Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,421 papers

Stable DNA transfection of the primitive protozoan pathogen Giardia lamblia.

  • C H Sun‎ et al.
  • Molecular and biochemical parasitology‎
  • 1998‎

We have developed a stable DNA transfection vector pRANneo for genetic manipulation of the primitive protozoan Giardia lamblia. pRANneo was constructed by replacing the protein coding region of a Giardia ran gene with a bacterial neomycin phosphotransferase gene (neo). This plasmid was electroporated into G. lamblia, and the transfectants were selected by G418. pRANneo replicated episomally to approximately 80 copies per G. lamblia trophozoite as demonstrated by dot hybridizations, Southern hybridizations and transformations of the DpnI-treated plasmids into Escherichia coli. pRANneo/GDHluc was then constructed by incorporation of a luciferase expression system into pRANneo to persistently express firefly luciferase in G. lamblia under G418 selection. The NEO and luciferase proteins were detected in the transfected G. lamblia cells by Western blottings. The level of luciferase activity and the plasmid copy number correlated with the concentration of G418. Removal of G418 from the transfectant culture resulted in gradual loss of the plasmid and luciferase activity. The stable DNA transfection system should provide a valuable tool for genetic studies of G. lamblia.


DNA Microarray Detection of 18 Important Human Blood Protozoan Species.

  • Mu-Xin Chen‎ et al.
  • PLoS neglected tropical diseases‎
  • 2016‎

Accurate detection of blood protozoa from clinical samples is important for diagnosis, treatment and control of related diseases. In this preliminary study, a novel DNA microarray system was assessed for the detection of Plasmodium, Leishmania, Trypanosoma, Toxoplasma gondii and Babesia in humans, animals, and vectors, in comparison with microscopy and PCR data. Developing a rapid, simple, and convenient detection method for protozoan detection is an urgent need.


Development of a method to extract protozoan DNA from black soil.

  • Kanako Yamanouchi‎ et al.
  • Parasite epidemiology and control‎
  • 2019‎

Microorganisms in environmental samples are identified by sequential screening, isolation, and culture steps, followed by the verification of physiological characteristics and morphological classification. Isolation and purification of Amoebae from soil samples is extremely complex, laborious, and time-consuming and require considerable expertise for morphological evaluation. PCR testing of soil DNA seems to be an effective means for protozoa habitat screening. In this study, we added Acanthamoeba sp. (MK strain) to soil and developed a method of extracting protozoan DNA from the soil.


Protozoan ALKBH8 oxygenases display both DNA repair and tRNA modification activities.

  • Daria Zdżalik‎ et al.
  • PloS one‎
  • 2014‎

The ALKBH family of Fe(II) and 2-oxoglutarate dependent oxygenases comprises enzymes that display sequence homology to AlkB from E. coli, a DNA repair enzyme that uses an oxidative mechanism to dealkylate methyl and etheno adducts on the nucleobases. Humans have nine different ALKBH proteins, ALKBH1-8 and FTO. Mammalian and plant ALKBH8 are tRNA hydroxylases targeting 5-methoxycarbonylmethyl-modified uridine (mcm5U) at the wobble position of tRNAGly(UCC). In contrast, the genomes of some bacteria encode a protein with strong sequence homology to ALKBH8, and robust DNA repair activity was previously demonstrated for one such protein. To further explore this apparent functional duality of the ALKBH8 proteins, we have here enzymatically characterized a panel of such proteins, originating from bacteria, protozoa and mimivirus. All the enzymes showed DNA repair activity in vitro, but, interestingly, two protozoan ALKBH8s also catalyzed wobble uridine modification of tRNA, thus displaying a dual in vitro activity. Also, we found the modification status of tRNAGly(UCC) to be unaltered in an ALKBH8 deficient mutant of Agrobacterium tumefaciens, indicating that bacterial ALKBH8s have a function different from that of their eukaryotic counterparts. The present study provides new insights on the function and evolution of the ALKBH8 family of proteins.


Albendazole induces oxidative stress and DNA damage in the parasitic protozoan Giardia duodenalis.

  • Rodrigo Martínez-Espinosa‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

The control of Giardia duodenalis infections is carried out mainly by drugs, among these albendazole (ABZ) is commonly used. Although the cytotoxic effect of ABZ usually involves binding to β-tubulin, it has been suggested that oxidative stress may also play a role in its parasiticidal mechanism. In this work the effect of ABZ in Giardia clones that are susceptible or resistant to different concentrations (1.35, 8, and 250 μM) of this drug was analyzed. Reactive oxygen species (ROS) were induced by ABZ in susceptible clones and this was associated with a decrease in growth that was alleviated by cysteine supplementation. Remarkably, ABZ-resistant clones exhibited partial cross-resistance to H2O2, whereas a Giardia H2O2-resistant strain can grow in the presence of ABZ. Lipid oxidation and protein carbonylation in ABZ-treated parasites did not show significant differences as compared to untreated parasites; however, ABZ induced the formation of 8OHdG adducts and DNA degradation, indicating nucleic acid oxidative damage. This was supported by observations of histone H2AX phosphorylation in ABZ-susceptible trophozoites treated with 250 μM ABZ. Flow cytometry analysis showed that ABZ partially arrested cell cycle in drug-susceptible clones at G2/M phase at the expense of cells in G1 phase. Also, ABZ treatment resulted in phosphatidylserine exposure on the parasite surface, an event related to apoptosis. All together these data suggest that ROS induced by ABZ affect Giardia genetic material through oxidative stress mechanisms and subsequent induction of apoptotic-like events.


Identification of Scaffold/Matrix Attachment (S/MAR) like DNA element from the gastrointestinal protozoan parasite Giardia lamblia.

  • Sushma S Padmaja‎ et al.
  • BMC genomics‎
  • 2010‎

Chromatin in the nucleus of all eukaryotes is organized into a system of loops and domains. These loops remain fastened at their bases to the fundamental framework of the nucleus, the matrix or the scaffold. The DNA sequences which anchor the bases of the chromatin loops to the matrix are known as Scaffold/Matrix Attachment Regions or S/MARs. Though S/MARs have been studied in yeast and higher eukaryotes and they have been found to be associated with gene organization and regulation of gene expression, they have not been reported in protists like Giardia. Several tools have been discovered and formulated to predict S/MARs from a genome of a higher eukaryote which take into account a number of features. However, the lack of a definitive consensus sequence in S/MARs and the randomness of the protozoan genome in general, make it a challenge to predict and identify such sequences from protists.


Phylogenomics-based reconstruction of protozoan species tree.

  • Kary A C S Ocaña‎ et al.
  • Evolutionary bioinformatics online‎
  • 2011‎

We have developed a semi-automatic methodology to reconstruct the phylogenetic species tree in Protozoa, integrating different phylogenetic algorithms and programs, and demonstrating the utility of a supermatrix approach to construct phylogenomics-based trees using 31 universal orthologs (UO). The species tree obtained was formed by three major clades that were related to three groups of data: i) Species containing at least 80% of UO (25/31) in the concatenated multiple alignment or supermatrix, this clade was called C1, ii) Species containing between 50%-79% (15-24/31) of UO called C2, and iii) Species containing less than 50% (1-14/31) of UO called C3. C1 was composed by only protozoan species, C2 was composed by species related to Protozoa, and C3 was composed by some species of C1 (Protozoa) and C2 (related to Protozoa). Our phylogenomics-based methodology using a supermatrix approach proved to be reliable with protozoan genome data and using at least 25 UO, suggesting that (a) the more UO used the better, (b) using the entire UO sequence or just a conserved block of it for the supermatrix produced similar phylogenomic trees.


Transfection of the protozoan parasite Perkinsus marinus.

  • José A Fernández-Robledo‎ et al.
  • Molecular and biochemical parasitology‎
  • 2008‎

Ongoing efforts for sequencing the genome of the protozoan parasite Perkinsus marinus, together with functional genomic initiatives, have continued to provide invaluable information about genes and metabolic pathways that not only will increase our understanding of its biology, but also have the potential to reveal useful targets for intervention. The lack of molecular tools for the functional characterization of genes of interest, however, has hindered progress in this regard. Here we report the development and validation of transfection methodology for this parasite. We first selected from our P. marinus EST collection a highly expressed gene, which we designated "MOE" (PmMOE), to which we fused at the C-terminus the enhanced green fluorescent protein (GFP) as a reporter gene (pPmMOE-GFP). The exogenous DNA was introduced into the trophozoite stage of the parasite by electroporation using the Nucleofector technology. The transfection efficiency was 37.8% with fluorescence detected as early as 14 h after electroporation, with the transfectants still remaining fluorescent after 8 months even in the absence of drug selection. The 5' flanking region was essential for transcription; constructs with 100 and 204 bp flanking the transcription start site also drove transcription effectively. Polymerase chain reaction (PCR) and Southern blot analyses was consistent with integration by non-homologous recombination. This transfection technique, the first one reported for a member of the Perkinsozoa, provides a new tool for studies of gene regulation and expression, protein targeting, and protein-protein interactions, and should significantly contribute to gain further insight into the biology of Perkinsus spp.


Protozoan parasites in Culex pipiens mosquitoes in Vienna.

  • Ellen R Schoener‎ et al.
  • Parasitology research‎
  • 2019‎

Avian malaria (Plasmodium spp.) and kinetoplastid (Trypanosoma spp.) parasites are common vector-borne pathogens in birds worldwide; however, knowledge about vector competence of different mosquito species is currently lacking. For a pilot project examining vector competence of mosquitoes of the Culex pipiens complex and Culex torrentium for protozoan parasites in the city of Vienna, 316 individual mosquitoes were sampled in the months June-August 2017 around the campus of the Veterinary University of Vienna. Since vector competence for avian Plasmodium can only be ascertained by finding infectious sporozoites in mosquito salivary glands, special emphasis was on examining these, or at least insect thoraxes, which contain the salivary glands. After species identification, the mosquitoes were processed in three different ways to determine the best method of visually detecting protozoan parasites in salivary glands: (1) microscopic examination of individual, fixed and Giemsa-stained salivary glands, (2) microscopic examination of stained sections of individually fixed and embedded mosquito thoraxes and (3) stained sections of individual whole insects. Material from all three groups was also subjected to PCR to detect avian haemosporidian and trypanosomatid parasite DNA. PCR was performed on all 316 collected mosquitoes, with 37 pools (n = 2-10) of 263 individuals and 53 single individuals in all together 90 PCR reactions. Avian Plasmodium was found in 18 (20%) and trypanosomatid parasites were found in 10 (11.1%) of the examined samples and pools yielded a higher proportion of positives than did individual samples. Six different species of protozoan parasites were identified, namely Plasmodium vaughani SYAT05 which was the most common, P. elongatum GRW6, P. relictum SGS1, Trypanosoma avium, T. culicavium and Crithidia dedva. Seventy-seven mosquito salivary glands were dissected and stained with Giemsa solution. Of these, one (1.3%) featured sporozoites and one (1.3%) trypanosomatid parasites. While the trypanosomes were identified as T. avium, the avian Plasmodium species were present in a mixed infection with P. vaughani SYAT05 as the dominant species. In conclusion, mosquitoes of the Culex pipiens complex are very likely vectors of different avian Plasmodium and Trypanosoma species and PCR was the most successful and reliable method for parasite detection in mosquito samples, delivering higher rates and more accurate results. The visual detection of parasite stages in the salivary glands was more difficult and only a few specimens were detected using Giemsa stain and chromogenic in situ hybridization. For further studies on vector competence of different protozoan parasites in mosquitoes, the use of PCR-based methods would be preferable.


Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major.

  • Natalia S Akopyants‎ et al.
  • Molecular and biochemical parasitology‎
  • 2004‎

To complete its life cycle, protozoan parasites of the genus Leishmania undergo at least three major developmental transitions. However, previous efforts to identify genes showing stage regulated changes in transcript abundance have yielded relatively few. Here we used expression profiling to assess changes in transcript abundance in three stages: replicating promastigotes and infective non-replicating metacyclics, which occur in the sand fly vector, and in the amastigote stage residing with macrophage phagolysosomes in mammals. Microarrays were developed containing 11,484 PCR products that included a number of known genes and 10,464 random 1 kb genomic DNA fragments. Arrays were hybridized in triplicate and genes showing two-fold or greater changes in 2/3 experiments were scored as differentially expressed. Remarkably, only about one percent of the DNAs expression varied by this criteria, in either stage comparison. Northern blot analysis confirmed the predicted change in mRNA abundance for most of these (68%). This set of genes included most of those previously identified in the literature as differentially regulated as well as a number of novel genes. Notably, Leishmania maxicircle transcripts showed strong up-regulation in metacyclic and amastigote parasites, probably associated with changes in parasite energy metabolism. However, current data suggest that expression profiling using shotgun DNA libraries significantly underestimates the extent of regulated transcripts.


Divergent binding mode for a protozoan BRC repeat to RAD51.

  • Teodors Pantelejevs‎ et al.
  • The Biochemical journal‎
  • 2022‎

Interaction of BRCA2 through ca. 30 amino acid residue motifs, BRC repeats, with RAD51 is a conserved feature of the double-strand DNA break repair by homologous recombination in eukaryotes. In humans the binding of the eight BRC repeats is defined by two sequence motifs, FxxA and LFDE, interacting with distinct sites on RAD51. Little is known of the interaction of BRC repeats in other species, especially in protozoans, where variable number of BRC repeats are found in BRCA2 proteins. Here, we have studied in detail the interactions of the two BRC repeats in Leishmania infantum BRCA2 with RAD51. We show LiBRC1 is a high-affinity repeat and determine the crystal structure of its complex with LiRAD51. Using truncation mutagenesis of the LiBRC1 repeat, we demonstrate that high affinity binding is maintained in the absence of an LFDE-like motif and suggest compensatory structural features. These observations point towards a divergent evolution of BRC repeats, where a common FxxA-binding ancestor evolved additional contacts for affinity maturation and fine-tuning.


The role of ATP-binding cassette (ABC) proteins in protozoan parasites.

  • Virginie Sauvage‎ et al.
  • Molecular and biochemical parasitology‎
  • 2009‎

The ATP-binding cassette (ABC) superfamily is one of the largest protein families with representatives in all kingdoms of life. Members of this superfamily are involved in a wide variety of transport processes with substrates ranging from small ions to relatively large polypeptides and polysaccharides, but also in cellular processes such as DNA repair, translation or regulation of gene expression. For many years, the role of ABC proteins was mainly investigated for their implication in drug resistance. However, recent studies focused rather on their physiological functions for the parasite. In this review, we present an overview of ABC proteins in major protozoan parasites including Leishmania, Trypanosoma, Plasmodium, Toxoplasma, Cryptosporidium and Entamoeba species. We will also discuss the role of characterized ABC transporters in the biology of the parasite and in drug resistance.


Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase.

  • Ethan A Merritt‎ et al.
  • Molecular and biochemical parasitology‎
  • 2011‎

Tryptophanyl-tRNA synthetase (TrpRS) is an essential enzyme that is recognizably conserved across all forms of life. It is responsible for activating and attaching tryptophan to a cognate tRNA(Trp) molecule for use in protein synthesis. In some eukaryotes this original core function has been supplemented or modified through the addition of extra domains or the expression of variant TrpRS isoforms. The three TrpRS structures from pathogenic protozoa described here represent three illustrations of this malleability in eukaryotes. The Cryptosporidium parvum genome contains a single TrpRS gene, which codes for an N-terminal domain of uncertain function in addition to the conserved core TrpRS domains. Sequence analysis indicates that this extra domain, conserved among several apicomplexans, is related to the editing domain of some AlaRS and ThrRS. The C. parvum enzyme remains fully active in charging tRNA(Trp) after truncation of this extra domain. The crystal structure of the active, truncated enzyme is presented here at 2.4Å resolution. The Trypanosoma brucei genome contains separate cytosolic and mitochondrial isoforms of TrpRS that have diverged in their respective tRNA recognition domains. The crystal structure of the T. brucei cytosolic isoform is presented here at 2.8Å resolution. The Entamoeba histolytica genome contains three sequences that appear to be TrpRS homologs. However one of these, whose structure is presented here at 3.0Å resolution, has lost the active site motifs characteristic of the Class I aminoacyl-tRNA synthetase catalytic domain while retaining the conserved features of a fully formed tRNA(Trp) recognition domain. The biological function of this variant E. histolytica TrpRS remains unknown, but, on the basis of a completely conserved tRNA recognition region and evidence for ATP but not tryptophan binding, it is tempting to speculate that it may perform an editing function. Together with a previously reported structure of an unusual TrpRS from Giardia, these protozoan structures broaden our perspective on the extent of structural variation found in eukaryotic TrpRS homologs.


Intestinal protozoan infections shape fecal bacterial microbiota in children from Guinea-Bissau.

  • Sebastian von Huth‎ et al.
  • PLoS neglected tropical diseases‎
  • 2021‎

Intestinal parasitic infections, caused by helminths and protozoa, are globally distributed and major causes of worldwide morbidity. The gut microbiota may modulate parasite virulence and host response upon infection. The complex interplay between parasites and the gut microbiota is poorly understood, partly due to sampling difficulties in remote areas with high parasite burden. In a large study of children in Guinea-Bissau, we found high prevalence of intestinal parasites. By sequencing of the 16S rRNA genes of fecal samples stored on filter paper from a total of 1,204 children, we demonstrate that the bacterial microbiota is not significantly altered by helminth infections, whereas it is shaped by the presence of both pathogenic and nonpathogenic protozoa, including Entamoeba (E.) spp. and Giardia (G.) lamblia. Within-sample diversity remains largely unaffected, whereas overall community composition is significantly affected by infection with both nonpathogenic E. coli (R2 = 0.0131, P = 0.0001) and Endolimax nana (R2 = 0.00902, P = 0.0001), and by pathogenic E. histolytica (R2 = 0.0164, P = 0.0001) and G. lamblia (R2 = 0.00676, P = 0.0001). Infections with multiple parasite species induces more pronounced shifts in microbiota community than mild ones. A total of 31 bacterial genera across all four major bacterial phyla were differentially abundant in protozoan infection as compared to noninfected individuals, including increased abundance of Prevotella, Campylobacter and two Clostridium clades, and decreased abundance of Collinsella, Lactobacillus, Ruminococcus, Veillonella and one Clostridium clade. In the present study, we demonstrate that the fecal bacterial microbiota is shaped by intestinal parasitic infection, with most pronounced associations for protozoan species. Our results provide insights into the interplay between the microbiota and intestinal parasites, which are valuable to understand infection biology and design further studies aimed at optimizing treatment strategies.


First complete chromosomal organization of a protozoan plant parasite (Phytomonas spp.).

  • Clotilde Marín‎ et al.
  • Genomics‎
  • 2008‎

Phytomonas spp. are members of the family Trypanosomatidae that parasitize plants and may cause lethal diseases in crops such as Coffee Phloem necrosis, Hartrot in coconut, and Marchitez sorpresiva in oil palm. In this study, the molecular karyotype of 6 isolates from latex plants has been entirely elucidated by pulsed-field gel electrophoresis and DNA hybridization. Twenty-one chromosomal linkage groups constituting heterologous chromosomes and sizing between 0.3 and 3 Mb could be physically defined by the use of 75 DNA markers (sequence-tagged sites and genes). From these data, the genome size can be estimated at 25.5 (+/-2) Mb. The physical linkage groups were consistently conserved in all strains examined. Moreover, the finding of several pairs of different-sized homologous chromosomes strongly suggest diploidy for this organism. The definition of the complete molecular karyotype of Phytomonas represents an essential primary step toward sequencing the genome of this parasite of economical importance.


Genetic modification of the protozoan Eimeria tenella using the CRISPR/Cas9 system.

  • Xinming Tang‎ et al.
  • Veterinary research‎
  • 2020‎

Eimeria tenella has emerged as valuable model organism for studying the biology and immunology of protozoan parasites with the establishment of the reverse genetic manipulation platform. In this report, we described the application of CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (endonuclease) system for efficient genetic editing in E. tenella, and showed that the CRISPR/Cas9 system mediates site-specific double-strand DNA breaks with a single guide RNA. Using this system, we successfully tagged the endogenous microneme protein 2 (EtMic2) by inserting the red fluorescent protein into the C-terminal of EtMic2. Our results extended the utility of the CRISPR/Cas9-mediated genetic modification system to E. tenella, and opened a new avenue for targeted investigation of gene functions in apicomplexan parasites.


Sequence Analysis and Comparison of TCTP Proteins from Human Protozoan Parasites.

  • Francisco Alejandro Lagunas-Rangel‎
  • Acta parasitologica‎
  • 2022‎

Translational controlled tumor protein (TCTP) is a functionally important protein in most eukaryotes because it participates in a wide variety of processes, the most representative being proliferation, differentiation, histamine release, cell death, protein synthesis and response to stress conditions. In the present work, we analyze the sequence, structure and phylogeny of TCTP orthologs in a group of human parasitic protozoan species.


Prevalence of protozoan parasites in small and medium mammals in Texas, USA.

  • Joseph J Modarelli‎ et al.
  • International journal for parasitology. Parasites and wildlife‎
  • 2020‎

Wildlife interaction with humans increases the risk of potentially infected ticks seeking an opportunistic blood meal and consequently leading to zoonotic transmission. In the United States, human babesiosis is a tick-borne zoonosis most commonly caused by the intraerythrocytic protozoan parasite, Babesia microti. The presence of Babesia microti and other species of Babesia within Texas has not been well characterized, and the molecular prevalence of these pathogens within wildlife species is largely unknown. Small (e.g. rodents) and medium sized mammalian species (e.g. racoons) represent potential reservoirs for specific species of Babesia, though this relationship has not been thoroughly evaluated within Texas. This study aimed to characterize the molecular prevalence of Babesia species within small and medium sized mammals at two sites in East Texas with an emphasis on detection of pathogen presence in these two contrasting wild mammal groups at these sites. To that end, a total of 480 wild mammals representing eight genera were trapped, sampled, and screened for Babesia species using the TickPath layerplex qPCR assay. Two sites were selected for animal collection, including The Big Thicket National Preserve and Gus Engeling Wildlife Management Area. Molecular analysis revealed the prevalence of various Babesia and Hepathozoon species at 0.09% each, and Sarcocystis at 0.06% . Continued molecular prevalence surveys of tick-borne pathogens in Texas wild mammals will be needed to provide novel information as to which species of Babesia are most prevalent and identify specific wildlife species as pathogen reservoirs.


Application of next generation sequencing for detection of protozoan pathogens in shellfish.

  • Catherine DeMone‎ et al.
  • Food and waterborne parasitology‎
  • 2020‎

Food and waterborne protozoan pathogens can cause serious disease in people. Three common species Cryptosporidium parvum, Giardia enterica and Toxoplasma gondii can contaminate diverse shellfish species, including commercial oysters. Current methods of protozoan detection in shellfish are not standardized, and few are able to simultaneously identify multiple species. Here, we present a novel metabarcoding assay targeting the 18S rRNA gene followed by next generation sequencing (NGS) for simultaneous detection of Cryptosporidium spp., Giardia spp. and T. gondii spiked into oyster samples. We further developed a bioinformatic pipeline to process and analyze 18S rRNA data for protozoa classification. The ability of the NGS assay to detect protozoa was later compared with conventional PCR. Results demonstrated that background amplification of oyster and other eukaryotic DNA competed with that of protozoa for obtained sequence reads. Sequences of target protozoans were obtained across all spiking levels; however, low numbers of target sequences in negative controls imply that a threshold for true positives must be defined for assay interpretation. While this study focused on three target parasites, the ability of this approach to detect numerous known and potentially unknown protozoan pathogens make it a promising screening tool for monitoring protozoan contamination in food and water.


An Extremely Streamlined Macronuclear Genome in the Free-Living Protozoan Fabrea salina.

  • Bing Zhang‎ et al.
  • Molecular biology and evolution‎
  • 2022‎

Ciliated protists are among the oldest unicellular organisms with a heterotrophic lifestyle and share a common ancestor with Plantae. Unlike any other eukaryotes, there are two distinct nuclei in ciliates with separate germline and somatic cell functions. Here, we assembled a near-complete macronuclear genome of Fabrea salina, which belongs to one of the oldest clades of ciliates. Its extremely minimized genome (18.35 Mb) is the smallest among all free-living heterotrophic eukaryotes and exhibits typical streamlined genomic features, including high gene density, tiny introns, and shrinkage of gene paralogs. Gene families involved in hypersaline stress resistance, DNA replication proteins, and mitochondrial biogenesis are expanded, and the accumulation of phosphatidic acid may play an important role in resistance to high osmotic pressure. We further investigated the morphological and transcriptomic changes in the macronucleus during sexual reproduction and highlighted the potential contribution of macronuclear residuals to this process. We believe that the minimized genome generated in this study provides novel insights into the genome streamlining theory and will be an ideal model to study the evolution of eukaryotic heterotrophs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: