Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Differential effects on human cytochromes P450 by CRISPR/Cas9-induced genetic knockout of cytochrome P450 reductase and cytochrome b5 in HepaRG cells.

  • Tamara Heintze‎ et al.
  • Scientific reports‎
  • 2021‎

HepaRG cells are increasingly accepted as model for human drug metabolism and other hepatic functions. We used lentiviral transduction of undifferentiated HepaRG cells to deliver Cas9 and two alternative sgRNAs targeted at NADPH:cytochrome P450 oxidoreductase (POR), the obligate electron donor for microsomal cytochromes P450 (CYP). Cas9-expressing HepaRGVC (vector control) cells were phenotypically similar to wild type HepaRG cells and could be differentiated into hepatocyte-like cells by DMSO. Genetic POR-knockout resulted in phenotypic POR knockdown of up to 90% at mRNA, protein, and activity levels. LC-MS/MS measurement of seven CYP-activities showed differential effects of POR-knockdown with CYP2C8 being least and CYP2C9 being most affected. Further studies on cytochrome b5 (CYB5), an alternative NADH-dependent electron donor indicated particularly strong support of CYP2C8-dependent amodiaquine N-deethylation by CYB5 and this was confirmed by genetic CYB5 single- and POR/CYB5 double-knockout. POR-knockdown also affected CYP expression on mRNA and protein level, with CYP1A2 being induced severalfold, while CYP2C9 was strongly downregulated. In summary our results show that POR/NADPH- and CYB5/NADH-electron transport systems influence human drug metabolizing CYPs differentially and differently than mouse Cyps. Our Cas9-expressing HepaRGVC cells should be suitable to study the influence of diverse genes on drug metabolism and other hepatic functions.


Modulation of CYP2C9 activity and hydrogen peroxide production by cytochrome b5.

  • Javier Gómez-Tabales‎ et al.
  • Scientific reports‎
  • 2020‎

Cytochromes P450 (CYP) play a major role in drug detoxification, and cytochrome b5 (cyt b5) stimulates the catalytic cycle of mono-oxygenation and detoxification reactions. Collateral reactions of this catalytic cycle can lead to a significant production of toxic reactive oxygen species (ROS). One of the most abundant CYP isoforms in the human liver is CYP2C9, which catalyzes the metabolic degradation of several drugs including nonsteroidal anti-inflammatory drugs. We studied modulation by microsomal membrane-bound and soluble cyt b5 of the hydroxylation of salicylic acid to gentisic acid and ROS release by CYP2C9 activity in human liver microsomes (HLMs) and by CYP2C9 baculosomes. CYP2C9 accounts for nearly 75% of salicylic acid hydroxylation in HLMs at concentrations reached after usual aspirin doses. The anti-cyt b5 antibody SC9513 largely inhibits the rate of salicylic acid hydroxylation by CYP2C9 in HLMs and CYP2C9 baculosomes, increasing the KM approximately threefold. Besides, soluble human recombinant cyt b5 stimulates the Vmax nearly twofold while it decreases nearly threefold the Km value in CYP2C9 baculosomes. Regarding NADPH-dependent ROS production, soluble recombinant cyt b5 is a potent inhibitor both in HLMs and in CYP2C9 baculosomes, with inhibition constants of 1.04 ± 0.25 and 0.53 ± 0.06 µM cyt b5, respectively. This study indicates that variability in cyt b5 might be a major factor underlying interindividual variability in the metabolism of CYP2C9 substrates.


Dynamic interaction between membrane-bound full-length cytochrome P450 and cytochrome b5 observed by solid-state NMR spectroscopy.

  • Kazutoshi Yamamoto‎ et al.
  • Scientific reports‎
  • 2013‎

Microsomal monoxygenase enzymes of the cytochrome-P450 family are found in all biological kingdoms, and play a central role in the breakdown of metabolic as well as xenobiotic, toxic and 70% of the drugs in clinical use. Full-length cytochrome-b5 has been shown to be important for the catalytic activity of cytochrome-P450. Despite the significance in understanding the interactions between these two membrane-associated proteins, only limited high-resolution structural information on the full-length cytochrome-P450 and the cytochromes-b5-P450 complex is available. Here, we report a structural study on a functional ~72-kDa cytochromes-b5-P450 complex embedded in magnetically-aligned bicelles without having to freeze the sample. Functional and solid-state NMR (Nuclear Magnetic Resonance) data reveal interactions between the proteins in fluid lamellar phase bilayers. In addition, our data infer that the backbone structure and geometry of the transmembrane domain of cytochrome-b5 is not significantly altered due to its interaction with cytochrome-P450, whereas the mobility of cytochrome-b5 is considerably reduced.


Photo-initiated crosslinking extends mapping of the protein-protein interface to membrane-embedded portions of cytochromes P450 2B4 and b₅.

  • Tomáš Ječmen‎ et al.
  • Methods (San Diego, Calif.)‎
  • 2015‎

Protein-protein interactions play a central role in the regulation of many biochemical processes (e.g. the system participating in enzyme catalysis). Therefore, a deeper understanding of protein-protein interactions may contribute to the elucidation of many biologically important mechanisms. For this purpose, it is necessary to establish the composition and stoichiometry of supramolecular complexes and to identify the crucial portions of the interacting molecules. This study is devoted to structure-functional relationships in the microsomal Mixed Function Oxidase (MFO) complex, which is responsible for biotransformation of many hydrophobic endogenous compounds and xenobiotics. In particular, the cytochrome b5 interaction with MFO terminal oxygenase cytochrome P-450 (P450) was studied. To create photolabile probes suitable for this purpose, we prepared cytochrome b5 which had a photolabile diazirine analog of methionine (pMet) incorporated into the protein sequence, employing recombinant expression in Escherichia coli. In addition to wild-type cytochrome b5, where three methionines (Met) are located at positions 96, 126, and 131, six mutants containing only one Met in the sequence were designed and expressed (see Table 1). In these mutants, a single Met was engineered into the catalytic domain (at positions 23, 41, or 46), into the linker between the protein domains (at position 96), or into the membrane region (at positions 126 or 131). These mutants should confirm or exclude these portions of cytochrome b5 which are involved in the interaction with P450. After UV irradiation, the pMet group(s) in the photolabile cytochrome b5 probe was(were) activated, producing covalent crosslinks with the interacting parts of P450 2B4 in the close vicinity. The covalent complexes were analyzed by the "bottom up" approach with high-accuracy mass spectrometry. The analysis provided an identification of the contacts in the supramolecular complex with low structural resolution. We found that all the above-mentioned cytochrome b5 Met residues can form intermolecular crosslinks and thus participate in the interaction. In addition, our results indicate the existence of at least two P450:cytochrome b5 complexes which differ in the orientation of individual proteins. The results demonstrate the advantages of the photo-initiated crosslinking technique which is able to map the protein-protein interfaces not only in the solvent exposed regions, but also in the membrane-embedded segments (compared to a typical crosslinking approach which generally only identifies crosslinks in solvent exposed regions).


Identification of Enzymes Oxidizing the Tyrosine Kinase Inhibitor Cabozantinib: Cabozantinib Is Predominantly Oxidized by CYP3A4 and Its Oxidation Is Stimulated by cyt b5 Activity.

  • Radek Indra‎ et al.
  • Biomedicines‎
  • 2020‎

Herein, the in vitro metabolism of tyrosine kinase inhibitor cabozantinib, the drug used for the treatment of metastatic medullary thyroid cancer and advanced renal cell carcinoma, was studied using hepatic microsomal samples of different human donors, human recombinant cytochromes P450 (CYPs), flavin-containing mono-oxygenases (FMOs) and aldehyde oxidase. After incubation with human microsomes, three metabolites, namely cabozantinib N-oxide, desmethyl cabozantinib and monohydroxy cabozantinib, were detected. Significant correlations were found between CYP3A4 activity and generation of all metabolites. The privileged role of CYP3A4 was further confirmed by examining the effect of CYP inhibitors and by human recombinant enzymes. Only four of all tested human recombinant cytochrome P450 were able to oxidize cabozantinib, and CYP3A4 exhibited the most efficient activity. Importantly, cytochrome b5 (cyt b5) stimulates the CYP3A4-catalyzed formation of cabozantinib metabolites. In addition, cyt b5 also stimulates the activity of CYP3A5, whereas two other enzymes, CYP1A1 and 1B1, were not affected by cyt b5. Since CYP3A4 exhibits high expression in the human liver and was found to be the most efficient enzyme in cabozantinib oxidation, we examined the kinetics of this oxidation. The present study provides substantial insights into the metabolism of cabozantinib and brings novel findings related to cabozantinib pharmacokinetics towards possible utilization in personalized medicine.


Beyond the survival and death of the deltamethrin-threatened pollen beetle Meligethes aeneus: An in-depth proteomic study employing a transcriptome database.

  • Tomas Erban‎ et al.
  • Journal of proteomics‎
  • 2017‎

Insecticide resistance is an increasingly global problem that hampers pest control. We sought the mechanism responsible for survival following pyrethroid treatment and the factors connected to paralysis/death of the pollen beetle Meligethes aeneus through a proteome-level analysis using nanoLC coupled with Orbitrap Fusion™ Tribrid™ mass spectrometry. A tolerant field population of beetles was treated with deltamethrin, and the ensuing proteome changes were observed in the survivors (resistant), dead (paralyzed) and control-treated beetles. The protein database consisted of the translated transcriptome, and the resulting changes were manually annotated via BLASTP. We identified a number of high-abundance changes in which there were several dominant proteins, e.g., the electron carrier cytochrome b5, ribosomal proteins 60S RPL28, 40S RPS23 and RPS26, eIF4E-transporter, anoxia up-regulated protein, 2 isoforms of vitellogenin and pathogenesis-related protein 5. Deltamethrin detoxification was influenced by different cytochromes P450, which were likely boosted by increased cytochrome b5, but glutathione-S-transferase ε and UDP-glucuronosyltransferases also contributed. Moreover, we observed changes in proteins related to RNA interference, RNA binding and epigenetic modifications. The high changes in ribosomal proteins and associated factors suggest specific control of translation. Overall, we showed modulation of expression processes by epigenetic markers, alternative splicing and translation. Future functional studies will benefit.


External mitochondrial NADH-dependent reductase of redox cyclers: VDAC1 or Cyb5R3?

  • Anna B Nikiforova‎ et al.
  • Free radical biology & medicine‎
  • 2014‎

It was reported that VDAC1 possesses an NADH oxidoreductase activity and plays an important role in the activation of xenobiotics in the outer mitochondrial membrane. In the present work, we evaluated the participation of VDAC1 and Cyb5R3 in the NADH-dependent activation of various redox cyclers in mitochondria. We show that external NADH oxidoreductase caused the redox cycling of menadione ≫ lucigenin>nitrofurantoin. Paraquat was predominantly activated by internal mitochondria oxidoreductases. An increase in the ionic strength stimulated and suppressed the redox cycling of negatively and positively charged acceptors, as was expected for the Cyb5R3-mediated reduction. Antibodies against Cyb5R3 but not VDAC substantially inhibited the NADH-related oxidoreductase activities. The specific VDAC blockers G3139 and erastin, separately or in combination, in concentrations sufficient for the inhibition of substrate transport, exhibited minimal effects on the redox cycler-dependent NADH oxidation, ROS generation, and reduction of exogenous cytochrome c. In contrast, Cyb5R3 inhibitors (6-propyl-2-thiouracil, p-chloromercuriobenzoate, quercetin, mersalyl, and ebselen) showed similar patterns of inhibition of ROS generation and cytochrome c reduction. The analysis of the spectra of the endogenous cytochromes b5 and c in the presence of nitrofurantoin and the inhibitors of VDAC and Cyb5R3 demonstrated that the redox cycler can transfer electrons from Cyb5R3 to endogenous cytochrome c. This caused the oxidation of outer membrane-bound cytochrome b5, which is in redox balance with Cyb5R3. The data obtained argue against VDAC1 and in favor of Cyb5R3 involvement in the activation of redox cyclers in the outer mitochondrial membrane.


Identification of Human Enzymes Oxidizing the Anti-Thyroid-Cancer Drug Vandetanib and Explanation of the High Efficiency of Cytochrome P450 3A4 in its Oxidation.

  • Radek Indra‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

The metabolism of vandetanib, a tyrosine kinase inhibitor used for treatment of symptomatic/progressive medullary thyroid cancer, was studied using human hepatic microsomes, recombinant cytochromes P450 (CYPs) and flavin-containing monooxygenases (FMOs). The role of CYPs and FMOs in the microsomal metabolism of vandetanib to N-desmethylvandetanib and vandetanib-N-oxide was investigated by examining the effects of CYP/FMO inhibitors and by correlating CYP-/FMO-catalytic activities in each microsomal sample with the amounts of N-desmethylvandetanib/vandetanib-N-oxide formed by these samples. CYP3A4/FMO-activities significantly correlated with the formation of N-desmethylvandetanib/ vandetanib-N-oxide. Based on these studies, most of the vandetanib metabolism was attributed to N-desmethylvandetanib/vandetanib-N-oxide to CYP3A4/FMO3. Recombinant CYP3A4 was most efficient to form N-desmethylvandetanib, while FMO1/FMO3 generated N-oxide. Cytochrome b5 stimulated the CYP3A4-catalyzed formation of N-desmethylvandetanib, which is of great importance because CYP3A4 is not only most efficient in generating N-desmethylvandetanib, but also most significant due to its high expression in human liver. Molecular modeling indicated that binding of more than one molecule of vandetanib into the CYP3A4-active center can be responsible for the high efficiency of CYP3A4 N-demethylating vandetanib. Indeed, the CYP3A4-mediated reaction exhibits kinetics of positive cooperativity and this corresponded to the in silico model, where two vandetanib molecules were found in CYP3A4-active center.


Cytochrome P450 enzymes but not NADPH oxidases are the source of the NADPH-dependent lucigenin chemiluminescence in membrane assays.

  • Flávia Rezende‎ et al.
  • Free radical biology & medicine‎
  • 2017‎

Measuring NADPH oxidase (Nox)-derived reactive oxygen species (ROS) in living tissues and cells is a constant challenge. All probes available display limitations regarding sensitivity, specificity or demand highly specialized detection techniques. In search for a presumably easy, versatile, sensitive and specific technique, numerous studies have used NADPH-stimulated assays in membrane fractions which have been suggested to reflect Nox activity. However, we previously found an unaltered activity with these assays in triple Nox knockout mouse (Nox1-Nox2-Nox4-/-) tissue and cells compared to wild type. Moreover, the high ROS production of intact cells overexpressing Nox enzymes could not be recapitulated in NADPH-stimulated membrane assays. Thus, the signal obtained in these assays has to derive from a source other than NADPH oxidases. Using a combination of native protein electrophoresis, NADPH-stimulated assays and mass spectrometry, mitochondrial proteins and cytochrome P450 were identified as possible source of the assay signal. Cells lacking functional mitochondrial complexes, however, displayed a normal activity in NADPH-stimulated membrane assays suggesting that mitochondrial oxidoreductases are unlikely sources of the signal. Microsomes overexpressing P450 reductase, cytochromes b5 and P450 generated a NADPH-dependent signal in assays utilizing lucigenin, L-012 and dihydroethidium (DHE). Knockout of the cytochrome P450 reductase by CRISPR/Cas9 technology (POR-/-) in HEK293 cells overexpressing Nox4 or Nox5 did not interfere with ROS production in intact cells. However, POR-/- abolished the signal in NADPH-stimulated assays using membrane fractions from the very same cells. Moreover, membranes of rat smooth muscle cells treated with angiotensin II showed an increased NADPH-dependent signal with lucigenin which was abolished by the knockout of POR but not by knockout of p22phox.


Proteomic and bioinformatics analyses of mouse liver microsomes.

  • Fang Peng‎ et al.
  • International journal of proteomics‎
  • 2012‎

Microsomes are derived mostly from endoplasmic reticulum and are an ideal target to investigate compound metabolism, membrane-bound enzyme functions, lipid-protein interactions, and drug-drug interactions. To better understand the molecular mechanisms of the liver and its diseases, mouse liver microsomes were isolated and enriched with differential centrifugation and sucrose gradient centrifugation, and microsome membrane proteins were further extracted from isolated microsomal fractions by the carbonate method. The enriched microsome proteins were arrayed with two-dimensional gel electrophoresis (2DE) and carbonate-extracted microsome membrane proteins with one-dimensional gel electrophoresis (1DE). A total of 183 2DE-arrayed proteins and 99 1DE-separated proteins were identified with tandem mass spectrometry. A total of 259 nonredundant microsomal proteins were obtained and represent the proteomic profile of mouse liver microsomes, including 62 definite microsome membrane proteins. The comprehensive bioinformatics analyses revealed the functional categories of those microsome proteins and provided clues into biological functions of the liver. The systematic analyses of the proteomic profile of mouse liver microsomes not only reveal essential, valuable information about the biological function of the liver, but they also provide important reference data to analyze liver disease-related microsome proteins for biomarker discovery and mechanism clarification of liver disease.


Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica.

  • Fang Zhu‎ et al.
  • BMC physiology‎
  • 2008‎

Insects may use various biochemical pathways to enable them to tolerate the lethal action of insecticides. For example, increased cytochrome P450 detoxification is known to play an important role in many insect species. Both constitutively increased expression (overexpression) and induction of P450s are thought to be responsible for increased levels of detoxification of insecticides. However, unlike constitutively overexpressed P450 genes, whose expression association with insecticide resistance has been extensively studied, the induction of P450s is less well characterized in insecticide resistance. The current study focuses on the characterization of individual P450 genes that are induced in response to permethrin treatment in permethrin resistant house flies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: