Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 454 papers

Decorin regulates cartilage pericellular matrix micromechanobiology.

  • Daphney R Chery‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2021‎

In cartilage tissue engineering, one key challenge is for regenerative tissue to recapitulate the biomechanical functions of native cartilage while maintaining normal mechanosensitive activities of chondrocytes. Thus, it is imperative to discern the micromechanobiological functions of the pericellular matrix, the ~ 2-4 µm-thick domain that is in immediate contact with chondrocytes. In this study, we discovered that decorin, a small leucine-rich proteoglycan, is a key determinant of cartilage pericellular matrix micromechanics and chondrocyte mechanotransduction in vivo. The pericellular matrix of decorin-null murine cartilage developed reduced content of aggrecan, the major chondroitin sulfate proteoglycan of cartilage and a mild increase in collagen II fibril diameter vis-à-vis wild-type controls. As a result, decorin-null pericellular matrix showed a significant reduction in micromodulus, which became progressively more pronounced with maturation. In alignment with the defects of pericellular matrix, decorin-null chondrocytes exhibited decreased intracellular calcium activities, [Ca2+]i, in both physiologic and osmotically evoked fluidic environments in situ, illustrating impaired chondrocyte mechanotransduction. Next, we compared [Ca2+]i activities of wild-type and decorin-null chondrocytes following enzymatic removal of chondroitin sulfate glycosaminoglycans. The results showed that decorin mediates chondrocyte mechanotransduction primarily through regulating the integrity of aggrecan network, and thus, aggrecan-endowed negative charge microenvironment in the pericellular matrix. Collectively, our results provide robust genetic and biomechanical evidence that decorin is an essential constituent of the native cartilage matrix, and suggest that modulating decorin activities could improve cartilage regeneration.


Stromal expression of decorin, Semaphorin6D, SPARC, Sprouty1 and Tsukushi in developing prostate and decreased levels of decorin in prostate cancer.

  • Alexander Henke‎ et al.
  • PloS one‎
  • 2012‎

During prostate development, mesenchymal-epithelial interactions regulate organ growth and differentiation. In adult prostate, stromal-epithelial interactions are important for tissue homeostasis and also play a significant role in prostate cancer. In this study we have identified molecules that show a mesenchymal expression pattern in the developing prostate, and one of these showed reduced expression in prostate cancer stroma.


Decorin modulates collagen matrix assembly and mineralization.

  • Yoshiyuki Mochida‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2009‎

Decorin (DCN) is one of the major matrix proteoglycans in bone. To investigate the role of DCN in matrix mineralization, the expression of DCN in MC3T3-E1 (MC) cell cultures and the phenotypes of MC-derived clones expressing higher (sense; S-DCN) or lower (antisense; AS-DCN) levels of DCN were characterized. DCN expression was significantly decreased as the mineralized nodules were formed and expanded in vitro. In S-DCN clones, in vitro matrix mineralization was inhibited, whereas in AS-DCN clones, mineralization was accelerated. At the microscopic level, collagen fibers in S-DCN clones were thinner while those of AS-DCN clones were thicker and lacked directionality compared to the controls. At the ultrastructural level, the collagen fibrils in S-DCN clones were markedly thinner, whereas those of AS-DCN clones were larger and irregular in shape. The results from Fourier transform infrared spectroscopy analysis demonstrated that in AS-DCN cultures the mineral content was greater but the crystallinity of mineral was poorer than that of the controls at early stage of mineralization. The in vivo transplantation assay demonstrated that no mineralized matrices were formed in S-DCN transplants, whereas they were readily detected in AS-DCN transplants at 3 weeks of transplantation. The areas of bone-like matrices in AS-DCN transplants were significantly greater than the controls at 3 weeks but became comparable at 5 weeks. The bone-like matrices in AS-DCN transplants exhibited woven bone-like non-lamellar structure while the lamellar bone-like structure was evident in the control transplants. These results suggest that DCN regulates matrix mineralization by modulating collagen assembly.


Decreased decorin expression in the tumor microenvironment.

  • Benedek Bozoky‎ et al.
  • Cancer medicine‎
  • 2014‎

Decorin is a small leucine-rich proteoglycan, synthesized and deposited by fibroblasts in the stroma where it binds to collagen I. It sequesters several growth factors and antagonizes numerous members of the receptor tyrosine kinase family. In experimental murine systems, it acted as a potent tumor suppressor. Examining the Human Protein Atlas online database of immunostained tissue samples we have surveyed decorin expression in silico in several different tumor types, comparing them with corresponding normal tissues. We found that decorin is abundantly secreted and deposited in normal connective tissue but its expression is consistently decreased in the tumor microenvironment. We developed a software to quantitate the difference in expression. The presence of two closely related proteoglycans in the newly formed tumor stroma indicated that the decreased decorin expression was not caused by the delay in proteoglycan deposition in the newly formed connective tissue surrounding the tumor.


Decorin modulates matrix mineralization in vitro.

  • Yoshiyuki Mochida‎ et al.
  • Biochemical and biophysical research communications‎
  • 2003‎

Decorin (DCN), a member of small leucine-rich proteoglycans, is known to modulate collagen fibrillogenesis. In order to investigate the potential roles of DCN in collagen matrix mineralization, several stable osteoblastic cell clones expressing higher (sense-DCN, S-DCN) and lower (antisense-DCN, As-DCN) levels of DCN were generated and the mineralized nodules formed by these clones were characterized. In comparison with control cells, the onset of mineralization by S-DCN clones was significantly delayed; whereas it was markedly accelerated and the number of mineralized nodules was significantly increased in As-DCN clones. The timing of mineralization was inversely correlated with the level of DCN synthesis. In these clones, the patterns of cell proliferation and differentiation appeared unaffected. These results suggest that DCN may act as an inhibitor of collagen matrix mineralization, thus modulating the timing of matrix mineralization.


Protective Role of Decorin in Primary Hepatocellular Carcinoma.

  • Andrea Reszegi‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Hepatocellular carcinoma (HCC) represents one of the most frequent type of primary liver cancers. Decorin, a small leucine-rich proteoglycan of the extracellular matrix, represents a powerful tumor cell growth and migration inhibitor by hindering receptor tyrosine kinases and inducing p21WAF1/CIP1. In this study, first we tested decorin expression in HCCs utilizing in silico data, as well as formalin fixed paraffin embedded tissue samples of HCC in a tissue microarray (TMA). In silico data revealed that DCN/SMA mRNA ratio is decreased in HCC compared to normal tissues and follows the staging of the disease. Among TMA samples, 52% of HCCs were decorin negative, 33% exhibited low, and 15% high decorin levels corroborating in silico results. In addition, applying conditioned media of hepatoma cells inhibited decorin expression in LX2 stellate cells in vitro. These results raise the possibility that decorin acts as a tumor suppressor in liver cancer and that is why its expression decreased in HCCs. To further test the protective role of decorin, the proteoglycan was overexpressed in a mouse model of hepatocarcinogenesis evoked by thioacetamide (TA). After transfection, the excessive proteoglycan amount was mainly detected in hepatocytes around the central veins. Upon TA-induced hepatocarcinogenesis, the highest tumor count was observed in mice with no decorin production. Decorin gene delivery reduced tumor formation, in parallel with decreased pEGFR, increased pIGF1R levels, and with concomitant induction of pAkt (T308) and phopho-p53, suggesting a novel mechanism of action. Our results suggest the idea that decorin can be utilized as an anti-cancer agent.


Age-dependent alterations of decorin glycosaminoglycans in human skin.

  • Yong Li‎ et al.
  • Scientific reports‎
  • 2013‎

Proteoglycans, a family of glycosaminoglycan (GAG) conjugated proteins, are important constituents of human skin connective tissue (dermis) and are essential for maintaining mechanical strength of the skin. Age-related alterations of dermal proteoglycans have not been fully elucidated. We quantified transcripts of 20 known interstitial proteoglycans in human skin and found that decorin was the most highly expressed. Decorin was predominantly produced by dermal fibroblasts. Decorin was localized in dermal extracellular matrix with GAG bound to type I collagen fibrils. Analysis of decorin extracted from young (21-30 years) and aged (>80 years) sun-protected human buttock skin revealed that decorin molecular size in aged skin is significantly smaller than in young skin. The average size of decorin protein did not alter, indicating size of GAG chain is reduced in aged, compared to young skin. This age-dependent alteration of decorin GAG may contribute to skin fragility of elderly people.


Decorin Protects Cardiac Myocytes against Simulated Ischemia/Reperfusion Injury.

  • Renáta Gáspár‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Search for new cardioprotective therapies is of great importance since no cardioprotective drugs are available on the market. In line with this need, several natural biomolecules have been extensively tested for their potential cardioprotective effects. Previously, we have shown that biglycan, a member of a diverse group of small leucine-rich proteoglycans, enhanced the expression of cardioprotective genes and decreased ischemia/reperfusion-induced cardiomyocyte death via a TLR-4 dependent mechanism. Therefore, in the present study we aimed to test whether decorin, a small leucine-rich proteoglycan closely related to biglycan, could exert cardiocytoprotection and to reveal possible downstream signaling pathways. Methods: Primary cardiomyocytes isolated from neonatal and adult rat hearts were treated with 0 (Vehicle), 1, 3, 10, 30 and 100 nM decorin as 20 h pretreatment and maintained throughout simulated ischemia and reperfusion (SI/R). In separate experiments, to test the mechanism of decorin-induced cardio protection, 3 nM decorin was applied in combination with inhibitors of known survival pathways, that is, the NOS inhibitor L-NAME, the PKG inhibitor KT-5823 and the TLR-4 inhibitor TAK-242, respectively. mRNA expression changes were measured after SI/R injury. Results: Cell viability of both neonatal and adult cardiomyocytes was significantly decreased due to SI/R injury. Decorin at 1, 3 and 10 nM concentrations significantly increased the survival of both neonatal and adult myocytes after SI/R. At 3nM (the most pronounced protective concentration), it had no effect on apoptotic rate of neonatal cardiac myocytes. No one of the inhibitors of survival pathways (L-NAME, KT-5823, TAK-242) influenced the cardiocytoprotective effect of decorin. MYND-type containing 19 (Zmynd19) and eukaryotic translation initiation factor 4E nuclear import factor 1 (Eif4enif1) were significantly upregulated due to the decorin treatment. In conclusion, this is the first demonstration that decorin exerts a direct cardiocytoprotective effect possibly independent of NO-cGMP-PKG and TLR-4 dependent survival signaling.


Decorin gene expression and its regulation in human keratinocytes.

  • Cristina Velez-DelValle‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.


An antimetastatic role for decorin in breast cancer.

  • Silvia Goldoni‎ et al.
  • The American journal of pathology‎
  • 2008‎

Decorin, a member of the small leucine-rich proteoglycan gene family, down-regulates members of the ErbB receptor tyrosine kinase family and attenuates their signaling, leading to growth inhibition. We investigated the effects of decorin on the growth of ErbB2-overexpressing mammary carcinoma cells in comparison with AG879, an established ErbB2 kinase inhibitor. Cell proliferation and anchorage-independent growth assays showed that decorin was a potent inhibitor of breast cancer cell growth and a pro-apoptotic agent. When decorin and AG879 were used in combination, the inhibitory effect was synergistic in proliferation assays but only additive in both colony formation and apoptosis assays. Active recombinant human decorin protein core, AG879, or a combination of both was administered systemically to mice bearing orthotopic mammary carcinoma xenografts. Primary tumor growth and metabolism were reduced by approximately 50% by both decorin and AG879. However, no synergism was observed in vivo. Decorin specifically targeted the tumor cells and caused a significant reduction of ErbB2 levels in the tumor xenografts. Most importantly, systemic delivery of decorin prevented metastatic spreading to the lungs, as detected by novel species-specific DNA detection and quantitative assays. In contrast, AG879 failed to have any effect. Our data support a role for decorin as a powerful and effective therapeutic agent against breast cancer due to its inhibition of both primary tumor growth and metastatic spreading.


Possible dual role of decorin in abdominal aortic aneurysm.

  • Koshiro Ueda‎ et al.
  • PloS one‎
  • 2015‎

Abdominal aortic aneurysm (AAA) is characterized by chronic inflammation, which leads to pathological remodeling of the extracellular matrix. Decorin, a small leucine-rich repeat proteoglycan, has been suggested to regulate inflammation and stabilize the extracellular matrix. Therefore, the present study investigated the role of decorin in the pathogenesis of AAA. Decorin was localized in the aortic adventitia under normal conditions in both mice and humans. AAA was induced in mice using CaCl2 treatment. Initially, decorin protein levels decreased, but as AAA progressed decorin levels increased in all layers. Local administration of exogenous decorin prevented the development of CaCl2-induced AAA. However, decorin was highly expressed in the degenerative lesions of human AAA walls, and this expression positively correlated with matrix metalloproteinase (MMP)-9 expression. In cell culture experiments, the addition of decorin inhibited secretion of MMP-9 in vascular smooth muscle cells, but had the opposite effect in macrophages. The results suggest that decorin plays a dual role in AAA. Adventitial decorin in normal aorta may protect against the development of AAA, but macrophages expressing decorin in AAA walls may facilitate the progression of AAA by up-regulating MMP-9 secretion.


An essential role for decorin in bladder cancer invasiveness.

  • Mohamed El Behi‎ et al.
  • EMBO molecular medicine‎
  • 2013‎

Muscle-invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49-I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49-I has lost tumour antigens and is insensitive to adaptive immune responses. Furthermore, we unravel a parallel mechanism developed by MB49-I to subvert its environment: de novo secretion of the proteoglycan decorin. We show that decorin overexpression in the MB49/MB49-I model is required for efficient progression, by promoting angiogenesis and tumour cell invasiveness. Finally, we show that these results are relevant to muscle-invasive human bladder carcinomas, which overexpress decorin together with angiogenesis- and adhesion/migration-related genes, and that decorin overexpression in the human bladder carcinoma cell line TCCSUP is required for efficient invasiveness in vitro. We thus propose decorin as a new therapeutic target for these aggressive tumours.


Relationship between increased serum & synovial fluid decorin levels & knee osteoarthritis.

  • Kenan Ozler‎
  • The Indian journal of medical research‎
  • 2021‎

Decorin is a proteoglycan that plays a role in the binding of collagen and has an important role in the pathogenesis of osteoarthritis (OA). This study was aimed to determine serum and synovial fluid decorin levels in patients with knee OA and to investigate whether these levels were associated with OA and the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) score.


Decorin binds myostatin and modulates its activity to muscle cells.

  • Takayuki Miura‎ et al.
  • Biochemical and biophysical research communications‎
  • 2006‎

Myostatin, a member of TGF-beta superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-beta and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn(2+) greater than 10microM, but not in the absence of Zn(2+). Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K(D)) of 2.02x10(-8)M and 9.36x10(-9)M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM.


Decorin deficiency promotes epithelial-mesenchymal transition and colon cancer metastasis.

  • Liping Mao‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2021‎

The tumor microenvironment encompasses a complex cellular network that includes cancer-associated fibroblasts, inflammatory cells, neo-vessels, and an extracellular matrix enriched in angiogenic growth factors. Decorin is one of the main components of the tumor stroma, but it is not expressed by cancer cells. Lack of this proteoglycan correlates with down-regulation of E-cadherin and induction of β-catenin signaling. In this study, we investigated the role of a decorin-deficient tumor microenvironment in colon carcinoma progression and metastasis. We utilized an established model of colitis-associated cancer by administering Azoxymethane/Dextran sodium sulfate to adult wild-type and Dcn-/- mice. We discovered that after 12 weeks, all the animals developed intestinal tumors independently of their genotype. However, the number of intestinal neoplasms was significantly higher in the Dcn-/- microenvironment vis-à-vis wild-type mice. Mechanistically, we found that under unchallenged basal conditions, the intestinal epithelium of the Dcn-/- mice showed a significant increase in the protein levels of epithelial-mesenchymal transition associated factors including Snail, Slug, Twist, and MMP2. In comparison, in the colitis-associated cancer evoked in the Dcn-/- mice, we found that intercellular adhesion molecule 1 (ICAM-1) was also significantly increased, in parallel with epithelial-mesenchymal transition signaling pathway-related factors. Furthermore, a combined Celecoxib/decorin treatment revealed a promising therapeutic efficacy in treating human colorectal cancer cells, in decorin-deficient animals. Collectively, our results shed light on colorectal cancer progression and provide a protein-based therapy, i.e., treatment using recombinant decorin, to target the tumor microenvironment.


Cardioprotective Effect of Decorin in Type 2 Diabetes.

  • Fuqiong Chen‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Cardiomyopathy is the leading cause of increased mortality in diabetes. In the present study, we investigated the effects of decorin (DCN) gene therapy on left ventricular function, cardiac inflammation and fibrosis in type 2 diabetes. Type 2 diabetes was induced in male Wistar rats by high fat diet (HFD, 60% of calories as fat) and STZ (20 mg/kg, intraperitoneal). Diabetic rats were divided into (n=6 for each group) the control group, the GFP-treated group and the DCN-treated group, received intravenous injection of saline solution, recombinant adeno-associated viral (rAAV)-GFP, and rAAV-DCN, respectively. We evaluated cardiac inflammation, fibrosis, left ventricular function at 6 months after gene delivery. Results turned out that rAAV-DCN treatment attenuated diabetic cardiomyopathy with improved LV function compared with control animals, which might be related to the reduced cardiac inflammation and fibrosis. These protective effects were associated with TGFβ1 pathway (ERK1/2 and smad-2) and NF-κB pathway, which may due to the decreased activation level of IGF-IR, increased expression of PKC-α and Hsp70. In conclusion, our results show that rAAV-mediated DCN therapy may be beneficial in the treatment of Diabetic Cardiomyopathy.


Decorin is a novel antagonistic ligand of the Met receptor.

  • Silvia Goldoni‎ et al.
  • The Journal of cell biology‎
  • 2009‎

Decorin, a member of the small leucine-rich proteoglycan gene family, impedes tumor cell growth by down-regulating the epidermal growth factor receptor. Decorin has a complex binding repertoire, thus, we predicted that decorin would modulate the bioactivity of other tyrosine kinase receptors. We discovered that decorin binds directly and with high affinity (K(d) = approximately 1.5 nM) to Met, the receptor for hepatocyte growth factor (HGF). Binding of decorin to Met is efficiently displaced by HGF and less efficiently by internalin B, a bacterial Met ligand. Interaction of decorin with Met induces transient receptor activation, recruitment of the E3 ubiquitin ligase c-Cbl, and rapid intracellular degradation of Met (half-life = approximately 6 min). Decorin suppresses intracellular levels of beta-catenin, a known downstream Met effector, and inhibits Met-mediated cell migration and growth. Thus, by antagonistically targeting multiple tyrosine kinase receptors, decorin contributes to reduction in primary tumor growth and metastastic spreading.


Decorin differentially modulates the activity of insulin receptor isoform A ligands.

  • Alaide Morcavallo‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2014‎

The proteoglycan decorin, a key component of the tumor stroma, regulates the action of several tyrosine-kinase receptors, including the EGFR, Met and the IGF-IR. Notably, the action of decorin in regulating the IGF-I system differs between normal and transformed cells. In normal cells, decorin binds with high affinity to both the natural ligand IGF-I and the IGF-I receptor (IGF-IR) and positively regulates IGF-IR activation and downstream signaling. In contrast, in transformed cells, decorin negatively regulates ligand-induced IGF-IR activation, downstream signaling and IGF-IR-dependent biological responses. Whether decorin may bind another member of the IGF-I system, the insulin receptor A isoform (IR-A) and its cognate ligands, insulin, IGF-II and proinsulin, have not been established. Here we show that decorin bound with high affinity insulin and IGF-II and, to a lesser extent, proinsulin and IR-A. We utilized as a cell model system mouse embryonic fibroblasts homozygous for a targeted disruption of the Igf1r gene (designated R(-) cells) which were stably transfected with a human construct harboring the IR-A isoform of the receptor. Using these R(-)/IR-A cells, we demonstrate that decorin did not affect ligand-induced phosphorylation of the IR-A but enhanced IR-A downregulation after prolonged IGF-II stimulation without affecting insulin and proinsulin-dependent effects on IR-A stability. In addition, decorin significantly inhibited IGF-II-mediated activation of the Akt pathways, without affecting insulin and proinsulin-dependent signaling. Notably, decorin significantly inhibited IGF-II-mediated cell proliferation of R(-)/IR-A cells but affected neither insulin- nor proinsulin-dependent mitogenesis. Collectively, these results suggest that decorin differentially regulates the action of IR-A ligands. Decorin preferentially inhibits IGF-II-mediated biological responses but does not affect insulin- or proinsulin-dependent signaling. Thus, decorin loss may contribute to tumor initiation and progression in malignant neoplasms which depend on an IGF-II/IR-A autocrine loop.


A novel ocular function for decorin in the aqueous humor outflow.

  • Magdalena Schneider‎ et al.
  • Matrix biology : journal of the International Society for Matrix Biology‎
  • 2021‎

Primary open-angle glaucoma, a neurodegenerative disorder characterized by degeneration of optic nerve axons, is a frequent cause of vision loss and blindness worldwide. Several randomized multicenter studies have identified intraocular pressure as the major risk factor for its development, caused by an increased outflow resistance to the aqueous humor within the trabecular meshwork. However, the molecular mechanism for increased outflow resistance in POAG has not been fully established. One of the proposed players is the pro-fibrotic transforming growth factor (TGF)-β2, which is found in higher amounts in the aqueous humor of patients with POAG. In this study we elucidated the role of decorin, a small leucine-rich proteoglycan and known antagonist of TGF-β, in the region of aqueous humor outflow tissue. Utilizing decorin deficient mice, we discovered that decorin modulated TGF-β signaling in the canonical outflow pathways and the lack of decorin in vivo caused an increase in intraocular pressure. Additionally, the Dcn-/- mice showed significant loss of optic nerve axons and morphological changes in the glial lamina, typical features of glaucoma. Moreover, using human trabecular meshwork cells we discovered that soluble decorin attenuated TGF-β2 mediated synthesis and expression of typical downstream target genes including CCN2/CTGF, FN and COL IV.  Finally, we found a negative reciprocal regulation of decorin and TGF-β, with a dramatic downregulation of decorin in the canonical outflow pathways of patients with primary open-angle glaucoma. Collectively, our results indicate that decorin plays an important role in the pathogenesis of primary open-angle glaucoma and offers novel perspectives in the treatment of this serious disease.


Decorin induced by progesterone plays a crucial role in suppressing endometriosis.

  • Yoshihiro Joshua Ono‎ et al.
  • The Journal of endocrinology‎
  • 2014‎

Dienogest, a synthetic progestin, has been shown to be effective against endometriosis, although it is still unclear as to how it affects the ectopic endometrial cells. Decorin has been shown to be a powerful endogenous tumor repressor acting in a paracrine fashion to limit tumor growth. Our objectives were to examine the direct effects of progesterone and dienogest on the in vitro proliferation of the human ectopic endometrial epithelial and stromal cell lines, and evaluate as to how decorin contributes to this effect. We also examined DCN mRNA expression in 50 endometriosis patients. The growth of both cell lines was inhibited in a dose-dependent manner by both decorin and dienogest. Using a chromatin immunoprecipitation assay, it was noted that progesterone and dienogest directly induced the binding of the decorin promoter in the EMOsis cc/TERT cells (immortalized human ovarian epithelial cells) and CRL-4003 cells (immortalized human endometrial stromal cells). Progesterone and dienogest also led to significant induced cell cycle arrest via decorin by promoting production of p21 in both cell lines in a dose-dependent manner. Decorin also suppressed the expression of MET in both cell lines. We confirmed that DCN mRNA expression in patients treated with dienogest was higher than that in the control group. In conclusion, decorin induced by dienogest appears to play a crucial role in suppressing endometriosis by exerting anti-proliferative effects and inducing cell cycle arrest via the production of p21 human ectopic endometrial cells and eutopic endometrial stromal cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: