Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 137 papers

Cytological techniques to analyze meiosis in Arabidopsis arenosa for investigating adaptation to polyploidy.

  • James D Higgins‎ et al.
  • Frontiers in plant science‎
  • 2014‎

Arabidopsis arenosa is a close relative of the model plant A. thaliana, and exists in nature as stable diploid and autotetraploid populations. Natural tetraploids have adapted to whole genome duplication and do not commonly show meiotic errors such as multivalent and univalent formation, which can lead to chromosome non-disjunction and reduced fertility. A genome scan for genes strongly differentiated between diploid and autotetraploid A. arenosa identified a subset of meiotic genes that may be responsible for adaptation to polyploid meiosis. To investigate the mechanisms by which A. arenosa adapted to its polyploid state, and the functionality of the identified potentially adaptive polymorphisms, a thorough cytological analysis is required. Therefore, in this chapter we describe methods and techniques to analyze male meiosis in A. arenosa, including optimum plant growth conditions, and immunocytological and cytological approaches developed with the specific purpose of understanding meiotic adaptation in an autotetraploid. In addition we present a meiotic cytological atlas to be used as a reference for particular stages and discuss observations arising from a comparison of meiosis between diploid and autotetraploid A. arenosa.


Endometrial Status in Queens Evaluated by Histopathology Findings and Two Cytological Techniques: Low-Volume Uterine Lavage and Uterine Swabbing.

  • Alba Martí‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2021‎

Endometritis is associated with fertility problems in many species, with endometrial biopsy being the main diagnostic tool. In feline queens, the reduced size of the uterus may make it difficult to obtain representative diagnostic samples. Endometrial cytology may represent a valuable diagnostic tool for evaluating the health status of the endometrium in queens. Fifty domestic shorthair queens were included and divided into two cytological diagnostic technique groups, the uterine lavage (UL; n = 28) and uterine swabbing (US; n = 22) groups. Cytological results were compared with histopathological and bacteriological information. Changes in the histopathological patterns were also evaluated and compared with progesterone levels to confirm previous published data. Furthermore, the results from both cytological sampling methods were compared to evaluate the utility of each method. Endometritis was ruled out in all queens by means of histology and microbiology. Leukocyte counts and red blood cell/endometrial cell ratios were significantly higher in US than UL samples. Additionally, UL sampling is less affected by blood contamination and cells are better preserved. The combination of endometrial cytology and uterine culture might be useful for evaluating the endometrial characteristics in queens. The UL evaluation method is more representative of the actual endometrial status than the US technique.


Characterization of circulating plasma proteins in dairy cows with cytological endometritis.

  • Blake A Miller‎ et al.
  • Journal of proteomics‎
  • 2019‎

Early diagnosis of endometritis in dairy cattle is currently requires invasive techniques and specialist expertise. The goal of this study is to utilize a gel-free mass-spectrometry based proteomics approach to compare the plasma proteome of dairy cattle with cytological endometritis to those without. Blood samples were collected from cows (N = 112) seven days postpartum (DPP). Plasma samples from a cohort of 20 animals with cytological endometritis (n = 10) and without (n = 10) as classified 21 DPP were selected for proteomic analysis. Differential abundances of proteins between the two animal groups were determined using both fold change (≥1.5 fold change) and statistical significance threshold (p < .05). A total of 181 non-redundant proteins were quantified, and 25 proteins were found with differential abundance. These include 4 binding protein alpha and mannose binding lectin 2 involved in immune responses. Differentially abundant proteins between the animals were then processed using PANTHER for gene ontology. Gene ontology included associations with innate immune processes, acute phase responses and immune regulation. A potential marker for disease identified here is the "uncharacterized protein G5E513," a protein previously defined by RNA-transcripts. These proteins may form the basis for endometritis prognosis, the development of which is proceeded by systemic changes in immune function. SIGNIFICANCE: Endometritis is a costly reproductive disease of lactating dairy cows that warrants timely diagnosis. We utilized a gel-free mass-spectrometry based proteomics approach to compare the plasma proteome of dairy cattle with cytological endometritis to those without, for the characterization of changes in the proteomic profile associated with uterine disease postpartum. Furthermore, we compared the plasma proteome of healthy and affected cows in the same physiological status of production to better understand the relationship between changes in expression of circulating proteins and to unravel essential biological mechanisms involved in bovine cytological endometritis.


DNA FISH Diagnostic Assay on Cytological Samples of Thyroid Follicular Neoplasms.

  • Philippe Vielh‎ et al.
  • Cancers‎
  • 2020‎

Although fine-needle aspiration cytology (FNAC) is helpful in determining whether thyroid nodules are benign or malignant, this distinction remains a cytological challenge in follicular neoplasms. Identification of genomic alterations in cytological specimens with direct and routine techniques would therefore have great clinical value. A series of 153 cases consisting of 72 and 81 histopathologically confirmed classic follicular adenomas (cFAs) and classic follicular thyroid carcinomas (cFTCs), respectively, was studied by means of different molecular techniques in three different cohorts of patients (pts). In the first cohort (training set) of 66 pts, three specific alterations characterized by array comparative genomic hybridization (aCGH) were exclusively found in half of cFTCs. These structural abnormalities corresponded to losses of 1p36.33-35.1 and 22q13.2-13.31, and gain of whole chromosome X. The second independent cohort (validation set) of 60 pts confirmed these data on touch preparations of frozen follicular neoplasms by triple DNA fluorescent in situ hybridization using selected commercially available probes. The third cohort, consisting of 27 archived cytological samples from an equal number of pts that had been obtained for preoperative FNAC and morphologically classified as and histologically verified to be follicular neoplasms, confirmed our previous findings and showed the feasibility of the DNA FISH (DNA fluorescent in situ hybridization) assay. All together, these data suggest that our triple DNA FISH diagnostic assay may detect 50% of cFTCs with a specificity higher than 98% and be useful as a low-cost adjunct to cytomorphology to help further classify follicular neoplasms on already routinely stained cytological specimens.


Endocrine, morphological, and cytological effects of a depot GnRH agonist in bovine.

  • F Schneider‎ et al.
  • Animal reproduction science‎
  • 2006‎

The present study was conducted to assess effects of the gonadotropin-releasing hormone agonist (GnRHa) triptorelin in dairy heifers. The peptide was released from a commercial 4-week depot formulation (Decapeptyl Depot) administered at animals' estrus (day 0). First experiment (EXP I, n=5), which was aimed to explore the availability of peptide, detected a maximum of triptorelin concentration between day 2 and 5 after depot injection, and the peptide remained detectable by RIA in peripheral blood for about 3 weeks. In further experiments, the peptide release was terminated on day 9 (EXP II, n=16) or day 21 (EXP III, n=47). Treatment effects were studied on follicular development, the characteristics of cumulus-oocyte complexes (COCs) (EXP II; EXP IIIa) and secretions of LH and progesterone (EXP IIIb). Results showed that the occurrence of the pre-ovulatory LH surge was more uniform in treated heifers than that in controls. The duration of ovulation periods was similar amongst the heifers of EXP II, but more compact amongst those of EXP III each compared with the respective controls. Post-ovulatory, the number of LH pulses was significantly reduced by treatment, whereas both basal LH and progesterone concentrations were elevated on a few days. Follicular growth was reduced only by the prolonged influence of the GnRHa. There were increased proportions of both degenerated COCs and immature oocytes from small follicles (<3mm in diameter), and meiotic configuration and quality of oocytes isolated from follicles 3-5mm were changed after the prolonged, 21-day treatment. These results indicate that a continuous influence of a GnRHa over more than 1 week may increasingly impair the development of bovine follicles and oocytes. This may have some significance for the development of novel GnRH-based techniques in regulating the reproductive function in cattle.


Tolerance of Douglas Fir Somatic Plantlets to Aluminum Stress: Biological, Cytological, and Mineral Studies.

  • Holm Amara‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2020‎

Aluminum (Al) is well known as a potent inhibitor of plant growth and development. It is notably present in soils in the soluble and bioavailable form Al3+ when the soil pH drops below 5. This situation is frequent, especially in softwood forests when litter decomposition is slow. In the present work, we studied the effects of Al3+ on the growth and development of Douglas fir plantlets. Somatic plantlets, regenerated via somatic embryogenesis, were grown in vitro on media supplemented with different concentrations of aluminum chloride (AlCl3): 0 µM, 200 µM, 500 µM. and 1 mM. We show that a concentration of 500 µM AlCl3 in medium significantly reduced root elongation (-21.8%), as well as stem growth (-14.6%). Also, a 25% reduction in dry mass of the plantlets was observed in presence of a concentration of 200 µM of AlCl3. Histological analysis of root tissues revealed significant damage, especially in conducting vessels. In addition, mineral cation content of plantlets was disturbed under Al exposure. More particularly, the Mg and K contents of needles and the Ca content of stems and needles were significantly reduced in presence of a concentration of 500 µM AlCl3 in the culture medium (-35.6%, -33.5%, -24%, and -34% respectively). However, all these damages appeared at relatively high Al concentrations when compared with other herbaceous species. This study shed light on the ability of Douglas fir in vitro plantlets to cope with the acid-driven toxicity of Al.


Cytological, Biochemical and Molecular Events of the Embryogenic State in Douglas-fir (Pseudotsuga menziesii [Mirb.]).

  • Florian Gautier‎ et al.
  • Frontiers in plant science‎
  • 2019‎

Somatic embryogenesis techniques have been developed for most coniferous species, but only using very juvenile material. To extend the techniques' scope, better integrated understanding of the key biological, physiological and molecular characteristics of embryogenic state is required. Therefore, embryonal masses (EMs) and non-embryogenic calli (NECs) have been compared during proliferation at multiple levels. EMs and NECs originating from a single somatic embryo (isogenic lines) of each of three unrelated genotypes were used in the analyses, which included comparison of the lines' anatomy by transmission light microscopy, transcriptomes by RNAseq Illumina sequencing, proteomes by free-gel analysis, contents of endogenous phytohormones (indole-3-acetic acid, cytokinins and ABA) by LC-MS analysis, and soluble sugar contents by HPLC. EMs were characterized by upregulation (relative to levels in NECs) of transcripts, proteins, transcription factors and active cytokinins associated with cell differentiation accompanied by histological, carbohydrate content and genetic markers of cell division. In contrast, NECs were characterized by upregulation (relative to levels in EMs) of transcripts, proteins and products associated with responses to stimuli (ABA, degradation forms of cytokinins, phenols), oxidative stress (reactive oxygen species) and carbohydrate storage (starch). Sub-Network Enrichment Analyses that highlighted functions and interactions of transcripts and proteins that significantly differed between EMs and NECs corroborated these findings. The study shows the utility of a novel approach involving integrated multi-scale transcriptomic, proteomic, biochemical, histological and anatomical analyses to obtain insights into molecular events associated with embryogenesis and more specifically to the embryogenic state of cell in Douglas-fir.


Cytological evidence for serotonin-containing fibers in an abdominal neurohemal organ in a hemipteran.

  • T R Flanagan‎
  • Brain research‎
  • 1984‎

The abdominal neurohemal organs of the hemipteran Rhodnius prolixus contain an extensive serotonin containing arborization. Endogenous serotonin within fibers and terminals in the neurohemal area were detected with histochemical and immunocytological techniques. The abdominal nerves which contain the neurohemal organs selectively sequester exogenous serotonin. Serotonin and its metabolites are biochemically detected within the mesothoracic ganglion, which is a known source of projections into the neurohemal organ. However, the source of the cell bodies which might send serotonergic fibers to the neurohemal organ remains undetermined because no correspondence was found between immunocytological maps of serotonin-containing cells in the ganglion, and projection maps into neurohemal organ (determined by cobalt back-filling).


Label-free enumeration, collection and downstream cytological and cytogenetic analysis of circulating tumor cells.

  • Manjima Dhar‎ et al.
  • Scientific reports‎
  • 2016‎

Circulating tumor cells (CTCs) have a great potential as indicators of metastatic disease that may help physicians improve cancer prognostication, treatment and patient outcomes. Heterogeneous marker expression as well as the complexity of current antibody-based isolation and analysis systems highlights the need for alternative methods. In this work, we use a microfluidic Vortex device that can selectively isolate potential tumor cells from blood independent of cell surface expression. This system was adapted to interface with three protein-marker-free analysis techniques: (i) an in-flow automated image processing system to enumerate cells released, (ii) cytological analysis using Papanicolaou (Pap) staining and (iii) fluorescence in situ hybridization (FISH) targeting the ALK rearrangement. In-flow counting enables a rapid assessment of the cancer-associated large circulating cells in a sample within minutes to determine whether standard downstream assays such as cytological and cytogenetic analyses that are more time consuming and costly are warranted. Using our platform integrated with these workflows, we analyzed 32 non-small cell lung cancer (NSCLC) and 22 breast cancer patient samples, yielding 60 to 100% of the cancer patients with a cell count over the healthy threshold, depending on the detection method used: respectively 77.8% for automated, 60-100% for cytology, and 80% for immunostaining based enumeration.


Ultrastructural and Cytological Studies on Mycosphaerella pinodes Infection of the Model Legume Medicago truncatula.

  • Tomoko Suzuki‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Ascochyta (Mycosphaerella) blight on cultivated peas is primarily caused by infection through asexual spores (pycnospores) of Mycosphaerella pinodes (Berk. et Blox.) Vestergren [recently renamed Peyronellaea pinodes (Berk. & A. Bloxam) Aveskamp, Gruyter & Verkley]. Using a model pathosystem involving Medicago truncatula and Mycosphaerella pinodes strain OMP-1, we examined the histology and ultrastructure of early infection events and fungal development including penetration by appressoria, vegetative growth of infection hyphae, and host responses. On the susceptible ecotype R108-1, pycnospores germinated and grew over the surface of the epidermis, then formed an appressoria and penetrated the cuticle. Beneath the cuticle, the infection peg expanded into a hyphae that grew within the outer wall of the epidermis. Subsequently, the hyphae penetrated down within mesophyll cells and proliferated vigorously, eventually, forming asexual fruiting bodies (pycnidia). In contrast, successful penetration and subsequent growth of infection hyphae were considerably restricted in the ecotype Caliph. Detected by its reaction with cerium chloride (CeCl3) to generate electron-dense cerium perhydroxides in transmission electron micrographs, hydrogen peroxide (H2O2) accumulated in epidermal and mesophyll cells of Caliph challenged with pycnospores of M. pinodes. This intracellular localization was confirmed by energy-dispersive X-ray spectroscopy. Our observations thus indicate that the oxidative burst reaction leading to the generation of reactive oxygen species is associated with a local host defense response in Caliph, since no clear H2O2 accumulation was detectable in susceptible R108-1. Indeed, aberrant hyphae such as intrahyphal hyphae and dead hyphae, probably due to a local defense elicited by the fungus, were abundant in Caliph but not in R108-1. Our results on the cellular interactions between the fungus and host cells provide additional insights to understand foliar infection by M. pinodes on cultivated peas.


Molecular and cytological profiling of biological aging of mouse cochlear inner and outer hair cells.

  • Huizhan Liu‎ et al.
  • Cell reports‎
  • 2022‎

Age-related hearing loss (ARHL) negatively impacts quality of life in the elderly population. The prevalent cause of ARHL is loss of mechanosensitive cochlear hair cells (HCs). The molecular and cellular mechanisms of HC degeneration remain poorly understood. Using RNA-seq transcriptomic analyses of inner and outer HCs isolated from young and aged mice, we show that HC aging is associated with changes in key molecular processes, including transcription, DNA damage, autophagy, and oxidative stress, as well as genes related to HC specialization. At the cellular level, HC aging is characterized by loss of stereocilia, shrinkage of HC soma, and reduction in outer HC mechanical properties, suggesting that functional decline in mechanotransduction and cochlear amplification precedes HC loss and contributes to ARHL. Our study reveals molecular and cytological profiles of aging HCs and identifies genes such as Sod1, Sirt6, Jund, and Cbx3 as biomarkers and potential therapeutic targets for ameliorating ARHL.


Regulatory complexity revealed by integrated cytological and RNA-seq analyses of meiotic substages in mouse spermatocytes.

  • Robyn L Ball‎ et al.
  • BMC genomics‎
  • 2016‎

The continuous and non-synchronous nature of postnatal male germ-cell development has impeded stage-specific resolution of molecular events of mammalian meiotic prophase in the testis. Here the juvenile onset of spermatogenesis in mice is analyzed by combining cytological and transcriptomic data in a novel computational analysis that allows decomposition of the transcriptional programs of spermatogonia and meiotic prophase substages.


New insights on cytological and metabolic features of Ostreopsis cf. ovata Fukuyo (Dinophyceae): a multidisciplinary approach.

  • Giorgio Honsell‎ et al.
  • PloS one‎
  • 2013‎

The harmful dinoflagellate Ostreopsis cf. ovata has been causing toxic events along the Mediterranean coasts and other temperate and tropical areas, with increasing frequency during the last decade. Despite many studies, important biological features of this species are still poorly known. An integrated study, using different microscopy and molecular techniques, Raman microspectroscopy and high resolution liquid chromatography-mass spectrometry (HR LC-MS), was undertaken to elucidate cytological aspects, and identify main metabolites including toxins. The species was genetically identified as O. cf. ovata, Atlantic-Mediterranean clade. The ultrastructural results show unique features of the mucilage network abundantly produced by this species to colonize benthic substrates, with a new role of trichocysts, never described before. The amorphous polysaccharidic component of mucilage appears to derive from pusule fibrous material and mucocysts. In all stages of growth, the cells show an abundant production of lipids. Different developmental stages of chloroplasts are found in the peripheral cytoplasm and in the centre of cell. In vivo Raman microspectroscopy confirms the presence of the carotenoid peridinin in O. cf. ovata, and detects in several specimen the abundant presence of unsaturated lipids structurally related to docosahexaenoic acid. The HR LC-MS analysis reveals that ovatoxin-a is the predominant toxin, together with decreasing amounts of ovatoxin-b, -d/e, -c and putative palytoxin. Toxins concentration on a per cell basis increases from exponential to senescent phase. The results suggest that benthic blooms of this species are probably related to features such as the ability to create a unique mucilaginous sheath covering the sea bottom, associated with the production of potent toxins as palytoxin-like compounds. In this way, O. cf. ovata may be able to rapidly colonize benthic substrates outcompeting other species.


Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study.

  • M D Cassell‎ et al.
  • The Journal of comparative neurology‎
  • 1986‎

The organization of neurons in the rat central nucleus of the amygdala (CNA) has been examined by using Nissl stain and immunocytochemical and retrograde tracing techniques. Four main subdivisions were identified on the basis of quantitative analyses of Nissl-stained material: medial (CM), lateral (CL), lateral capsular (CLC), and ventral (CV). An intermediate subdivision (CI), previously described by McDonald ('82), was apparent only in animals that had HRP-WGA injected into the bed nucleus of the stria terminalis. Large populations of neurotensin-, corticotropin-releasing factor (CRF)-, and enkephalin-immunoreactive neurons were present within the lateral divisions (mainly CL), although they were also seen within CM. Somatostatin-immunoreactive neurons were distributed mainly within CL and CM. Within CL, neurotensin- and enkephalin-immunoreactive neurons were more numerous laterally whereas CRF- and somatostatin-immunoreactive neurons were more numerous medially. Substance P-immunoreactive neurons were almost exclusively confined to CM. Only a few cholecystokinin- and vasoactive-polypeptide-immunoreactive neurons were seen in the CNA, and they were observed within CL, CV, and CM. The majority of neurons projecting to the dorsal medulla, hypothalamus, and ventral tegmental area were located within CM, although a significant number of cells were also seen within CL. Efferent projections to the bed nucleus of the stria terminalis were found to arise from neurons located within all subdivisions of the CNA. Thus, the distributional patterns of peptidergic and efferent neurons were not confined to individual cytoarchitectonically- defined subdivisions of the CNA. Rather, the results suggest overlapping medial to the lateral trends. Comparisons with the results of previous studies indicate that peptidergic and afferent terminal distribution patterns are more restricted to individual cytoarchitectonically defined subregions of the CNA. These observations suggest that the detailed cytoarchitecture of the CNA more likely reflects the functional integration of afferents rather than the organization of the CNA output neurons.


Gene transcriptional profiles in gonads of Bacillus taxa (Phasmida) with different cytological mechanisms of automictic parthenogenesis.

  • Giobbe Forni‎ et al.
  • Zoological letters‎
  • 2022‎

The evolution of automixis - i.e., meiotic parthenogenesis - requires several features, including ploidy restoration after meiosis and maintenance of fertility. Characterizing the relative contribution of novel versus pre-existing genes and the similarities in their expression and sequence evolution is fundamental to understand the evolution of reproductive novelties. Here we identify gonads-biased genes in two Bacillus automictic stick-insects and compare their expression profile and sequence evolution with a bisexual congeneric species. The two parthenogens restore ploidy through different cytological mechanisms: in Bacillus atticus, nuclei derived from the first meiotic division fuse to restore a diploid egg nucleus, while in Bacillus rossius, diploidization occurs in some cells of the haploid blastula through anaphase restitution. Parthenogens' gonads transcriptional program is found to be largely assembled from genes that were already present before the establishment of automixis. The three species transcriptional profiles largely reflect their phyletic relationships, yet we identify a shared core of genes with gonad-biased patterns of expression in parthenogens which are either male gonads-biased in the sexual species or are not differentially expressed there. At the sequence level, just a handful of gonads-biased genes were inferred to have undergone instances of positive selection exclusively in the parthenogen species. This work is the first to explore the molecular underpinnings of automixis in a comparative framework: it delineates how reproductive novelties can be sustained by genes whose origin precedes the establishment of the novelty itself and shows that different meiotic mechanisms of reproduction can be associated with a shared molecular ground plan.


Karyotype Description of Two Andean Species of the guarani Group of Drosophila (Díptera: Drosophilidae) and Cytological Notes.

  • Doris Vela‎ et al.
  • Journal of insect science (Online)‎
  • 2021‎

The guarani group of Drosophila genus (Diptera: Drosophilidae) is formed by 24 species however the relationship of these species is not clear. In the present study are described the karyotypes of Drosophila sachapuyu Peñafiel and Rafael, 2018 and Drosophila zamorana Peñafiel and Rafael, 2018, two Andean species members of the guarani group. Mitotic chromosomes from cerebral ganglia of third stand larval were obtained by thermal shock and cell suspension techniques. The karyotype of D. sachapuyu, presents 2n = 10 (4R, 1V; X = R, Y = R) while D. zamorana exhibits karyotype 2n = 12 (5R, 1V; X = V, Y = R).


A thermostability perspective on enhancing physicochemical and cytological characteristics of octacalcium phosphate by doping iron and strontium.

  • Haishan Shi‎ et al.
  • Bioactive materials‎
  • 2021‎

Investigation of thermostability will lead the groundbreaking of unraveling the mechanism of influence of ion-doping on the properties of calcium phosphates. In this work, octacalcium phosphate (OCP), a metastable precursor of biological apatite, was used as a stability model for doping ions (Fe3+ and Sr2+) with different ionic charges and radii. After treated under hot air at different temperatures (110-200 °C), the phase, morphology, structure, physicochemical properties, protein affinity, ions release, and cytological responses of the ion-doped OCPs were investigated comparatively. The results showed that the collapse of OCP crystals gradually occurred, accompanying with the dehydration of hydrated layers and the disintegration of plate-like crystals as the temperature increased. The collapsed crystals still retained the typical properties of OCP and the potential of conversion into hydroxyapatite. Compared to the undoped OCP, Fe-OCP, and Sr-OCP had lower and higher thermostability respectively, leading to different material surface properties and ions release. The adjusted thermostability of Fe-OCP and Sr-OCP significantly enhanced the adsorption of proteins (BSA and LSZ) and the cytological behavior (adhesion, spreading, proliferation, and osteogenic differentiation) of bone marrow mesenchymal stem cells to a varying extent under the synergistic effects of corresponding surface characteristics and early active ions release. This work paves the way for understanding the modification mechanism of calcium phosphates utilizing ion doping strategy and developing bioactive OCP-based materials for tissue repair.


Composite cytological smears of pelvic lymph nodes at the time of radical prostatectomy to identify nodal metastases.

  • S Bastacky‎ et al.
  • Human pathology‎
  • 1994‎

Many urologists will abort a radical prostatectomy (RP) after intraoperative identification of regional lymph node (LN) metastases because RP in these patients is not curative. Because frozen section techniques are time consuming and incompletely sample LNs, we evaluated the efficacy of performing a composite cytological smear (CCS) by sampling all grossly identifiable LNs. Two hundred and fifty RPs performed from November 1991 to June 1992 yielded on permanent section 33 (+) pelvic lymph node dissections (PLNDs) (6.6%) in 25 RPs (10%). Eleven (33%) of the 33 PLNDs with metastases were grossly suspicious, all were identified by CCS (median percentage of positive LNs per PLND = 33; median size of the largest metastasis = 11 mm). Of the remaining 22 grossly negative PLNDs with tumor, only seven (32%) were detected by CCS (median percentage of positive LNs per PLND = 13; median size of largest metastasis = 3 mm). In the 15 cases missed by CCS the median percentage of positive LNs per PLND was 14, and the median size of the largest metastasis was 1 mm. This method reliably detected LN metastases measuring more than 2 mm as long as the positive LN was grossly recognizable as an LN and thus sampled by CCS. In conclusion, CCS is highly specific but insensitive for the detection of limited numbers of micrometastases, which are the most common type of metastases in patients with low clinical stage disease. A combined technique employing frozen sections on smaller nodes and CCS on larger nodes may be more effective in identifying small metastatic deposits.


Cytological and biophysical comparative analysis of cell structures at the microsporogenesis stage in sterile and fertile Allium species.

  • Dorota Tchórzewska‎ et al.
  • Planta‎
  • 2017‎

Using a live-cell-imaging approach and autofluorescence-spectral imaging, we showed quantitative/qualitative fluctuations of chemical compounds within the meiocyte callose wall, providing insight into the molecular basis of male sterility in plants from the genus Allium. Allium sativum (garlic) is one of the plant species exhibiting male sterility, and the molecular background of this phenomenon has never been thoroughly described. This study presents comparative analyses of meiotically dividing cells, which revealed inhibition at the different microsporogenesis stages in male-sterile A. sativum plants (cultivars Harnas and Arkus) and sterile A. ampeloprasum var. ampeloprasum (GHG-L), which is phylogenetically related to garlic. Fertile species A. ampeloprasum (leek) was used as the control material, because leek is closely related to both garlic and GHG-L. To shed more light on the molecular basis of these disturbances, autofluorescence-spectral imaging of live cells was used for the assessment of the biophysical/biochemical differences in the callose wall, pollen grain sporoderm, and the tapetum in the sterile species, in comparison with the fertile leek. The use of techniques for live-cell imaging (autofluorescence-spectral imaging) allowed the observation of quantitative/qualitative fluctuations of autofluorescent chemical compounds within the meiocyte callose wall. The biophysical characterisation of the metabolic disturbances in the callose wall provides insight into the molecular basis of male sterility in A. sativum. In addition, using this method, it was possible for the first time, to determine precisely (on the basis of fluctuations of autofluorescence compounds) the meiosis stage in which normal microsporogenesis is disturbed, which was not visible using light microscopy.


Development of an Imaging Flow Cytometry Method for Fungal Cytological Profiling and Its Potential Application in Antifungal Drug Development.

  • Courtney L McMahon‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2023‎

Automated imaging techniques have been in increasing demand for the more advanced analysis and efficient characterization of cellular phenotypes. The success of the image-based profiling method hinges on assays that can rapidly and simultaneously capture a wide range of phenotypic features. We have developed an automated image acquisition method for fungal cytological profiling (FCP) using an imaging flow cytometer that can objectively measure over 250 features of a single fungal cell. Fungal cells were labeled with calcofluor white and FM4-64FX, which bind to the cell wall and lipophilic membrane, respectively. Images of single cells were analyzed using IDEAS® software. We first acquired FCPs of fungal cells treated with fluconazole, amphotericin B, and caspofungin, each with a distinct mode of action, to establish FCP databases of profiles associated with specific antifungal treatment. Once fully established, we investigated the potential application of this technique as a screening methodology to identify compounds with novel antifungal activity against Candida albicans and Cryptococcus neoformans. Altogether, we have developed a rapid, powerful, and novel image-profiling method for the phenotypic characterization of fungal cells, also with potential applications in antifungal drug development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: