Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 294 papers

HIV-1 gp120 Impairs Spatial Memory Through Cyclic AMP Response Element-Binding Protein.

  • Jenny Shrestha‎ et al.
  • Frontiers in aging neuroscience‎
  • 2022‎

HIV-associated neurocognitive disorders (HAND) remain an unsolved problem that persists despite using antiretroviral therapy. We have obtained data showing that HIV-gp120 protein contributes to neurodegeneration through metabolic reprogramming. This led to decreased ATP levels, lower mitochondrial DNA copy numbers, and loss of mitochondria cristae, all-important for mitochondrial biogenesis. gp120 protein also disrupted mitochondrial movement and synaptic plasticity. Searching for the mechanisms involved, we found that gp120 alters the cyclic AMP response element-binding protein (CREB) phosphorylation on serine residue 133 necessary for its function as a transcription factor. Since CREB regulates the promoters of PGC1α and BDNF genes, we found that CREB dephosphorylation causes PGC1α and BDNF loss of functions. The data was validated in vitro and in vivo. The negative effect of gp120 was alleviated in cells and animals in the presence of rolipram, an inhibitor of phosphodiesterase protein 4 (PDE4), restoring CREB phosphorylation. We concluded that HIV-gp120 protein contributes to HAND via inhibition of CREB protein function.


Identification and characterization of cyclic AMP response element-binding protein H response element in the human apolipoprotein A5 gene promoter.

  • Kwang Hoon Song‎ et al.
  • BioMed research international‎
  • 2013‎

The cyclic AMP response element-binding protein H (CREBH) plays important roles in hepatic lipogenesis, fatty acid oxidation, and lipolysis under metabolic stress. Here, we report CREBH as a novel regulator of human APOA5. Knockdown of endogenous CREBH expression via small interfering RNA resulted in the downregulation of human APOA5 mRNA expression in human hepatoma cells, HepG2. Sequence analysis suggested that putative CREBH response element (CREBHRE) is located in the human APOA5 promoter region and is highly conserved in both human and rodent. To clarify whether the human APOA5 promoter is regulated by CREBH, we analyzed the human APOA5 promoter region using a transient transfection assay and determined that transfection of CREBH induced human APOA5 promoter activity. Moreover, it was shown that CREBH directly regulated human APOA5 gene expression by binding to a unique CREBHRE located in the proximal human APOA5 promoter region, using 5'-deletion and mutagenesis of human APOA5 promoter analysis and chromatin immunoprecipitation assay. Taken together, our results demonstrated that human APOA5 is directly regulated by CREBH via CREBHRE and provided a new insight into the role of this liver-specific bZIP transcription factor in lipoprotein metabolism and triglyceride homeostasis.


Cyclic AMP Response Element Binding Protein Mediates Pathological Retinal Neovascularization via Modulating DLL4-NOTCH1 Signaling.

  • Nikhlesh K Singh‎ et al.
  • EBioMedicine‎
  • 2015‎

Retinal neovascularization is the most common cause of moderate to severe vision loss in all age groups. Despite the use of anti-VEGFA therapies, this complication continues to cause blindness, suggesting a role for additional molecules in retinal neovascularization. Besides VEGFA and VEGFB, hypoxia induced VEGFC expression robustly. Based on this finding, we tested the role of VEGFC in pathological retinal angiogenesis. VEGFC induced proliferation, migration, sprouting and tube formation of human retinal microvascular endothelial cells (HRMVECs) and these responses require CREB-mediated DLL4 expression and NOTCH1 activation. Furthermore, down regulation of VEGFC levels substantially reduced tip cell formation and retinal neovascularization in vivo. In addition, we observed that CREB via modulating the DLL4-NOTCH1 signaling mediates VEGFC-induced tip cell formation and retinal neovascularization. In regard to upstream mechanism, we found that down regulation of p38β levels inhibited hypoxia-induced CREB-DLL4-NOTCH1 activation, tip cell formation, sprouting and retinal neovascularization. Based on these findings, it may be suggested that VEGFC besides its role in the regulation of lymphangiogenesis also plays a role in pathological retinal angiogenesis and this effect depends on p38β and CREB-mediated activation of DLL4-NOTCH1 signaling.


Isoforms of cyclic AMP response element binding proteins in Drosophila S2 cells.

  • Jeroen Poels‎ et al.
  • Biochemical and biophysical research communications‎
  • 2004‎

Activation or inhibition of the cyclic AMP (cAMP)-protein kinase A (PKA) pathway can ultimately regulate the transcription of a variety of genes. In vertebrates, the best characterized nuclear targets of PKA are the 'cAMP response element' (CRE) binding proteins (CREB). Differences in the transcriptional response to this pathway between cells and tissues can be based on the presence of distinct CREB isoforms. In this context, we have now investigated the presence of different dCREB transcripts in a stable, embryonic insect cell line, i.e., Drosophila Schneider 2 (S2) cells. In addition, we have studied the possible effect of cellular cAMP- and Ca2+ increases on the expression of a luciferase reporter in cells transfected with a CRE-containing reporter gene construct. In combination with recent data from the literature, our results indicate that the regulation of CRE-dependent gene expression shows some important differences between insects and vertebrates.


Regulation of Cyclic AMP-Response Element Binding Protein Zhangfei (CREBZF) Expression by Estrogen in Mouse Uterus.

  • Hoon Jang‎
  • Development & reproduction‎
  • 2018‎

CREBZF (cAMP-response element binding protein zhangfei) is a member of ATF/CREB family, and which regulates various cellular functions by suppressing major factors with direct interaction. In this study, we have examined the expression of CREBZF on mouse endometrium during uterus estrous cycles and estrogen (E2) treatment. In uterus, CREBZF mRNA expression was higher than other organs and mRNA and protein of CREBZF was increased in proestrus phase and decreased in estrus phase. The expression of CREBZF in 3-weeks old mouse uterus was reduced by E2 injection in endometrium. In addition, the expression of progesterone receptor, a marker of E2 in ovariectomized mice was found to be strongly expressed in stroma, while CREBZF was only expressed in epithelium. Also, we conformed that E2-suppressed CREBZF was restored by co-injection of ICI 182,780, an estrogen receptor antagonist. Overall, these results suggest that CREBZF is regulated by estrogen and involved in ER signaling pathway in mouse uterus.


Rapid actions of estradiol on cyclic amp response-element binding protein phosphorylation in dorsal root ganglion neurons.

  • T D Purves-Tyson‎ et al.
  • Neuroscience‎
  • 2004‎

Actions of gonadal steroids have not been widely investigated in the peripheral nervous system, although many dorsal root ganglion (DRG) and autonomic pelvic ganglion (PG) neurons express estrogen receptors (ERs). We have studied the effects of 17beta-estradiol exposure on cultured DRG and PG neurons from adult rats. Western blotting analysis of DRG extracts detected phosphorylation of ERK1 and ERK2 (extracellular signal-regulated kinases) that peaked 10 min after exposure to 17beta-estradiol. These extracts contain both neurons and glia; therefore, to determine if this response occurred in DRG neurons, we developed an immunocytochemical method to specifically measure activation in individual neurons. These measurements showed that estradiol increased phosphorylation of CREB (cyclic AMP response-element binding protein), which was consistently blocked by the ERK pathway inhibitor PD98059 but not by the inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY294002. 17beta-Estradiol activation of CREB in DRG neurons was reduced by the ER antagonist, ICI182780. In contrast, in PG neurons estradiol did not affect CREB phosphorylation, highlighting a difference in E2 responses in different populations of peripheral neurons. This study has shown that estrogens can rapidly activate signaling pathways associated with CREB-mediated transcriptional regulation in sensory neurons. As these pathways also mediate many effects of neurotrophic factors, changes in estrogen levels (e.g. during puberty, pregnancy or menopause) could have broad-ranging genomic and non-genomic actions on urogenital pain sensation and reflex pathways.


alpha-Tocopherol decreases the somatostatin receptor-effector system and increases the cyclic AMP/cyclic AMP response element binding protein pathway in the rat dentate gyrus.

  • A M Hernández-Pinto‎ et al.
  • Neuroscience‎
  • 2009‎

Neuronal survival has been shown to be enhanced by alpha-tocopherol and modulated by cyclic AMP (cAMP). Somatostatin (SST) receptors couple negatively to adenylyl cyclase (AC), thus leading to decreased cAMP levels. Whether alpha-tocopherol can stimulate neuronal survival via regulation of the somatostatinergic system, however, is unknown. The aim of this study was to investigate the effects of alpha-tocopherol on the SST signaling pathway in the rat dentate gyrus. To that end, 15-week-old male Sprague-Dawley rats were treated daily for 1 week with (+)-alpha-tocopherol or vehicle and sacrificed on the day following the last administration. No changes in either SST-like immunoreactivity (SST-LI) content or SST mRNA levels were detected in the dentate gyrus as a result of alpha-tocopherol treatment. A significant decrease in the density of the SST binding sites and an increase in the dissociation constant, however, were detected. The lower SST receptor density in the alpha-tocopherol-treated rats correlated with a significant decrease in the protein levels of the SST receptor subtypes SSTR1-SSTR4, whereas the corresponding mRNA levels were unaltered. G-protein-coupled-receptor kinase 2 expression was decreased by alpha-tocopherol treatment. This vitamin induced a significant increase in both basal and forskolin-stimulated AC activity, as well as a decrease in the inhibitory effect of SST on AC. Whereas the protein levels of AC type V/VI were not modified by alpha-tocopherol administration, ACVIII expression was significantly enhanced, suggesting it might account for the increase in AC activity. In addition, this treatment led to a reduction in Gialpha1-3 protein levels and in Gi functionality. alpha-Tocopherol did not affect the expression of the regulator of G-protein signaling 6/7 (RGS6/7). Finally, alpha-tocopherol induced an increase in the levels of phosphorylated cAMP response element binding protein (p-CREB) and total CREB in the dentate gyrus. Since CREB synthesis and phosphorylation promote the survival of many cells, including neurons, whereas SST inhibits the cAMP-PKA pathway, which is known to be involved in CREB phosphorylation, the alpha-tocopherol-induced reduction of SSTR observed here might possibly contribute, via increased cAMP levels and CREB activity, to the mechanism by which this vitamin promotes the survival of newborn neurons in the dentate gyrus.


Differential Expression of Cyclic AMP-Response Element Binding Protein Zhangfei (CREBZF) in the Mouse Testis during Postnatal Development.

  • Hoon Jang‎
  • Development & reproduction‎
  • 2018‎

Cyclic AMP-response element binding protein zhangfei (CREBZF), a member of ATF/CREB (activating transcription factor/ cAMP response element binding protein) family, regulates numerous cellular functions and development of cells by interacting transcription factors. This study discovered the expression pattern of CREBZF in seminiferous tubule of testes during the postnatal development of mice. In testis, CREBZF mRNA expression was the highest among other organs. Immunofluorescence analyses showed that the CREBZF was specifically expressed on spermatocyte but not in spermatogonia and Sertoli cells in seminiferous epithelium of mouse testis. Semi-quantitative polymerase chain reaction (PCR) analysis showed that CREBZF transcript level was significantly elevated during postnatal development of mouse testis. Confocal imaging analysis indicated that the protein expression of CREBZF in seminiferous tubule remained low until postnatal day (PD) 14, and was dramatically increased in PD 21. Interestingly, only one type of the spermatocyte expressed CREBZF specifically among SCP3-positive spermatocytes. Taken together, these results suggest that CREBZF may be novel putative marker of the spermatocyte and regulate meiosis during postnatal development of mice.


Regulation of genotoxic stress response by homeodomain-interacting protein kinase 2 through phosphorylation of cyclic AMP response element-binding protein at serine 271.

  • Kensuke Sakamoto‎ et al.
  • Molecular biology of the cell‎
  • 2010‎

CREB (cyclic AMP response element-binding protein) is a stimulus-induced transcription factor that plays pivotal roles in cell survival and proliferation. The transactivation function of CREB is primarily regulated through Ser-133 phosphorylation by cAMP-dependent protein kinase A (PKA) and related kinases. Here we found that homeodomain-interacting protein kinase 2 (HIPK2), a DNA-damage responsive nuclear kinase, is a new CREB kinase for phosphorylation at Ser-271 but not Ser-133, and activates CREB transactivation function including brain-derived neurotrophic factor (BDNF) mRNA expression. Ser-271 to Glu-271 substitution potentiated the CREB transactivation function. ChIP assays in SH-SY5Y neuroblastoma cells demonstrated that CREB Ser-271 phosphorylation by HIPK2 increased recruitment of a transcriptional coactivator CBP (CREB binding protein) without modulation of CREB binding to the BDNF CRE sequence. HIPK2-/- MEF cells were more susceptible to apoptosis induced by etoposide, a DNA-damaging agent, than HIPK2+/+ cells. Etoposide activated CRE-dependent transcription in HIPK2+/+ MEF cells but not in HIPK2-/- cells. HIPK2 knockdown in SH-SY5Y cells decreased etoposide-induced BDNF mRNA expression. These results demonstrate that HIPK2 is a new CREB kinase that regulates CREB-dependent transcription in genotoxic stress.


Regulation of cyclic AMP response-element binding-protein (CREB) by Gq/11-protein-coupled receptors in human SH-SY5Y neuroblastoma cells.

  • Elizabeth M Rosethorne‎ et al.
  • Biochemical pharmacology‎
  • 2008‎

Human SH-SY5Y neuroblastoma cells have been used to investigate mechanisms involved in CREB phosphorylation after activation of two endogenously expressed Gq/11-protein-coupled receptors, the M3 muscarinic acetylcholine (mACh) and B2 bradykinin receptors. Stimulation with either methacholine or bradykinin resulted in maximal increases in CREB phosphorylation within 1 min, with either a rapid subsequent decrease (bradykinin) to basal levels, or a sustained response (methacholine). Inhibitor studies were performed to assess the involvement of a number of potential kinases in signalling to CREB phosphorylation. Removal of extracellular Ca2+, inhibition of Ca2+/calmodulin-dependent protein kinase II and down-regulation of protein kinase C (PKC) resulted in reduced CREB phosphorylation after both M3 mACh and B2 bradykinin receptor activation. In contrast, inhibition of MEK1/2 by U0126 resulted in significantly reduced CREB phosphorylation levels after B2 bradykinin, but not M3 mACh receptor activation. In addition, we demonstrate that maintained phosphorylation of CREB is necessary for CRE-dependent gene transcription as the M3 mACh, but not the B2 bradykinin receptor activates both a recombinant CRE-dependent reporter gene, and the endogenous c-Fos gene. These data highlight the involvement of multiple, overlapping signalling pathways linking these endogenous Gq/11-coupled metabotropic receptors to CREB and emphasize the importance of the duration of signalling pathway activation in converting a CREB phosphorylation event into a significant change in transcriptional activity.


Roles of constitutive and signal-dependent protein phosphatase 2A docking motifs in burst attenuation of the cyclic AMP response element-binding protein.

  • Sang Hwa Kim‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

The cAMP response element-binding protein (CREB) is an important regulator of cell growth, metabolism, and synaptic plasticity. CREB is activated through phosphorylation of an evolutionarily conserved Ser residue (S133) within its intrinsically disordered kinase-inducible domain (KID). Phosphorylation of S133 in response to cAMP, Ca2+, and other stimuli triggers an association of the KID with the KID-interacting (KIX) domain of the CREB-binding protein (CBP), a histone acetyl transferase (HAT) that promotes transcriptional activation. Here we addressed the mechanisms of CREB attenuation following bursts in CREB phosphorylation. We show that phosphorylation of S133 is reversed by protein phosphatase 2A (PP2A), which is recruited to CREB through its B56 regulatory subunits. We found that a B56-binding site located at the carboxyl-terminal boundary of the KID (BS2) mediates high-affinity B56 binding, while a second binding site (BS1) located near the amino terminus of the KID mediates low affinity binding enhanced by phosphorylation of adjacent casein kinase (CK) phosphosites. Mutations that diminished B56 binding to BS2 elevated both basal and stimulus-induced phosphorylation of S133, increased CBP interaction with CREB, and potentiated the expression of CREB-dependent reporter genes. Cells from mice harboring a homozygous CrebE153D mutation that disrupts BS2 exhibited increased S133 phosphorylation stoichiometry and elevated transcriptional bursts to cAMP. These findings provide insights into substrate targeting by PP2A holoenzymes and establish a new mechanism of CREB attenuation that has implications for understanding CREB signaling in cell growth, metabolism, synaptic plasticity, and other physiologic contexts.


Transcriptional regulation of mouse neuroglobin gene by cyclic AMP responsive element binding protein (CREB) in N2a cells.

  • Ning Liu‎ et al.
  • Neuroscience letters‎
  • 2013‎

Neuroglobin (Ngb) has been demonstrated to be a novel neuroprotective protein that protects against hypoxia/ischemia and oxidative stress-induced injury in the nervous system. However, the regulation mechanisms of Ngb gene expression under both normal resting and stress conditions have not been fully elucidated. The cyclic AMP response element binding protein (CREB) is a key transcription factor that regulates a variety of pro-survival genes, but its role in regulating the neuroprotective gene Ngb has not been studied. In this study we investigated the transcriptional regulation of mouse Ngb gene by CREB in mouse neuroblastoma cell line N2a. Our results showed that CREB knockdown decreased Ngb gene expression, and overexpression of the wild-type CREB, but not the mutant CREB, significantly increased Ngb gene expression in N2a cells. Moreover, a cAMP response element (CRE) site located at -854 in the promoter region of mouse Ngb gene was found to be responsible for both basal and CREB-induced Ngb promoter activity. Using chromatin immunopreciptation (ChIP) assays, we found that CREB could bind to the Ngb promoter region spanning from -1016 to -793 that harbors the CRE site. Taken together, our results suggested that transcription factor CREB participates in the transcriptional regulation of mouse Ngb gene.


Temporal effect of adrenocorticotrophic hormone on adrenal glucocorticoid steroidogenesis: involvement of the transducer of regulated cyclic AMP-response element-binding protein activity.

  • F Spiga‎ et al.
  • Journal of neuroendocrinology‎
  • 2011‎

The availability of active steroidogenic acute regulatory protein (StAR) and side-chain cleavage cytochrome P450 (P450scc) are rate-limiting steps for steroidogenesis. Transcription of StAR and P450scc genes depends on cyclic AMP-response element-binding protein (CREB) phosphorylation and CREB co-activator, transducer of regulated CREB activity (TORC), which is regulated by salt-inducible kinase 1 (SIK1). In the present study, we investigated the relationship between TORC activation and adrenocorticotrophic hormone (ACTH)-induced steroidogenesis in vivo, by examining the time-course of the effect of ACTH injection (4 ng, i.v.) on the transcriptional activity of StAR and P450scc genes and the nuclear accumulation of transducer of regulated CREB activity 2 (TORC2) in rat adrenal cortex. ACTH produced rapid and transient increases in plasma corticosterone, with maximal responses between 5 and 15 min, and a decrease to almost basal values at 30 min. StAR and P450scc hnRNA levels increased 15 min following ACTH and decreased toward basal values at 30 min. Concomitant with an increase in nuclear phospho-CREB, ACTH injection induced nuclear accumulation of TORC2, with maximal levels at 5 min and a return to basal values by 30 min. The decline of nuclear TORC2 was paralleled by increases in SIK1 hnRNA and mRNA 15 and 30 min after injection, respectively. The early rises in plasma corticosterone preceding StAR and P450scc gene transcription suggest that post-transcriptional and post-translational changes in StAR protein mediate the early steroidogenic responses. Furthermore, the direct temporal relationship between nuclear accumulation of TORC2 and the increase in transcription of steroidogenic proteins, implicates TORC2 in the physiological regulation of steroidogenesis in the adrenal cortex. The delayed induction of SIK1 suggests a role for SIK1 in the declining phase of steroidogenesis.


Regulation of Cancer Cell Responsiveness to Ionizing Radiation Treatment by Cyclic AMP Response Element Binding Nuclear Transcription Factor.

  • Francesca D'Auria‎ et al.
  • Frontiers in oncology‎
  • 2017‎

Cyclic AMP response element binding (CREB) protein is a member of the CREB/activating transcription factor (ATF) family of transcription factors that play an important role in the cell response to different environmental stimuli leading to proliferation, differentiation, apoptosis, and survival. A number of studies highlight the involvement of CREB in the resistance to ionizing radiation (IR) therapy, demonstrating a relationship between IR-induced CREB family members' activation and cell survival. Consistent with these observations, we have recently demonstrated that CREB and ATF-1 are expressed in leukemia cell lines and that low-dose radiation treatment can trigger CREB activation, leading to survival of erythro-leukemia cells (K562). On the other hand, a number of evidences highlight a proapoptotic role of CREB following IR treatment of cancer cells. Since the development of multiple mechanisms of resistance is one key problem of most malignancies, including those of hematological origin, it is highly desirable to identify biological markers of responsiveness/unresponsiveness useful to follow-up the individual response and to adjust anticancer treatments. Taking into account all these considerations, this mini-review will be focused on the involvement of CREB/ATF family members in response to IR therapy, to deepen our knowledge of this topic, and to pave the way to translation into a therapeutic context.


Cyclic AMP responsive element binding proteins are involved in 'emergency' granulopoiesis through the upregulation of CCAAT/enhancer binding protein β.

  • Hideyo Hirai‎ et al.
  • PloS one‎
  • 2013‎

In contrast to the definitive role of the transcription factor, CCAAT/Enhancer binding protein α (C/EBPα), in steady-state granulopoiesis, previous findings have suggested that granulopoiesis during emergency situations, such as infection, is dependent on C/EBPβ. In this study, a novel lentivirus-based reporter system was developed to elucidate the molecular switch required for C/EBPβ-dependency. The results demonstrated that two cyclic AMP responsive elements (CREs) in the proximal promoter region of C/EBPβ were involved in the positive regulation of C/EBPβ transcription during granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced differentiation of bone marrow cells. In addition, the transcripts of CRE binding (CREB) family proteins were readily detected in hematopoietic stem/progenitor cells. CREB was upregulated, phosphorylated and bound to the CREs in response to GM-CSF stimulation. Retroviral transduction of a dominant negative CREB mutant reduced C/EBPβ mRNA levels and significantly impaired the proliferation/differentiation of granulocyte precursors, while a constitutively active form of CREB facilitated C/EBPβ transcription. These data suggest that CREB proteins are involved in the regulation of granulopoiesis via C/EBPβ upregulation.


Long-term memory of visually cued fear conditioning: roles of the neuronal nitric oxide synthase gene and cyclic AMP response element-binding protein.

  • J B Kelley‎ et al.
  • Neuroscience‎
  • 2011‎

Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) has a role in late-phase long-term potentiation (LTP) and long-term memory (LTM) formation. Our recent studies implicated NO signaling in contextual and auditory cued fear conditioning. The present study investigated the role of NO signaling in visually cued fear conditioning. First, visually cued fear conditioning was investigated in wild-type (WT) and nNOS knockout (KO) mice. Second, the effects of pharmacological modulators of NO signaling on the acquisition of visually cued fear conditioning were investigated. Third, plasma levels of corticosterone were measured to determine a relationship between physiological and behavioral responses to fear conditioning. Fourth, levels of extracellular signal-related kinase (ERK1/2) and cyclic AMP response element binding protein (CREB) phosphorylation, downstream of NO signaling, were determined in the amygdala as potential correlates of fear learning. Mice underwent single or multiple (4) spaced trainings that consisted of a visual cue (blinking light) paired with footshock. WT mice acquired cued and contextual LTM following single and multiple trainings. nNOS KO mice acquired neither cued nor contextual LTM following a single training; however, multiple trainings improved contextual but not cued LTM. The selective nNOS inhibitor S-methyl-thiocitrulline (SMTC) impaired cued and contextual LTM in WT mice. The NO donor molsidomine recovered contextual LTM but had no effect on cued LTM in nNOS KO mice. Re-exposure to the visual cue 24 h posttraining elicited freezing response and a marked increase in plasma corticosterone levels in WT but not nNOS KO mice. The expression of CREB phosphorylation (Ser-133) was significantly higher in naive nNOS KO mice than in WT counterparts, and pharmacological modulators of NO had significant effects on levels of CREB phosphorylation and expression. These findings suggest that visual cue-dependent LTM is impaired in nNOS KO mice, and aberrant modulation of CREB in the absence of the nNOS gene may hinder cued and contextual LTM formation.


Neuronal nitric oxide synthase-derived nitric oxide inhibits neurogenesis in the adult dentate gyrus by down-regulating cyclic AMP response element binding protein phosphorylation.

  • X J Zhu‎ et al.
  • Neuroscience‎
  • 2006‎

Neuronal nitric oxide synthase, the major nitric oxide synthase isoform in the mammalian brain, is implicated in some developmental processes, including neuronal survival, precursor proliferation and differentiation. However, reports about the role of neuronal nitric oxide synthase in neurogenesis in the adult dentate gyrus are conflicting. Here we show that 5-bromodeoxyuridine-labeled dividing progenitor cells in the dentate gyrus were significantly increased in mice receiving 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor, and in null mutant mice lacking neuronal nitric oxide synthase gene (nNOS-/-) 6 h and 4 weeks after 5-bromodeoxyuridine incorporation. The increase in 5-bromodeoxyuridine positive cells in 7-nitroindazole-treated mice was accompanied by activation of cyclic AMP response element binding protein phosphorylation in the dentate gyrus. Pretreatment with N-methyl-D-aspartate receptor antagonist MK-801 fully abolished the effects of 7-nitroindazole on neurogenesis and cyclic AMP response element binding protein phosphorylation. Furthermore, neuronal nitric oxide synthase inhibition significantly enhanced the survival of newborn cells and the number of 5-bromodeoxyuridine positive/NeuN positive cells in the dentate gyrus. These results indicate that neuronal nitric oxide synthase-derived nitric oxide suppresses neurogenesis in the adult dentate gyrus, in which N-methyl-D-aspartate receptor functions and cyclic AMP response element binding protein phosphorylation may be involved.


Minocycline upregulates cyclic AMP response element binding protein and brain-derived neurotrophic factor in the hippocampus of cerebral ischemia rats and improves behavioral deficits.

  • Yu Zhao‎ et al.
  • Neuropsychiatric disease and treatment‎
  • 2015‎

The cAMP response element binding protein (CREB) plays an important role in the mechanism of cognitive impairment and is also pivotal in the switch from short-term to long-term memory. Brain-derived neurotrophic factor (BDNF) seems a promising avenue in the treatment of cerebral ischemia injury since this neurotrophin could stimulate structural plasticity and repair cognitive impairment. Several findings have displayed that the dysregulation of the CREB-BDNF cascade has been involved in cognitive impairment. The aim of this study was to investigate the effect of cerebral ischemia on learning and memory as well as on the levels of CREB, phosphorylated CREB (pCREB), and BDNF, and to determine the effect of minocycline on CREB, pCREB, BDNF, and behavioral functional recovery after cerebral ischemia.


Selective Inhibition of β-Catenin/Co-Activator Cyclic AMP Response Element-Binding Protein-Dependent Signaling Prevents the Emergence of Hapten-Induced Atopic Dermatitis-Like Dermatitis.

  • Haruna Matsuda-Hirose‎ et al.
  • Annals of dermatology‎
  • 2019‎

The canonical Wnt/β-catenin signaling pathway is a fundamental regulatory system involved in various biological events. ICG-001 selectively blocks the interaction of β-catenin with its transcriptional co-activator cyclic AMP response element-binding protein (CBP). Recent studies have provided convincing evidence of the inhibitory effects of ICG-001 on Wnt-driven disease models, such as organ fibrosis, cancer, acute lymphoblastic leukemia, and asthma. However, the effects of ICG-001 in atopic dermatitis (AD) have not been investigated.


Melatonin ameliorates cuprizone-induced reduction of hippocampal neurogenesis, brain-derived neurotrophic factor, and phosphorylation of cyclic AMP response element-binding protein in the mouse dentate gyrus.

  • Woosuk Kim‎ et al.
  • Brain and behavior‎
  • 2019‎

The aim of this study was to investigate the effects of cuprizone on adult hippocampal neurogenesis in naïve mice. Additionally, we also studied how melatonin affects the neuronal degeneration induced by cuprizone.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: