Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Origin of congenital coronary arterio-ventricular fistulae from anomalous epicardial and myocardial development.

  • P Palmquist-Gomes‎ et al.
  • Experimental & molecular medicine‎
  • 2023‎

Coronary Artery Fistulae (CAFs) are cardiac congenital anomalies consisting of an abnormal communication of a coronary artery with either a cardiac chamber or another cardiac vessel. In humans, these congenital anomalies can lead to complications such as myocardial hypertrophy, endocarditis, heart dilatation, and failure. Unfortunately, despite their clinical relevance, the aetiology of CAFs remains unknown. In this work, we have used two different species (mouse and avian embryos) to experimentally model CAFs morphogenesis. Both conditional Itga4 (alpha 4 integrin) epicardial deletion in mice and cryocauterisation of chick embryonic hearts disrupted epicardial development and ventricular wall growth, two essential events in coronary embryogenesis. Our results suggest that myocardial discontinuities in the embryonic ventricular wall promote the early contact of the endocardium with epicardial-derived coronary progenitors at the cardiac surface, leading to ventricular endocardial extrusion, precocious differentiation of coronary smooth muscle cells, and the formation of pouch-like aberrant coronary-like structures in direct connection with the ventricular lumen. The structure of these CAF-like anomalies was compared with histopathological data from a human CAF. Our results provide relevant information for the early diagnosis of these congenital anomalies and the molecular mechanisms that regulate their embryogenesis.


Hemodynamic Relevance of Anomalous Coronary Arteries Originating From the Opposite Sinus of Valsalva-In Search of the Evidence.

  • Marius Reto Bigler‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2020‎

Coronary artery anomalies (CAA) represent a heterogeneous group of congenital disorders of the arterial coronary circulation, defined by an anomalous origin of the coronary ostium and/or vessel course. Of particular interest are anomalous coronary arteries originating from the opposite sinus of Valsalva (ACAOS). The interarterial variants (with the anomalous vessel situated between the great arteries) are historically called "malignant," based on an anticipated higher risk for myocardial ischemia and sudden cardiac death (SCD), especially affecting young patients during strenuous physical activity. However, the interarterial course itself may not be the predominant cause of ischemia, but rather represents a surrogate for other ischemia-associated anatomical high-risk features. As the exact pathophysiology of ACAOS is not well-understood, there is a lack of evidence-based guidelines addressing optimal diagnostic work-up, downstream testing, sports counseling, and therapeutic options in patients with ACAOS. Therefore, treating physicians are often left with uncertainty regarding the clinical management of affected patients. This review focuses on the pathophysiologic consequences of ACAOS on myocardial ischemia and discusses the concept of the interplay between fixed and dynamic coronary stenosis. Further, we discuss the advantages and limitations of the different diagnostic modalities and give an outlook by highlighting the gaps of knowledge in the assessment of such anomalies.


Takotsubo Syndrome and Coronary Artery Disease: Which Came First-The Chicken or the Egg?

  • Mihail Celeski‎ et al.
  • Journal of cardiovascular development and disease‎
  • 2024‎

Takotsubo syndrome (TTS) is a clinical condition characterized by temporary regional wall motion anomalies and dysfunction that extend beyond a single epicardial vascular distribution. Various pathophysiological mechanisms, including inflammation, microvascular dysfunction, direct catecholamine toxicity, metabolic changes, sympathetic overdrive-mediated multi-vessel epicardial spasms, and transitory ischemia may cause the observed reversible myocardial stunning. Despite the fact that TTS usually has an acute coronary syndrome-like pattern of presentation, the absence of culprit atherosclerotic coronary artery disease is often reported at coronary angiography. However, the idea that coronary artery disease (CAD) and TTS conditions are mutually exclusive has been cast into doubt by numerous recent studies suggesting that CAD may coexist in many TTS patients, with significant clinical and prognostic repercussions. Whether the relationship between CAD and TTS is a mere coincidence or a bidirectional cause-and-effect is still up for debate, and misdiagnosis of the two disorders could lead to improper patient treatment with unfavourable outcomes. Therefore, this review seeks to provide a profound understanding of the relationship between CAD and TTS by analyzing potential common underlying pathways, addressing challenges in differential diagnosis, and discussing medical and procedural techniques to treat these conditions appropriately.


Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease.

  • Francesco Fedele‎ et al.
  • Basic research in cardiology‎
  • 2013‎

Conventionally, ischemic heart disease (IHD) is equated with large vessel coronary disease. However, recent evidence has suggested a role of compromised microvascular regulation in the etiology of IHD. Because regulation of coronary blood flow likely involves activity of specific ion channels, and key factors involved in endothelium-dependent dilation, we proposed that genetic anomalies of ion channels or specific endothelial regulators may underlie coronary microvascular disease. We aimed to evaluate the clinical impact of single-nucleotide polymorphisms in genes encoding for ion channels expressed in the coronary vasculature and the possible correlation with IHD resulting from microvascular dysfunction. 242 consecutive patients who were candidates for coronary angiography were enrolled. A prospective, observational, single-center study was conducted, analyzing genetic polymorphisms relative to (1) NOS3 encoding for endothelial nitric oxide synthase (eNOS); (2) ATP2A2 encoding for the Ca²⁺/H⁺-ATPase pump (SERCA); (3) SCN5A encoding for the voltage-dependent Na⁺ channel (Nav1.5); (4) KCNJ8 and KCNJ11 encoding for the Kir6.1 and Kir6.2 subunits of K-ATP channels, respectively; and (5) KCN5A encoding for the voltage-gated K⁺ channel (Kv1.5). No significant associations between clinical IHD manifestations and polymorphisms for SERCA, Kir6.1, and Kv1.5 were observed (p > 0.05), whereas specific polymorphisms detected in eNOS, as well as in Kir6.2 and Nav1.5 were found to be correlated with IHD and microvascular dysfunction. Interestingly, genetic polymorphisms for ion channels seem to have an important clinical impact influencing the susceptibility for microvascular dysfunction and IHD, independent of the presence of classic cardiovascular risk factors.


Patient-Specific 3-Dimensional-Bioprinted Model for In Vitro Analysis and Treatment Planning of Pulmonary Artery Atresia in Tetralogy of Fallot and Major Aortopulmonary Collateral Arteries.

  • Martin L Tomov‎ et al.
  • Journal of the American Heart Association‎
  • 2019‎

Background Tetralogy of Fallot with major aortopulmonary collateral arteries is a heterogeneous form of pulmonary artery (PA) stenosis that requires multiple forms of intervention. We present a patient-specific in vitro platform capable of sustained flow that can be used to train proceduralists and surgical teams in current interventions, as well as in developing novel therapeutic approaches to treat various vascular anomalies. Our objective is to develop an in vitro model of PA stenosis based on patient data that can be used as an in vitro phantom to model cardiovascular disease and explore potential interventions. Methods and Results From patient-specific scans obtained via computer tomography or 3-dimensional (3D) rotational angiography, we generated digital 3D models of the arteries. Subsequently, in vitro models of tetralogy of Fallot with major aortopulmonary collateral arteries were first 3D printed using biocompatible resins and next bioprinted using gelatin methacrylate hydrogel to simulate neonatal vasculature or second-order branches of an older patient with tetralogy of Fallot with major aortopulmonary collateral arteries. Printed models were used to study creation of extraluminal connection between an atretic PA and a major aortopulmonary collateral artery using a catheter-based interventional method. Following the recanalization, engineered PA constructs were perfused and flow was visualized using contrast agents and x-ray angiography. Further, computational fluid dynamics modeling was used to analyze flow in the recanalized model. Conclusions New 3D-printed and computational fluid dynamics models for vascular atresia were successfully created. We demonstrated the unique capability of a printed model to develop a novel technique for establishing blood flow in atretic vessels using clinical imaging, together with 3D bioprinting-based tissue engineering techniques. Additive biomanufacturing technologies can enable fabrication of functional vascular phantoms to model PA stenosis conditions that can help develop novel clinical applications.


Gestational intermittent hyperoxia rescues murine genetic congenital heart disease in part.

  • Cassandra F Doll‎ et al.
  • Scientific reports‎
  • 2021‎

Cardiac development is a dynamic process, temporally and spatially. When disturbed, it leads to congenital cardiac anomalies that affect approximately 1% of live births. Genetic variants in several loci lead to anomalies, with the transcription factor NKX2-5 being one of the largest. However, there are also non-genetic factors that influence cardiac malformations. We examined the hypothesis that hyperoxia may be beneficial and can rescue genetic cardiac anomalies induced by an Nkx2-5 mutation. Intermittent mild hyperoxia (40% PO2) was applied for 10 h per day to normal wild-type female mice mated with heterozygous Nkx2-5 mutant males from gestational day 8.5 to birth. Hyperoxia therapy reduced excessive trabeculation in Nkx2-5 mutant mice compared to normoxic conditions (ratio of trabecular layer relative to compact layer area, normoxia 1.84 ± 0.07 vs. hyperoxia 1.51 ± 0.04) and frequency of muscular ventricular septal defects per heart (1.53 ± 0.32 vs. 0.68 ± 0.15); however, the incidence of membranous ventricular septal defects in Nkx2-5 mutant hearts was not changed. Nkx2-5 mutant embryonic hearts showed defective coronary vessel organization, which was improved by intermittent mild hyperoxia. The results of our study showed that mild gestational hyperoxia therapy rescued genetic cardiac malformation induced by Nkx2-5 mutation in part.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: