Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 352 papers

Craniofacial abnormalities in a murine model of Saethre-Chotzen Syndrome.

  • Sarah Lonsdale‎ et al.
  • Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft‎
  • 2019‎

Saethre-Chotzen Syndrome (SCS) is an autosomal dominant syndrome that occurs due to a mutation or deletion of the Twist1 gene at chromosome 7p21. Our aim was to conduct a morphometric analysis of the craniofacial features in the mouse associated with a Twist1+/- mutation.


Hypomyelination, hypodontia and craniofacial abnormalities in a Polr3b mouse model of leukodystrophy.

  • Mackenzie A Michell-Robinson‎ et al.
  • Brain : a journal of neurology‎
  • 2023‎

RNA polymerase III (Pol III)-related hypomyelinating leukodystrophy (POLR3-HLD), also known as 4H leukodystrophy, is a severe neurodegenerative disease characterized by the cardinal features of hypomyelination, hypodontia and hypogonadotropic hypogonadism. POLR3-HLD is caused by biallelic pathogenic variants in genes encoding Pol III subunits. While approximately half of all patients carry mutations in POLR3B encoding the RNA polymerase III subunit B, there is no in vivo model of leukodystrophy based on mutation of this Pol III subunit. Here, we determined the impact of POLR3BΔ10 (Δ10) on Pol III in human cells and developed and characterized an inducible/conditional mouse model of leukodystrophy using the orthologous Δ10 mutation in mice. The molecular mechanism of Pol III dysfunction was determined in human cells by affinity purification-mass spectrometry and western blot. Postnatal induction with tamoxifen induced expression of the orthologous Δ10 hypomorph in triple transgenic Pdgfrα-Cre/ERT; R26-Stopfl-EYFP; Polr3bfl mice. CNS and non-CNS features were characterized using a variety of techniques including microCT, ex vivo MRI, immunofluorescence, immunohistochemistry, spectral confocal reflectance microscopy and western blot. Lineage tracing and time series analysis of oligodendrocyte subpopulation dynamics based on co-labelling with lineage-specific and/or proliferation markers were performed. Proteomics suggested that Δ10 causes a Pol III assembly defect, while western blots demonstrated reduced POLR3BΔ10 expression in the cytoplasm and nucleus in human cells. In mice, postnatal Pdgfrα-dependent expression of the orthologous murine mutant protein resulted in recessive phenotypes including severe hypomyelination leading to ataxia, tremor, seizures and limited survival, as well as hypodontia and craniofacial abnormalities. Hypomyelination was confirmed and characterized using classic methods to quantify myelin components such as myelin basic protein and lipids, results which agreed with those produced using modern methods to quantify myelin based on the physical properties of myelin membranes. Lineage tracing uncovered the underlying mechanism for the hypomyelinating phenotype: defective oligodendrocyte precursor proliferation and differentiation resulted in a failure to produce an adequate number of mature oligodendrocytes during postnatal myelinogenesis. In summary, we characterized the Polr3bΔ10 mutation and developed an animal model that recapitulates features of POLR3-HLD caused by POLR3B mutations, shedding light on disease pathogenesis, and opening the door to the development of therapeutic interventions.


Haploinsufficiency of the miR-873/miR-876 microRNA cluster is associated with craniofacial abnormalities.

  • Costas Koufaris‎ et al.
  • Gene‎
  • 2015‎

MicroRNA haploinsufficiency has been associated with developmental defects in only a limited number of cases. Here we report a de novo genomic microdeletion that includes the LINGO2 gene as well as two microRNA genes, MIR873 and MIR876, in a patient with craniofacial abnormalities - in particular macrocephaly and hypertelorism - and learning difficulties. Subsequent analysis revealed that the microRNAs affected by this de novo microdeletion form a mammalian-lineage, neuronal tissue-enriched cluster. In addition, bioinformatic analysis and experimental data indicate that miR-873 is involved in the regulation of the Hedgehog signaling, an essential pathway involved in craniofacial patterning and differentiation. Collectively these observations are consistent with a role of the miR-873/miR-876 microRNA cluster in physiological cranial bone development and indicate that mutations affecting these microRNAs could be a rare cause of developmental defect in humans.


Gain-of-Function MN1 Truncation Variants Cause a Recognizable Syndrome with Craniofacial and Brain Abnormalities.

  • Noriko Miyake‎ et al.
  • American journal of human genetics‎
  • 2020‎

MN1 was originally identified as a tumor-suppressor gene. Knockout mouse studies have suggested that Mn1 is associated with craniofacial development. However, no MN1-related phenotypes have been established in humans. Here, we report on three individuals who have de novo MN1 variants that lead to a protein lacking the carboxyl (C) terminus and who presented with severe developmental delay, craniofacial abnormalities with specific facial features, and structural abnormalities in the brain. An in vitro study revealed that the deletion of the C-terminal region led to increased protein stability, an inhibitory effect on cell proliferation, and enhanced MN1 aggregation in nuclei compared to what occurred in the wild type, suggesting that a gain-of-function mechanism is involved in this disease. Considering that C-terminal deletion increases the fraction of intrinsically disordered regions of MN1, it is possible that altered phase separation could be involved in the mechanism underlying the disease. Our data indicate that MN1 participates in transcriptional regulation of target genes through interaction with the transcription factors PBX1, PKNOX1, and ZBTB24 and that mutant MN1 impairs the binding with ZBTB24 and RING1, which is an E3 ubiquitin ligase. On the basis of our findings, we propose the model that C-terminal deletion interferes with MN1's interaction molecules related to the ubiquitin-mediated proteasome pathway, including RING1, and increases the amount of the mutant protein; this increase leads to the dysregulation of MN1 target genes by inhibiting rapid MN1 protein turnover.


Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate.

  • Dasan Mary Cibi‎ et al.
  • eLife‎
  • 2019‎

Alternative splicing (AS) creates proteomic diversity from a limited size genome by generating numerous transcripts from a single protein-coding gene. Tissue-specific regulators of AS are essential components of the gene regulatory network, required for normal cellular function, tissue patterning, and embryonic development. However, their cell-autonomous function in neural crest development has not been explored. Here, we demonstrate that splicing factor Rbfox2 is expressed in the neural crest cells (NCCs), and deletion of Rbfox2 in NCCs leads to cleft palate and defects in craniofacial bone development. RNA-Seq analysis revealed that Rbfox2 regulates splicing and expression of numerous genes essential for neural crest/craniofacial development. We demonstrate that Rbfox2-TGF-β-Tak1 signaling axis is deregulated by Rbfox2 deletion. Furthermore, restoration of TGF-β signaling by Tak1 overexpression can rescue the proliferation defect seen in Rbfox2 mutants. We also identified a positive feedback loop in which TGF-β signaling promotes expression of Rbfox2 in NCCs.


Pak1ip1 Loss-of-Function Leads to Cell Cycle Arrest, Loss of Neural Crest Cells, and Craniofacial Abnormalities.

  • Alexios A Panoutsopoulos‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Neural crest cells (NCCs) comprise a transient progenitor cell population of neuroepithelial origin that contributes to a variety of cell types throughout vertebrate embryos including most mesenchymal cells of the cranial and facial structures. Consequently, abnormal NCC development underlies a variety of craniofacial defects including orofacial clefts, which constitute some of the most common birth defects. We previously reported the generation of manta ray (mray) mice that carry a loss-of-function allele of the gene encoding the preribosomal factor Pak1ip1. Here we describe cranioskeletal abnormalities in homozygous mray mutants that arise from a loss of NCCs after their specification. Our results show that the localized loss of cranial NCCs in the developing frontonasal prominences is caused by cell cycle arrest and cell death. In addition, and consistent with deficits in ribosome biosynthesis, homozygous mray mutants display decreased protein biosynthesis, further linking Pak1ip1 to a role in ribosome biogenesis.


Partial paternal uniparental disomy of chromosome 6 in an infant with neonatal diabetes, macroglossia, and craniofacial abnormalities.

  • S Das‎ et al.
  • American journal of human genetics‎
  • 2000‎

Neonatal diabetes, which can be transient or permanent, is defined as hyperglycemia that presents within the first month of life and requires insulin therapy. Transient neonatal diabetes mellitus has been associated with abnormalities of the paternally inherited copy of chromosome 6, including duplications of a portion of the long arm of chromosome 6 and uniparental disomy, implicating overexpression of an imprinted gene in this disorder. To date, all patients with transient neonatal diabetes mellitus and uniparental disomy have had complete paternal isodisomy. We describe a patient with neonatal diabetes, macroglossia, and craniofacial abnormalities, with partial paternal uniparental disomy of chromosome 6 involving the distal portion of 6q, from 6q24-qter. This observation demonstrates that mitotic recombination of chromosome 6 can also give rise to uniparental disomy and neonatal diabetes, a situation similar to that observed in Beckwith-Wiedemann syndrome, another imprinted disorder. This finding has clinical implications, since somatic mosaicism for uniparental disomy of chromosome 6 should also be considered in patients with transient neonatal diabetes mellitus.


In vivo expression of ephrinA5-Fc in mice results in cephalic neural crest agenesis and craniofacial abnormalities.

  • Hyuna Noh‎ et al.
  • Molecules and cells‎
  • 2014‎

Eph receptors and their ligands ephrins have been implicated in guiding the directed migration of neural crest cells (NCCs). In this study, we found that Wnt1-Cre-mediated expression of ephrinA5-Fc along the dorsal midline of the dien- and mesencephalon resulted in severe craniofacial malformation of mouse embryo. Interestingly, expression of cephalic NCC markers decreased significantly in the frontonasal process and branchial arches 1 and 2, which are target areas for the migratory cephalic NCCs originating in the dien- and mesencephalon. In addition, these craniofacial tissues were much smaller in mutant embryos expressing ephrinA5-Fc. Importantly, EphA7-positive cephalic NCCs were absent along the dorsal dien- and mesencephalon of mutant embryos expressing ephrinA5-Fc, suggesting that the generation of cephalic NCCs is disrupted due to ephrinA5-Fc expression. NCC explant experiments suggested that ephrinA5-Fc perturbed survival of cephalic NCC precursors in the dorsal midline tissue rather than affecting their migratory capacity, which was consistent with our previous report that expression of ephrinA5-Fc in the dorsal midline is responsible for severe neuroepithelial cell apoptotic death. Taken together, our findings strongly suggest that expression of ephrinA5-Fc decreases a population of cephalic NCC precursors in the dorsal midline of the dien- and mesencephalon, thereby disrupting craniofacial development in the mouse embryos.


Bi-allelic variants in CEP295 cause Seckel-like syndrome presenting with primary microcephaly, developmental delay, intellectual disability, short stature, craniofacial and digital abnormalities.

  • Niu Li‎ et al.
  • EBioMedicine‎
  • 2024‎

Pathogenic variants in the centrosome protein (CEP) family have been implicated in primary microcephaly, Seckel syndrome, and classical ciliopathies. However, most CEP genes remain unlinked to specific Mendelian genetic diseases in humans. We sought to explore the roles of CEP295 in human pathology.


Deletion of the Pyrophosphate Generating Enzyme ENPP1 Rescues Craniofacial Abnormalities in the TNAP-/- Mouse Model of Hypophosphatasia and Reveals FGF23 as a Marker of Phenotype Severity.

  • Hwa Kyung Nam‎ et al.
  • Frontiers in dental medicine‎
  • 2022‎

Hypophosphatasia is a rare heritable metabolic disorder caused by deficient Tissue Non-specific Alkaline Phosphatase (TNAP) enzyme activity. A principal function of TNAP is to hydrolyze the tissue mineralization inhibitor pyrophosphate. ENPP1 (Ectonucleotide Pyrophosphatase/Phosphodiesterase 1) is a primary enzymatic generator of pyrophosphate and prior results showed that elimination of ENPP1 rescued bone hypomineralization of skull, vertebral and long bones to different extents in TNAP null mice. Current TNAP enzyme replacement therapy alleviates skeletal, motor and cognitive defects but does not eliminate craniosynostosis in pediatric hypophosphatasia patients. To further understand mechanisms underlying craniosynostosis development in hypophosphatasia, here we sought to determine if craniofacial abnormalities including craniosynostosis and skull shape defects would be alleviated in TNAP null mice by genetic ablation of ENPP1. Results show that homozygous deletion of ENPP1 significantly diminishes the incidence of craniosynostosis and that skull shape abnormalities are rescued by hemi- or homozygous deletion of ENPP1 in TNAP null mice. Skull and long bone hypomineralization were also alleviated in TNAP-/-/ENPP1-/- compared to TNAP-/-/ENPP1+/+ mice, though loss of ENPP1 in combination with TNAP had different effects than loss of only TNAP on long bone trabeculae. Investigation of a relatively large cohort of mice revealed that the skeletal phenotypes of TNAP null mice were markedly variable. Because FGF23 circulating levels are known to be increased in ENPP1 null mice and because FGF23 influences bone, we measured serum intact FGF23 levels in the TNAP null mice and found that a subset of TNAP-/-/ENPP1+/+ mice exhibited markedly high serum FGF23. Serum FGF23 levels also correlated to mouse body measurements, the incidence of craniosynostosis, skull shape abnormalities and skull bone density and volume fraction. Together, our results demonstrate that balanced expression of TNAP and ENPP1 enzymes are essential for microstructure and mineralization of both skull and long bones, and for preventing craniosynostosis. The results also show that FGF23 rises in the TNAP-/- model of murine lethal hypophosphatasia. Future studies are required to determine if the rise in FGF23 is a cause, consequence, or marker of disease phenotype severity.


Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene.

  • Seth D Hartung‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2004‎

Murine models of lysosomal storage diseases provide an opportunity to evaluate the potential for gene therapy to prevent systemic manifestations of the disease. To determine the potential for treatment of mucopolysaccharidosis type I using a gene delivery approach, a recombinant adeno-associated virus (AAV) vector, vTRCA1, transducing the human iduronidase (IDUA) gene was constructed and 1 x 10(10) particles were injected intravenously into 1-day-old Idua(-/-) mice. High levels of IDUA activity were present in the plasma of vTRCA1-treated animals that persisted for the 5-month duration of the study, with heart and lung of this group demonstrating the highest tissue levels of gene transfer and enzyme activity overall. vTRCA1-treated Idua(-/-) animals with measurable plasma IDUA activity exhibited histopathological evidence of reduced lysosomal storage in a number of tissues and were normalized with respect to urinary GAG excretion, craniofacial bony parameters, and body weight. In an open field test, vTRCA1-treated Idua(-/-) animals exhibited a significant reduction in total squares covered and a trend toward normalization in rearing events and grooming time compared to control-treated Idua(-/-) animals. We conclude that AAV-mediated transduction of the IDUA gene in newborn Idua(-/-) mice was sufficient to have a major curative impact on several of the most important parameters of the disease.


Craniofacial Encephalocele: Updates on Management.

  • Amelia Alberts‎ et al.
  • Journal of integrative neuroscience‎
  • 2023‎

Craniofacial encephaloceles are rare, yet highly debilitating neuroanatomical abnormalities that result from herniation of neural tissue through a bony defect and can lead to death, cognitive delay, seizures, and issues integrating socially. The etiology of encephaloceles is still being investigated, with evidence pointing towards the Sonic Hedgehog pathway, Wnt signaling, glioma-associated oncogene (GLI) transcription factors, and G protein-coupled receptors within primary cilia as some of the major genetic regulators that can contribute to improper mesenchymal migration and neural tube closure. Consensus on the proper approach to treating craniofacial encephaloceles is confounded by the abundance of surgical techniques and parameters to consider when determining the optimal timing and course of intervention. Minimally invasive approaches to encephalocele and temporal seizure treatment have increasingly shown evidence of successful intervention. Recent evidence suggests that a single, two-stage operation utilizing neurosurgeons to remove the encephalocele and plastic surgeons to reconstruct the surrounding tissue can be successful in many patients. The HULA procedure (H = hard-tissue sealant, U = undermine and excise encephalocele, L = lower supraorbital bar, A = augment nasal dorsum) and endoscopic endonasal surgery using vascularized nasoseptal flaps have surfaced as less invasive and equally successful approaches to surgical correction, compared to traditional craniotomies. Temporal encephaloceles can be a causative factor in drug-resistant temporal seizures and there has been success in curing patients of these seizures by temporal lobectomy and amygdalohippocampectomy, but magnetic resonance-guided laser interstitial thermal therapy has been introduced as a minimally invasive method that has shown success as well. Some of the major concerns postoperatively include infection, cerebrospinal fluid (CSF) leakage, infringement of craniofacial development, elevated intracranial pressure, wound dehiscence, and developmental delay. Depending on the severity of encephalocele prior to surgery, the surgical approach taken, any postoperative complications, and the age of the patient, rehabilitation approaches may vary.


Haploinsufficiency of SF3B2 causes craniofacial microsomia.

  • Andrew T Timberlake‎ et al.
  • Nature communications‎
  • 2021‎

Craniofacial microsomia (CFM) is the second most common congenital facial anomaly, yet its genetic etiology remains unknown. We perform whole-exome or genome sequencing of 146 kindreds with sporadic (n = 138) or familial (n = 8) CFM, identifying a highly significant burden of loss of function variants in SF3B2 (P = 3.8 × 10-10), a component of the U2 small nuclear ribonucleoprotein complex, in probands. We describe twenty individuals from seven kindreds harboring de novo or transmitted haploinsufficient variants in SF3B2. Probands display mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities. Targeted morpholino knockdown of SF3B2 in Xenopus results in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease. The results establish haploinsufficient variants in SF3B2 as the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases.


RSK2 is a modulator of craniofacial development.

  • Virginie Laugel-Haushalter‎ et al.
  • PloS one‎
  • 2014‎

The RSK2 gene is responsible for Coffin-Lowry syndrome, an X-linked dominant genetic disorder causing mental retardation, skeletal growth delays, with craniofacial and digital abnormalities typically associated with this syndrome. Craniofacial and dental anomalies encountered in this rare disease have been poorly characterized.


Ovine craniofacial malformation: a morphometrical study.

  • T Eriksen‎ et al.
  • Research in veterinary science‎
  • 2012‎

Craniofacial malformation in 64 sheep was phenotypically described as mandibular distoclusion. Digital radiographs were examined in order to determine the degree of morphological changes in certain bones of the skull. Therefore, laterolateral standardised digital radiographs were used to determine anatomic reference points. Subsequently, five reference lines were defined and 16 linear and seven angular measurements were determined to describe malformations in the bones of the skull. Statistical analysis revealed a significant shortening of the rostral part of the corpus mandibulae and of the ramus mandibulae. However, the molar part of the mandible remained unchanged. These morphological changes caused premolar and molar malocclusion. No further craniofacial abnormalities, such as an elongation of the maxilla or of the incisive bone, were identified. In conclusion, the phenotypically observed mandibular distoclusion is caused by a shortening of specific parts of the mandible. This form of ovine craniofacial malformation is therefore best described as brachygnathia inferior.


Riboceine Rescues Auranofin-Induced Craniofacial Defects in Zebrafish.

  • Megan Leask‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2021‎

Craniofacial abnormalities are a common group of congenital developmental disorders that can require intensive oral surgery as part of their treatment. Neural crest cells (NCCs) contribute to the facial structures; however, they are extremely sensitive to high levels of oxidative stress, which result in craniofacial abnormalities under perturbed developmental environments. The oxidative stress-inducing compound auranofin (AFN) disrupts craniofacial development in wildtype zebrafish embryos. Here, we tested whether the antioxidant Riboceine (RBC) rescues craniofacial defects arising from exposure to AFN. RBC rescued AFN-induced cellular apoptosis and distinct defects of the cranial cartilage in zebrafish larvae. Zebrafish embryos exposed to AFN have higher expression of antioxidant genes gstp1 and prxd1, with RBC treatment partially rescuing these gene expression profiles. Our data suggest that antioxidants may have utility in preventing defects in the craniofacial cartilage owing to environmental or genetic risk, perhaps by enhancing cell survival.


Expression of five frizzleds during zebrafish craniofacial development.

  • Barbara E Sisson‎ et al.
  • Gene expression patterns : GEP‎
  • 2009‎

Wnt/Planar Cell Polarity (PCP) signaling is critical for proper animal development. While initially identified in Drosophila, this pathway is also essential for the proper development of vertebrates. Zebrafish mutants, defective in the Wnt/PCP pathway, frequently display defects in convergence and extension gastrulation movements and additional later abnormalities including problems with craniofacial cartilage morphogenesis. Although multiple Frizzled (Fzd) homologues, Wnt receptors, were identified in zebrafish, it is unknown which Fzd plays a role in shaping the early larvae head skeleton. In an effort to determine which Frizzleds are involved in this process, we analyzed the expression of five zebrafish frizzled homologues fzd2, 6, 7a, 7b, and 8a from 2-4days post-fertilization (dpf). During the analyzed developmental time points fzd2 and fzd6 are broadly expressed throughout the head, while the expression of fzd7a, 7b and 8a is much more restricted. Closer examination revealed that fzd7b is expressed in the neural crest and the mesodermal core of the pharyngeal arches and in the chondrocytes of newly stacked craniofacial cartilage elements. However, fzd7a is only expressed in the neural crest of the pharyngeal arches and fzd8a is expressed in the pharyngeal endoderm.


Postnatal Craniofacial Skeletal Development of Female C57BL/6NCrl Mice.

  • Xiaoxi Wei‎ et al.
  • Frontiers in physiology‎
  • 2017‎

The craniofacial skeleton is a complex and unique structure. The perturbation of its development can lead to craniofacial dysmorphology and associated morbidities. Our ability to prevent or mitigate craniofacial skeletal anomalies is at least partly dependent on our understanding of the unique physiological development of the craniofacial skeleton. Mouse models are critical tools for the study of craniofacial developmental abnormalities. However, there is a lack of detailed normative data of mouse craniofacial skeletal development in the literature. In this report, we employed high-resolution micro-computed tomography (μCT) in combination with morphometric measurements to analyze the postnatal craniofacial skeletal development from day 7 (P7) through day 390 (P390) of female C57BL/6NCrl mice, a widely used mouse strain. Our data demonstrates a unique craniofacial skeletal development pattern in female C57BL/6NCrl mice, and differentiates the early vs. late craniofacial growth patterns. Additionally, our data documents the complex and differential changes in bone parameters (thickness, bone volume, bone volume/tissue volume, bone mineral density, and tissue mineral density) of various craniofacial bones with different embryonic origins and ossification mechanisms during postnatal growth, which underscores the complexity of craniofacial bone development and provides a reference standard for future quantitative analysis of craniofacial bones.


Disruption of fos causes craniofacial anomalies in developing zebrafish.

  • Lorena Maili‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2023‎

Craniofacial development is a complex and tightly regulated process and disruptions can lead to structural birth defects, the most common being nonsyndromic cleft lip and palate (NSCLP). Previously, we identified FOS as a candidate regulator of NSCLP through family-based association studies, yet its specific contributions to oral and palatal formation are poorly understood. This study investigated the role of fos during zebrafish craniofacial development through genetic disruption and knockdown approaches. Fos was expressed in the periderm, olfactory epithelium and other cell populations in the head. Genetic perturbation of fos produced an abnormal craniofacial phenotype with a hypoplastic oral cavity that showed significant changes in midface dimensions by quantitative facial morphometric analysis. Loss and knockdown of fos caused increased cell apoptosis in the head, followed by a significant reduction in cranial neural crest cells (CNCCs) populating the upper and lower jaws. These changes resulted in abnormalities of cartilage, bone and pharyngeal teeth formation. Periderm cells surrounding the oral cavity showed altered morphology and a subset of cells in the upper and lower lip showed disrupted Wnt/β-catenin activation, consistent with modified inductive interactions between mesenchymal and epithelial cells. Taken together, these findings demonstrate that perturbation of fos has detrimental effects on oral epithelial and CNCC-derived tissues suggesting that it plays a critical role in zebrafish craniofacial development and a potential role in NSCLP.


Craniofacial anomalies associated with spondyloenchondrodysplasia: Two case reports.

  • Seok Woo Hong‎ et al.
  • Medicine‎
  • 2018‎

Spondyloenchondrodysplasia (SPENCD) is an autosomal recessive skeletal dysplasia by biallelic mutations in ACP5 gene encoding tartrate-resistant acid phosphatase (TRAP). The extra-osseous phenotype of SPENCD is pleiotropic and involves neurological impairment and immune dysfunction. Dentofacial abnormalities and orofacial symptoms in SPENCD patients have been little discussed in the literature.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: