles in the genetic regulation of eukaryotes; at least 50% of all eukaryote genes are the targets of small RNAs. In recent years, studies have shown that some unique small RNAs are involved in the immune response of crustaceans, leading to lower or higher immune responses to infections and diseases. SiRNAs could be used as therapy for virus infection. In this review, we provide an overview of the diverse roles of small RNAs in the immune defense mechanisms of crustaceans.


Humoral and Cellular Defense Mechanisms in Rebel Workers of Apis mellifera.

  • Aneta Strachecka‎ et al.
  • Biology‎
  • 2021‎

The physiological state of an insect depends on efficiently functioning immune mechanisms such as cellular and humoral defenses. However, compounds participating in these mechanisms also regulate reproductive caste formation and are responsible for reproductive division of labor as well as for labor division in sterile workers. Divergent reaction of the same genotype yielding reproductive queens and worker castes led to shaping of the physiological and behavioral plasticity of sterile or reproductive workers. Rebels that can lay eggs while maintaining tasks inside and outside the colony exhibit both queen and worker traits. So, we expected that the phagocytic index, JH3 titer, and Vg concentration would be higher in rebels than in normal workers and would increase with their age. We also assumed that the numbers of oenocytes and their sizes would be greater in rebels than in normal workers. The rebels and the normal workers were collected at the age of 1, 7, 14, and 21 days, respectively. Hemolymph and fat bodies were collected for biochemical and morphological analyses. The high levels of JH, Vg, and the phagocytic index, as well as increased numbers and sizes of oenocytes in the fat body cells demonstrate the physiological and phenotypic adaptation of rebels to the eusocial life of honeybees.


Phage-Borne Depolymerases Decrease Klebsiella pneumoniae Resistance to Innate Defense Mechanisms.

  • Grazyna Majkowska-Skrobek‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Klebsiella pneumoniae produces capsular polysaccharides that are a crucial virulence factor protecting bacteria against innate response mechanisms of the infected host. Simultaneously, those capsules are targeted by specific bacteriophages equipped with virion-associated depolymerases able to recognize and degrade these polysaccharides. We show that Klebsiella phage KP32 produces two capsule depolymerases, KP32gp37 and KP32gp38, with a high specificity for the capsular serotypes K3 and K21, respectively. Together, they determine the host spectrum of bacteriophage KP32, which is limited to strains with serotype K3 and K21. Both depolymerases form a trimeric β-structure, display moderate thermostability and function optimally under neutral to alkaline conditions. We show that both depolymerases strongly affect the virulence of K. pneumoniae with the corresponding K3 and K21 capsular serotypes. Capsule degradation renders the otherwise serum-resistant cells more prone to complement-mediated killing with up to four log reduction in serum upon exposure to KP32gp37. Decapsulated strains are also sensitized for phagocytosis with a twofold increased uptake. In addition, the intracellular survival of phagocytized cells in macrophages was significantly reduced when bacteria were previously exposed to the capsule depolymerases. Finally, depolymerase application considerably increases the lifespan of Galleria mellonella larvae infected with K. pneumoniae in a time- and strain-dependent manner. In sum, capsule depolymerases are promising antivirulence compounds that act by defeating a major resistance mechanism of K. pneumoniae against the innate immunity.


Tuneable poration: host defense peptides as sequence probes for antimicrobial mechanisms.

  • Marc-Philipp Pfeil‎ et al.
  • Scientific reports‎
  • 2018‎

The spread of antimicrobial resistance stimulates discovery strategies that place emphasis on mechanisms circumventing the drawbacks of traditional antibiotics and on agents that hit multiple targets. Host defense peptides (HDPs) are promising candidates in this regard. Here we demonstrate that a given HDP sequence intrinsically encodes for tuneable mechanisms of membrane disruption. Using an archetypal HDP (cecropin B) we show that subtle structural alterations convert antimicrobial mechanisms from native carpet-like scenarios to poration and non-porating membrane exfoliation. Such distinct mechanisms, studied using low- and high-resolution spectroscopy, nanoscale imaging and molecular dynamics simulations, all maintain strong antimicrobial effects, albeit with diminished activity against pathogens resistant to HDPs. The strategy offers an effective search paradigm for the sequence probing of discrete antimicrobial mechanisms within a single HDP.


Cryptococcus neoformans is resistant to surfactant protein A mediated host defense mechanisms.

  • Steven S Giles‎ et al.
  • PloS one‎
  • 2007‎

Initiation of a protective immune response to infection by the pathogenic fungus Cryptococcus neoformans is mediated in part by host factors that promote interactions between immune cells and C. neoformans yeast. Surfactant protein A (SP-A) contributes positively to pulmonary host defenses against a variety of bacteria, viruses, and fungi in part by promoting the recognition and phagocytosis of these pathogens by alveolar macrophages. In the present study we investigated the role of SP-A as a mediator of host defense against the pulmonary pathogen, C. neoformans. Previous studies have shown that SP-A binds to acapsular and minimally encapsulated strains of C. neoformans. Using in vitro binding assays we confirmed that SP-A does not directly bind to a fully encapsulated strain of C. neoformans (H99). However, we observed that when C. neoformans was incubated in bronchoalveolar fluid, SP-A binding was detected, suggesting that another alveolar host factor may enable SP-A binding. Indeed, we discovered that SP-A binds encapsulated C. neoformans via a previously unknown IgG dependent mechanism. The consequence of this interaction was the inhibition of IgG-mediated phagocytosis of C. neoformans by alveolar macrophages. Therefore, to assess the contribution of SP-A to the pulmonary host defenses we compared in vivo infections using SP-A null mice (SP-A-/-) and wild-type mice in an intranasal infection model. We found that the immune response assessed by cellular counts, TNFalpha cytokine production, and fungal burden in lungs and bronchoalveolar lavage fluids during early stages of infection were equivalent. Furthermore, the survival outcome of C. neoformans infection was equivalent in SP-A-/- and wild-type mice. Our results suggest that unlike a variety of bacteria, viruses, and other fungi, progression of disease with an inhalational challenge of C. neoformans does not appear to be negatively or positively affected by SP-A mediated mechanisms of pulmonary host defense.


Quantitative Proteomic Analysis Provides Insights into Rice Defense Mechanisms against Magnaporthe oryzae.

  • Siyuan Lin‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Blast disease is one of the major rice diseases, and causes nearly 30% annual yield loss worldwide. Resistance genes that have been cloned, however, are effective only against specific strains. In cultivation practice, broad-spectrum resistance to various strains is highly valuable, and requires researchers to investigate the basal defense responses that are effective for diverse types of pathogens. In this study, we took a quantitative proteomic approach and identified 634 rice proteins responsive to infections by both Magnaporthe oryzae strains Guy11 and JS153. These two strains have distinct pathogenesis mechanisms. Therefore, the common responding proteins represent conserved basal defense to a broad spectrum of blast pathogens. Gene ontology analysis indicates that the “responding to stimulus” biological process is explicitly enriched, among which the proteins responding to oxidative stress and biotic stress are the most prominent. These analyses led to the discoveries of OsPRX59 and OsPRX62 that are robust callose inducers, and OsHSP81 that is capable of inducing both ROS production and callose deposition. The identified rice proteins and biological processes may represent a conserved rice innate immune machinery that is of great value for breeding broad-spectrum resistant rice in the future.


Gram-positive anaerobic cocci guard skin homeostasis by regulating host-defense mechanisms.

  • Danique A van der Krieken‎ et al.
  • iScience‎
  • 2023‎

In atopic dermatitis (AD), chronic skin inflammation is associated with skin barrier defects and skin microbiome dysbiosis including a lower abundance of Gram-positive anaerobic cocci (GPACs). We here report that, through secreted soluble factors, GPAC rapidly and directly induced epidermal host-defense molecules in cultured human keratinocytes and indirectly via immune-cell activation and cytokines derived thereof. Host-derived antimicrobial peptides known to limit the growth of Staphylococcus aureus-a skin pathogen involved in AD pathology-were strongly upregulated by GPAC-induced signaling through aryl hydrocarbon receptor (AHR)-independent mechanisms, with a concomitant AHR-dependent induction of epidermal differentiation genes and control of pro-inflammatory gene expression in organotypic human epidermis. By these modes of operandi, GPAC may act as an "alarm signal" and protect the skin from pathogenic colonization and infection in the event of skin barrier disruption. Fostering growth or survival of GPAC may be starting point for microbiome-targeted therapeutics in AD.


Oxidative damage and cellular defense mechanisms in sea urchin models of aging.

  • Colin Du‎ et al.
  • Free radical biology & medicine‎
  • 2013‎

The free radical, or oxidative stress, theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging because of the existence of species with tremendously different natural life spans, including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity, and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus, and Strongylocentrotus purpuratus, which has an intermediate life span. Levels of protein carbonyls and 4-hydroxynonenal measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2'-deoxyguanosine measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age pigment lipofuscin, measured in muscle, nerve, and esophagus, increased with age; however, it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species; however, further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age, and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage.


Association of Omnivorous and Vegetarian Diets With Antioxidant Defense Mechanisms in Men.

  • Naiara Cinegaglia‎ et al.
  • Journal of the American Heart Association‎
  • 2020‎

Background Evidence that a vegetarian diet rich in antioxidants contributes to cardiovascular health are growing, however, the underlying molecular mechanisms remain unknown. HO-1 (heme-oxygenase-1), a marker of adaptive response, is protective against oxidative stress and has shown cardioprotective effects. Therefore, we evaluated circulating HO-1 levels and the effect of plasma from omnivorous and vegetarians in endothelial cells (human umbilical vein endothelial cells) on modulating NRF2 (nuclear factor erythroid 2-like 2)/HO-1 and nitric oxide production. Methods and Results From 745 participants initially recruited, 44 omnivorous and 44 vegetarian men matched by age and absence of cardiovascular risk factors and diseases were included in this study. Circulating HO-1 was measured using ELISA and human umbilical vein endothelial cells were incubated with plasma from omnivorous and vegetarians. Higher circulating HO-1 concentrations were found in omnivorous compared with vegetarians. Plasma from omnivorous and not from vegetarians induced NRF2/HO-1 and nitric oxide production in human umbilical vein endothelial cells, and increased reactive oxygen species production and caspase activity after incubation with stressor stimulus. Conclusions We suggest that HO-1 induction in omnivorous may indicate a pro-oxidative status since HO-1 is activated under oxidative stress a state not seen in vegetarians.


Beauveria bassiana rewires molecular mechanisms related to growth and defense in tomato.

  • Silvia Proietti‎ et al.
  • Journal of experimental botany‎
  • 2023‎

Plant roots can exploit beneficial associations with soil-inhabiting microbes, promoting growth and expanding the immune capacity of the host plant. In this work, we aimed to provide new information on changes occurring in tomato interacting with the beneficial fungus Beauveria bassiana. The tomato leaf proteome revealed perturbed molecular pathways during the establishment of the plant-fungus relationship. In the early stages of colonization (5-7 d), proteins related to defense responses to the fungus were down-regulated and proteins related to calcium transport were up-regulated. At later time points (12-19 d after colonization), up-regulation of molecular pathways linked to protein/amino acid turnover and to biosynthesis of energy compounds suggests beneficial interaction enhancing plant growth and development. At the later stage, the profile of leaf hormones and related compounds was also investigated, highlighting up-regulation of those related to plant growth and defense. Finally, B. bassiana colonization was found to improve plant resistance to Botrytis cinerea, impacting plant oxidative damage. Overall, our findings further expand current knowledge on the possible mechanisms underlying the beneficial role of B. bassiana in tomato plants.


Oxidized Cell-Free DNA Role in the Antioxidant Defense Mechanisms under Stress.

  • A D Filev‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

The present study focuses on the investigation of the oxidized cell-free DNA (cfDNA) properties in several experimental models, including cultured cerebellum cells, peripheral blood lymphocytes (PBL), plasma, and hippocampus under an acute and chronic unpredictable stress model in rats. Firstly, our study shows that Spectrum Green fluorescence-labeled oxidized cfDNA fragments were transferred into the cytoplasm of 80% of the cerebellum culture cells; meanwhile, the nonoxidized cfDNA fragments do not pass into the cells. Oxidized cfDNA stimulates the antioxidant mechanisms and induction of transcription factor NRF2 expression, followed by an activation of NRF2 signaling pathway genes-rise of Nrf2 and Hmox1 gene expression and consequently NRF2 protein synthesis. Secondly, we showed that stress increases plasma cfDNA concentration in rats corresponding with the duration of the stress exposure. At the same time, our study did not reveal any significant changes of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) level in PBL of rats under acute or chronic stress, probably due to the significantly increased Nrf2 expression, that we found in such conditions. 8-oxodG is one of the most reliable markers of DNA oxidation. We also found an increased level of 8-oxodG in the hippocampal homogenates and hippocampal dentate gyrus in rats subjected to acute and chronic stress. Taken together, our data shows that oxidized cfDNA may play a significant role in systemic and neuronal physiological mechanisms of stress and adaptation.


Polystyrene nanoparticles induce concerted response of plant defense mechanisms in plant cells.

  • Sylwia Adamczyk‎ et al.
  • Scientific reports‎
  • 2023‎

Recent advances in knowledge suggest that micro- and nanoplastics pose a threat to plant health, however, the responses of plants to this stressor are not well-known. Here we examined the response of plant cell defence mechanisms to nanoparticles of commonly used plastic, polystyrene. We used plant cell cultures of widely cultivated plants, the monocots wheat and barley (Triticum aestivum L., Hordeum vulgare L.) and the dicots carrot and tomato (Daucus carota L., Solanum lycopersicum L.). We measured the activities of enzymes involved in the scavenging of reactive oxygen species and nonenzymatic antioxidants and we estimated potential damages in plant cell structures and functioning via lipid peroxidation and DNA methylation levels. Our results demonstrate that the mode of action of polystyrene nanoparticles on plant cells involves oxidative stress. However, the changes in plant defence mechanisms are dependent on plant species, exposure time and nanoplastic concentrations. In general, both monocots showed similar responses to nanoplastics, but the carrot followed more the response of monocots than a second dicot, a tomato. Higher H2O2, lipid peroxidation and lower enzyme activities scavenging H2O2 suggest that tomato cells may be more susceptible to polystyrene-induced stress. In conclusion, polystyrene nanoplastics induce oxidative stress and the response of the plant defense mechanisms involving several chain reactions leading to oxidoreductive homeostasis.


Mechanisms of defense against products of cysteine catabolism in the nematode Caenorhabditis elegans.

  • Leonid Livshits‎ et al.
  • Free radical biology & medicine‎
  • 2017‎

Cysteine catabolism presents cells with a double-edged sword. On the one hand, cysteine degradation provides cells with essential molecules such as taurine and sulfide. The formation of sulfide in cells is thought to regulate important and diverse physiological processes including blood circulation, synaptic activity and inflammation. On the other hand, the catabolism of cysteine by gut microbiota can release high levels of sulfide that may underlie the development or relapse of ulcerative colitis, an inflammatory bowel disease affecting millions of people worldwide. Here, we have used the nematode C. elegans to explore how cells tolerate high levels of sulfide produced by cysteine degradation in bacteria. We have identified mutations in genes coding for thioredoxin family proteins, mitochondrial proteins, and collagens that confer tolerance to sulfide toxicity. Exposure to sulfide induces the unfolded protein response in the endoplasmic reticulum and mitochondria. Moreover, our results suggest that sulfide toxicity is mediated by reactive oxygen species (ROS). Indeed, pre-treatment of worms with antioxidants increases their tolerance to sulfide toxicity. Intriguingly, sub-toxic levels of the superoxide generator paraquat can also increase the tolerance of worms to sulfide. Therefore, it appears that activation of ROS detoxification pathway prior to the exposure to sulfide, can increase the tolerance to sulfide toxicity. Our results suggest that these detoxification pathways are mediated by the hypoxia inducible factor HIF-1. Finally, we show that sulfide resistance varies among wild C. elegans and other nematode species, suggesting that tolerance to sulfide was naturally selected in certain habitats.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: