Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 134 papers

Distinct Genomic Features Characterize Two Clades of Corynebacterium diphtheriae: Proposal of Corynebacterium diphtheriae Subsp. diphtheriae Subsp. nov. and Corynebacterium diphtheriae Subsp. lausannense Subsp. nov.

  • Florian Tagini‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Corynebacterium diphtheriae is the etiological agent of diphtheria, a disease caused by the presence of the diphtheria toxin. However, an increasing number of records report non-toxigenic C. diphtheriae infections. Here, a C. diphtheriae strain was recovered from a patient with a past history of bronchiectasis who developed a severe tracheo-bronchitis with multiple whitish lesions of the distal trachea and the mainstem bronchi. Whole-genome sequencing (WGS), performed in parallel with PCR targeting the toxin gene and the Elek test, provided clinically relevant results in a short turnaround time, showing that the isolate was non-toxigenic. A comparative genomic analysis of the new strain (CHUV2995) with 56 other publicly available genomes of C. diphtheriae revealed that the strains CHUV2995, CCUG 5865 and CMCNS703 share a lower average nucleotide identity (ANI) (95.24 to 95.39%) with the C. diphtheriae NCTC 11397T reference genome than all other C. diphtheriae genomes (>98.15%). Core genome phylogeny confirmed the presence of two monophyletic clades. Based on these findings, we propose here two new C. diphtheriae subspecies to replace the lineage denomination used in previous multilocus sequence typing studies: C. diphtheriae subsp. lausannense subsp. nov. (instead of lineage-2), regrouping strains CHUV2995, CCUG 5865, and CMCNS703, and C. diphtheriae subsp. diphtheriae subsp. nov, regrouping all other C. diphtheriae in the dataset (instead of lineage-1). Interestingly, members of subspecies lausannense displayed a larger genome size than subspecies diphtheriae and were enriched in COG categories related to transport and metabolism of lipids (I) and inorganic ion (P). Conversely, they lacked all genes involved in the synthesis of pili (SpaA-type, SpaD-type and SpaH-type), molybdenum cofactor and of the nitrate reductase. Finally, the CHUV2995 genome is particularly enriched in mobility genes and harbors several prophages. The genome encodes a type II-C CRISPR-Cas locus with 2 spacers that lacks csn2 or cas4, which could hamper the acquisition of new spacers and render strain CHUV2995 more susceptible to bacteriophage infections and gene acquisition through various mechanisms of horizontal gene transfer.


Novel Corynebacterium diphtheriae in domestic cats.

  • Aron J Hall‎ et al.
  • Emerging infectious diseases‎
  • 2010‎

Novel nontoxigenic Corynebacterium diphtheriae was isolated from a domestic cat with severe otitis. Contact investigation and carrier study of human and animal contacts yielded 3 additional, identical isolates from cats, although no evidence of zoonotic transmission was identified. Molecular methods distinguished the feline isolates from known C. diphtheriae.


Population genomics and antimicrobial resistance in Corynebacterium diphtheriae.

  • Melanie Hennart‎ et al.
  • Genome medicine‎
  • 2020‎

Corynebacterium diphtheriae, the agent of diphtheria, is a genetically diverse bacterial species. Although antimicrobial resistance has emerged against several drugs including first-line penicillin, the genomic determinants and population dynamics of resistance are largely unknown for this neglected human pathogen.


Genomic Epidemiology of Corynebacterium diphtheriae in New Caledonia.

  • Eve Tessier‎ et al.
  • Microbiology spectrum‎
  • 2023‎

An increasing number of isolations of Corynebacterium diphtheriae has been observed in recent years in the archipelago of New Caledonia. We aimed to analyze the clinical and microbiological features of samples with C. diphtheriae. All C. diphtheriae isolates identified in New Caledonia from May 2015 to May 2019 were included. For each case, a retrospective consultation of the patient files was conducted. Antimicrobial susceptibility phenotypes, tox gene and diphtheria toxin expression, biovar, and the genomic sequence were determined. Core genome multilocus sequence typing (cgMLST), 7-gene MLST, and search of genes of interest were performed from genomic assemblies. Fifty-eight isolates were included, with a median age of patients of 28 years (range: 9 days to 78 years). Cutaneous origin accounted for 51 of 58 (87.9%) isolates, and C. diphtheriae was associated with Staphylococcus aureus and/or Streptococcus pyogenes in three-quarters of cases. Half of cases came either from the main city Noumea (24%, 14/58) or from the sparsely populated island of Lifou (26%, 15/58). Six tox-positive isolates were identified, associated with recent travel to Vanuatu; 5 of these cases were linked and cgMLST confirmed recent transmission. Two cases of endocarditis in young female patients with a history of rheumatic fever involved tox-negative isolates. The 58 isolates were mostly susceptible to commonly used antibiotics. In particular, no isolate was resistant to the first-line molecules amoxicillin or erythromycin. Resistance to tetracycline was found in a genomic cluster of 17 (29%) isolates, 16 of which carried the tetO gene. There were 13 cgMLST sublineages, most of which were also observed in the neighboring country Australia. Cutaneous infections may harbor nontoxigenic C. diphtheriae isolates, which circulate largely silently in nonspecific wounds. The possible introduction of tox-positive strains from a neighboring island illustrates that diphtheria surveillance should be maintained in New Caledonia, and that immunization in neighboring islands must be improved. Genomic sequencing uncovers how genotypes circulate locally and across neighboring countries. IMPORTANCE The analysis of C. diphtheriae from the tropical archipelago of New Caledonia revealed a high genetic diversity with sublineages that may be linked to Polynesia, Australia, or metropolitan France. Genomic typing allowed confirming or excluding suspected transmission events among cases and contacts. A highly prevalent tetracycline-resistant sublineage harboring the tetO gene was uncovered. Toxigenic isolates were observed from patients returning from Vanuatu, showing the importance of improving vaccination coverage in settings where it is insufficient. This study also illustrates the importance for diphtheria surveillance of the inclusion of isolates from cutaneous sources in addition to respiratory cases, in order to provide a more complete epidemiological picture of the diversity and transmission of C. diphtheriae.


Toxigenic Corynebacterium diphtheriae Infection in Cat, Texas, USA.

  • Ronald Tyler‎ et al.
  • Emerging infectious diseases‎
  • 2022‎

We report a toxigenic strain of Corynebacterium diphtheriae isolated from an oozing dermal wound in a pet cat in Texas, USA. We also describe the epidemiologic public health efforts conducted to identify potential sources of infection and mitigate its spread and the molecular and genetic studies performed to identify the bacterium.


Induction and Resuscitation of Viable but Nonculturable Corynebacterium diphtheriae.

  • Takashi Hamabata‎ et al.
  • Microorganisms‎
  • 2021‎

Many pathogenic bacteria, including Escherichia coli and Vibrio cholerae, can become viable but nonculturable (VBNC) following exposure to specific stress conditions. Corynebacterium diphtheriae, a known human pathogen causing diphtheria, has not previously been shown to enter the VBNC state. Here, we report that C. diphtheriae can become VBNC when exposed to low temperatures. Morphological differences in culturable and VBNC C. diphtheriae were examined using scanning electron microscopy. Culturable cells presented with a typical rod-shape, whereas VBNC cells showed a distorted shape with an expanded center. Cells could be transitioned from VBNC to culturable following treatment with catalase. This was further evaluated via RNA sequence-based transcriptomic analysis and reverse-transcription quantitative PCR of culturable, VBNC, and resuscitated VBNC cells following catalase treatment. As expected, many genes showed different behavior by resuscitation. The expression of both the diphtheria toxin and the repressor of diphtheria toxin genes remained largely unchanged under all four conditions (culturable, VBNC, VBNC after the addition of catalase, and resuscitated cells). This is the first study to demonstrate that C. diphtheriae can enter a VBNC state and that it can be rescued from this state via the addition of catalase. This study helps to expand our general understanding of VBNC, the pathogenicity of VBNC C. diphtheriae, and its environmental survival strategy.


Draft Genome Sequences of Corynebacterium diphtheriae Clinical Isolates from Colombia.

  • Efraín Andrés Montilla-Escudero‎ et al.
  • Microbiology resource announcements‎
  • 2021‎

Since the implementation of the diphtheria-tetanus-pertussis (DTP) vaccine in Colombia, there has been a decrease in the reporting of cases. Here, we report two isolates of Corynebacterium diphtheriae bv. mitis isolated in the reference laboratory at Instituto Nacional de Salud from samples received from Norte de Santander and La Guajira; both areas are located on the northeast border of Colombia.


A cryptic oxidoreductase safeguards oxidative protein folding in Corynebacterium diphtheriae.

  • Melissa E Reardon-Robinson‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

In many gram-positive Actinobacteria, including Actinomyces oris and Corynebacterium matruchotii, the conserved thiol-disulfide oxidoreductase MdbA that catalyzes oxidative folding of exported proteins is essential for bacterial viability by an unidentified mechanism. Intriguingly, in Corynebacterium diphtheriae, the deletion of mdbA blocks cell growth only at 37 °C but not at 30 °C, suggesting the presence of alternative oxidoreductase enzyme(s). By isolating spontaneous thermotolerant revertants of the mdbA mutant at 37 °C, we obtained genetic suppressors, all mapped to a single T-to-G mutation within the promoter region of tsdA, causing its elevated expression. Strikingly, increased expression of tsdA-via suppressor mutations or a constitutive promoter-rescues the pilus assembly and toxin production defects of this mutant, hence compensating for the loss of mdbA. Structural, genetic, and biochemical analyses demonstrated TsdA is a membrane-tethered thiol-disulfide oxidoreductase with a conserved CxxC motif that can substitute for MdbA in mediating oxidative folding of pilin and toxin substrates. Together with our observation that tsdA expression is upregulated at nonpermissive temperature (40 °C) in wild-type cells, we posit that TsdA has evolved as a compensatory thiol-disulfide oxidoreductase that safeguards oxidative protein folding in C. diphtheriae against thermal stress.


Purification and structural characterization of siderophore (corynebactin) from Corynebacterium diphtheriae.

  • Sheryl Zajdowicz‎ et al.
  • PloS one‎
  • 2012‎

During infection, Corynebacterium diphtheriae must compete with host iron-sequestering mechanisms for iron. C. diphtheriae can acquire iron by a siderophore-dependent iron-uptake pathway, by uptake and degradation of heme, or both. Previous studies showed that production of siderophore (corynebactin) by C. diphtheriae is repressed under high-iron growth conditions by the iron-activated diphtheria toxin repressor (DtxR) and that partially purified corynebactin fails to react in chemical assays for catecholate or hydroxamate compounds. In this study, we purified corynebactin from supernatants of low-iron cultures of the siderophore-overproducing, DtxR-negative mutant strain C. diphtheriae C7(β) ΔdtxR by sequential anion-exchange chromatography on AG1-X2 and Source 15Q resins, followed by reverse-phase high-performance liquid chromatography (RP-HPLC) on Zorbax C8 resin. The Chrome Azurol S (CAS) chemical assay for siderophores was used to detect and measure corynebactin during purification, and the biological activity of purified corynebactin was shown by its ability to promote growth and iron uptake in siderophore-deficient mutant strains of C. diphtheriae under iron-limiting conditions. Mass spectrometry and NMR analysis demonstrated that corynebactin has a novel structure, consisting of a central lysine residue linked through its α- and ε- amino groups by amide bonds to the terminal carboxyl groups of two different citrate residues. Corynebactin from C. diphtheriae is structurally related to staphyloferrin A from Staphylococcus aureus and rhizoferrin from Rhizopus microsporus in which d-ornithine or 1,4-diaminobutane, respectively, replaces the central lysine residue that is present in corynebactin.


Endemic erythromycin resistant Corynebacterium diphtheriae in Vietnam in the 1990s.

  • To Nguyen Thi Nguyen‎ et al.
  • Microbial genomics‎
  • 2022‎

Diphtheria is a potentially fatal respiratory disease caused by toxigenic forms of the Gram-positive bacterium Corynebacterium diphtheriae. Despite the availability of treatments (antitoxin and antimicrobials) and effective vaccines, the disease still occurs sporadically in low-income countries and in higher income where use of diphtheria vaccine is inconsistent. Diphtheria was highly endemic in Vietnam in the 1990s; here, we aimed to provide some historical context to the circulation of erythromycin resistant organisms in Vietnam during this period. After recovering 54 C. diphtheriae isolated from clinical cases of diphtheria in Ho Chi Minh City between 1992 and 1998 we conducted whole genome sequencing and analysis. Our data outlined substantial genetic diversity among the isolates, illustrated by seven distinct Sequence Types (STs), but punctuated by the sustained circulation of ST67 and ST209. With the exception of one isolate, all sequences contained the tox gene, which was classically located on a corynebacteriophage. All erythromycin resistant isolates, accounting for 13 % of organisms in this study, harboured a novel 18 kb erm(X)-carrying plasmid, which exhibited limited sequence homology to previously described resistance plasmids in C. diphtheriae. Our study provides historic context for the circulation of antimicrobial resistant C. diphtheriae in Vietnam; these data provide a framework for the current trajectory in global antimicrobial resistance trends.


Identification of zinc and Zur-regulated genes in Corynebacterium diphtheriae.

  • Eric D Peng‎ et al.
  • PloS one‎
  • 2019‎

Corynebacterium diphtheriae is a Gram-positive bacterial pathogen and the causative agent of diphtheria, a severe disease of the upper respiratory tract of humans. Factors required for C. diphtheriae to survive in the human host are not well defined, but likely include the acquisition of essential metals such as zinc. In C. diphtheriae, zinc-responsive global gene regulation is controlled by the Zinc Uptake Regulator (Zur), a member of the Fur-family of transcriptional regulators. In this study, we use transcriptomics to identify zinc-regulated genes in C. diphtheriae by comparing gene expression of a wild-type strain grown without and with zinc supplementation. Zur-regulated genes were identified by comparing wild-type gene expression with that of an isogenic zur mutant. We observed zinc repression of several putative surface proteins, the heme efflux system hrtBA, various ABC transporters, and the non-ribosomal peptide synthetase/polyketide synthase cluster sidAB. Furthermore, increased gene expression in response to zinc was observed for the alcohol dehydrogenase, adhA. Zinc and Zur regulation were confirmed for several genes by complementing the zur deletion and subsequent RT-qPCR analysis. We used MEME to predict Zur binding sites within the promoter regions of zinc- and Zur-regulated genes, and verified Zur binding by electrophoretic mobility shift assays. Additionally, we characterized cztA (dip1101), which encodes a putative cobalt/zinc/cadmium efflux family protein. Deletion of cztA results in increased sensitivity to zinc, but not to cobalt or cadmium. This study advances our knowledge of changes to Zur-dependent global gene expression in response to zinc in C. diphtheriae. The identification of zinc-regulated ABC transporters herein will facilitate future studies to characterize zinc transport in C. diphtheriae.


Nontoxigenic highly pathogenic clone of Corynebacterium diphtheriae, Poland, 2004-2012.

  • Aleksandra A Zasada‎
  • Emerging infectious diseases‎
  • 2013‎

Twenty-five cases of nontoxigenic Corynebacterium diphtheriae infection were recorded in Poland during 2004-2012, of which 18 were invasive. Alcoholism, homelessness, hepatic cirrhosis, and dental caries were predisposing factors for infection. However, for 17% of cases, no concomitant diseases or predisposing factors were found.


Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9.

  • Seiichi Hirano‎ et al.
  • Nature communications‎
  • 2019‎

The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets bearing a protospacer adjacent motif (PAM) and complementarity to an RNA guide. Unlike other Cas9 orthologs, Corynebacterium diphtheriae Cas9 (CdCas9) recognizes the promiscuous NNRHHHY PAM. However, the CdCas9-mediated PAM recognition mechanism remains unknown. Here, we report the crystal structure of CdCas9 in complex with the guide RNA and its target DNA at 2.9 Å resolution. The structure reveals that CdCas9 recognizes the NNRHHHY PAM via a combination of van der Waals interactions and base-specific hydrogen bonds. Moreover, we find that CdCas9 exhibits robust DNA cleavage activity with the optimal 22-nucleotide length guide RNAs. Our findings highlight the mechanistic diversity of the PAM recognition by Cas9 orthologs, and provide a basis for the further engineering of the CRISPR-Cas9 genome-editor nucleases.


Live cell imaging of macrophage/bacterium interaction demonstrates cell lysis induced by Corynebacterium diphtheriae and Corynebacterium ulcerans.

  • Dulanthi Weerasekera‎ et al.
  • BMC research notes‎
  • 2019‎

In frame of a study to characterize the interaction of human macrophage-like cells with pathogenic corynebacteria, Corynebacterium diphtheriae and Corynebacterium ulcerans, live cell imaging experiments were carried out and time lapse fluorescence microscopy videos were generated, which are presented here.


Spatiotemporal persistence of multiple, diverse clades and toxins of Corynebacterium diphtheriae.

  • Robert C Will‎ et al.
  • Nature communications‎
  • 2021‎

Diphtheria is a respiratory disease caused by the bacterium Corynebacterium diphtheriae. Although the development of a toxin-based vaccine in the 1930s has allowed a high level of control over the disease, cases have increased in recent years. Here, we describe the genomic variation of 502 C. diphtheriae isolates across 16 countries and territories over 122 years. We generate a core gene phylogeny and determine the presence of antimicrobial resistance genes and variation within the tox gene of 291 tox+ isolates. Numerous, highly diverse clusters of C. diphtheriae are observed across the phylogeny, each containing isolates from multiple countries, regions and time of isolation. The number of antimicrobial resistance genes, as well as the breadth of antibiotic resistance, is substantially greater in the last decade than ever before. We identified and analysed 18 tox gene variants, with mutations estimated to be of medium to high structural impact.


Crystal structures of FadD32 and pks13-ACP domain from Corynebacterium diphtheriae.

  • Rong Chen‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Mycolic acids (MAs) are unique components of cell envelope of Mycobacterium or Corynebacterium and are key factors of their virulence to human. In order to develop new anti-Tuberculosis (TB) drugs, many efforts have paid on investigation of structures and functions of proteins involved in the biosynthesis pathway of MAs. FadD32 and polyketide synthase 13 (pks13) catalyze the last step of MAs synthesis. Here we present the crystal structures of FadD32 with substrates and holo-form of ACP-domain from Corynebacterium diphtheriae. The crystal structures and in vitro biochemical assays provide new insights into the assembly of FadD32 and pks13.


Molecular Characterization of Corynebacterium diphtheriae Outbreak Isolates, South Africa, March-June 2015.

  • Mignon du Plessis‎ et al.
  • Emerging infectious diseases‎
  • 2017‎

In 2015, a cluster of respiratory diphtheria cases was reported from KwaZulu-Natal Province in South Africa. By using whole-genome analysis, we characterized 21 Corynebacterium diphtheriae isolates collected from 20 patients and contacts during the outbreak (1 patient was infected with 2 variants of C. diphtheriae). In addition, we included 1 cutaneous isolate, 2 endocarditis isolates, and 2 archived clinical isolates (ca. 1980) for comparison. Two novel lineages were identified, namely, toxigenic sequence type (ST) ST-378 (n = 17) and nontoxigenic ST-395 (n = 3). One archived isolate and the cutaneous isolate were ST-395, suggesting ongoing circulation of this lineage for >30 years. The absence of preexisting molecular sequence data limits drawing conclusions pertaining to the origin of these strains; however, these findings provide baseline genotypic data for future cases and outbreaks. Neither ST has been reported in any other country; this ST appears to be endemic only in South Africa.


Geographically Diverse Clusters of Nontoxigenic Corynebacterium diphtheriae Infection, Germany, 2016-2017.

  • Alexandra Dangel‎ et al.
  • Emerging infectious diseases‎
  • 2018‎

From 2016 through the middle of 2017, the German Consiliary Laboratory on Diphtheria noted an increase in nontoxigenic Corynebacterium diphtheriae isolates submitted from cities in northern Germany. Many patients for whom epidemiologic data were available were homeless, alcohol or drug abusers, or both. After performing routine diagnostics and multilocus sequence typing (MLST), we analyzed isolates of sequence type (ST) 8 and previously submitted isolates by whole-genome sequencing. Results were analyzed for phylogenetic relationship by core genome MLST (cg-MLST) and whole-genome single-nucleotide polymorphism profiles. Next-generation sequencing-based cg-MLST revealed several outbreak clusters caused by ST8; the geographic focus was in the metropolitan areas of Hamburg and Berlin. To achieve enhanced analytical depth, we used additional cg-MLST target genes and genome-wide single-nucleotide polymorphisms. We identified patient characteristics and detected transmission events, providing evidence that nontoxigenic C. diphtheriae infection is a potential public health threat in industrialized countries.


Assessing the Genetic Diversity of Austrian Corynebacterium diphtheriae Clinical Isolates, 2011 to 2019.

  • Justine Schaeffer‎ et al.
  • Journal of clinical microbiology‎
  • 2021‎

Diphtheria is a vaccine-preventable disease with a high potential for reemergence. One of its causative agents is Corynebacterium diphtheriae, with some strains producing diphtheria toxin. From 2011 to 2019, 57 clinical C. diphtheriae strains were isolated in Austria, either from the respiratory tract or from skin infections. The aim of this study was to investigate the genetic diversity of these C. diphtheriae isolates using whole-genome sequencing. Isolates were characterized by genome-wide comparisons using single nucleotide polymorphism analysis or core genome multilocus sequence typing and by searching sequence data for antimicrobial resistance genes and genes involved in diphtheria toxin production. The genetic diversity among the isolates was high, with no clear distribution over time or place. Corynebacterium belfantii isolates were separated from other strains and were strongly associated with respiratory infections (odds ratio [OR] = 57). Two clusters, limited in time and space, were identified. Almost 40% of strains carried resistance genes against tetracycline or sulfonamides, mostly from skin infections. Microbiological tests showed that 55% of isolates were resistant to penicillin but did not carry genes conferring β-lactam resistance. A diphtheria toxin gene with no nonsynonymous mutation was found in three isolates only. This study showed that sequencing can provide valuable information complementing routine microbiological and epidemiological investigations. It allowed us to identify unknown clusters, evaluate antimicrobial resistance more broadly, and support toxigenicity results obtained by PCR. For these reasons, C. diphtheriae surveillance could strongly benefit from the routine implementation of whole-genome sequencing.


Multidrug-resistant toxigenic Corynebacterium diphtheriae sublineage 453 with two novel resistance genomic islands.

  • Gabriele Arcari‎ et al.
  • Microbial genomics‎
  • 2023‎

Antimicrobial therapy is important for case management of diphtheria, but knowledge on the emergence of multidrug-resistance in Corynebacterium diphtheriae is scarce. We report on the genomic features of two multidrug-resistant toxigenic isolates sampled from wounds in France 3 years apart. Both isolates were resistant to spiramycin, clindamycin, tetracycline, kanamycin and trimethoprim-sulfamethoxazole. Genes ermX, cmx, aph(3')-Ib, aph(6)-Id, aph(3')-Ic, aadA1, dfrA15, sul1, cmlA, cmlR and tet(33) were clustered in two genomic islands, one consisting of two transposons and one integron, the other being flanked by two IS6100 insertion sequences. One isolate additionally presented mutations in gyrA and rpoB and was resistant to ciprofloxacin and rifampicin. Both isolates belonged to sublineage 453 (SL453), together with 25 isolates from 11 other countries (https://bigsdb.pasteur.fr/diphtheria/). SL453 is a cosmopolitan toxigenic sublineage of C. diphtheriae, a subset of which acquired multidrug resistance. Even though penicillin, amoxicillin and erythromycin, recommended as the first line in the treatment of diphtheria, remain active, surveillance of diphtheria should consider the risk of dissemination of multidrug-resistant strains and their genetic elements.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: