Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 89 papers

Paeonolide as a Novel Regulator of Core-Binding Factor Subunit Alpha-1 in Bone-Forming Cells.

  • Kyung-Ran Park‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Paeonia suffruticosa has been extensively used as a traditional medicine with various beneficial effects; paeonolide (PALI) was isolated from its dried roots. This study aimed to investigate the novel effects and mechanisms of PALI in pre-osteoblasts. Here, cell viability was evaluated using an MTT assay. Early and late osteoblast differentiation was examined by analyzing the activity of alkaline phosphatase (ALP) and by staining it with Alizarin red S (ARS). Cell migration was assessed using wound healing and Boyden chamber assays. Western blot and immunofluorescence analyses were used to examine the intracellular signaling pathways and differentiation proteins. PALI (0.1, 1, 10, 30, and 100 μM) showed no cytotoxic or proliferative effects in pre-osteoblasts. In the absence of cytotoxicity, PALI (1, 10, and 30 μM) promoted wound healing and transmigration during osteoblast differentiation. ALP staining demonstrated that PALI (1, 10, and 30 μM) promoted early osteoblast differentiation in a dose-dependent manner, and ARS staining showed an enhanced mineralized nodule formation, a key indicator of late osteoblast differentiation. Additionally, low concentrations of PALI (1 and 10 μM) increased the bone morphogenetic protein (BMP)-Smad1/5/8 and Wnt-β-catenin pathways in osteoblast differentiation. Particularly, PALI (1 and 10 μM) increased the phosphorylation of ERK1/2 compared with BMP2 treatment, an FDA-approved drug for bone diseases. Furthermore, PALI-mediated early and late osteoblast differentiation was abolished in the presence of the ERK1/2 inhibitor U0126. PALI-induced RUNX2 (Cbfa1) expression and nuclear localization were also attenuated by blocking the ERK1/2 pathway during osteoblast differentiation. We suggest that PALI has biologically novel activities, such as enhanced osteoblast differentiation and bone mineralization mainly through the intracellular ERK1/2-RUNX2 signaling pathway, suggesting that PALI might have therapeutic action and aid the treatment and prevention of bone diseases, such as osteoporosis and periodontitis.


Transformer 2 alpha homolog is a downstream gene of hypoxia-inducible factor 1 subunit alpha and is involved in the progression of pancreatic cancer.

  • Wenpeng Cao‎ et al.
  • Bioengineered‎
  • 2022‎

Intratumoral hypoxia is a common feature of pancreatic cancer (PC) and also plays a role in its progression. However, hypoxia-regulated signatures in PC are still not completely understood. This study aimed to identify core hypoxia-associated genes and determine their underlying molecular mechanisms in PC cells. Transformer 2 alpha homolog (TRA2A) was found to be an important hypoxia-associated gene, which was upregulated in PC tissues and in PC cells cultured under hypoxia. High TRA2A expression was associated with advanced stage, poor differentiation, and lymph node metastasis. Under normoxic and hypoxic conditions, knockdown of TRA2A both markedly suppressed PC cell proliferation and motility in vitro and in vivo, as well as activation of the AKT pathway. Hypoxia-inducible factor 1 subunit alpha (HIF1α) upregulated the transcription of TRA2A by directly binding to its promoter. TRA2A showed a co-expression relationship with HIF1α in PC tissues. Overexpression of TRA2A alleviated the pro-inhibitive functions of HIF1α-inhibition on PC cell proliferation and motility under hypoxia. In conclusion, TRA2A is a crucial downstream gene of HIF1α that accelerates the proliferation and motility of PC cells. TRA2A may be a novel and practical molecular target for investigating the hypoxic response of PC cells.Abbreviations: TRA2A, transformer 2A protein; PC, pancreatic cancer; HIF1α, hypoxia-inducible factor 1-alpha; GEO, Gene Expression Omnibus; IHC, immunohistochemical staining.


Architecture and RNA binding of the human negative elongation factor.

  • Seychelle M Vos‎ et al.
  • eLife‎
  • 2016‎

Transcription regulation in metazoans often involves promoter-proximal pausing of RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we discern the functional architecture of human NELF through X-ray crystallography, protein crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core subcomplex formed by conserved regions in subunits NELF-A and NELF-C, and resolve its crystal structure. The NELF-AC subcomplex binds single-stranded nucleic acids in vitro, and NELF-C associates with RNA in vivo. A positively charged face of NELF-AC is involved in RNA binding, whereas the opposite face of the NELF-AC subcomplex binds NELF-B. NELF-B is predicted to form a HEAT repeat fold, also binds RNA in vivo, and anchors the subunit NELF-E, which is confirmed to bind RNA in vivo. These results reveal the three-dimensional architecture and three RNA-binding faces of NELF.


NF-kappaB mediates tumor necrosis factor alpha-induced expression of optineurin, a negative regulator of NF-kappaB.

  • Cherukuri Sudhakar‎ et al.
  • PloS one‎
  • 2009‎

Optineurin is a ubiquitously expressed multifunctional cytoplasmic protein encoded by OPTN gene. The expression of optineurin is induced by various cytokines. Here we have investigated the molecular mechanisms which regulate optineurin gene expression and the relationship between optineurin and nuclear factor kappaB (NF-kappaB). We cloned and characterized human optineurin promoter. Optineurin promoter was activated upon treatment of HeLa and A549 cells with tumor necrosis factor alpha (TNFalpha). Mutation of a putative NF-kappaB-binding site present in the core promoter resulted in loss of basal as well as TNFalpha-induced activity. Overexpression of p65 subunit of NF-kappaB activated this promoter through NF-kappaB site. Oligonucleotides corresponding to this putative NF-kappaB-binding site showed binding to NF-kappaB. TNFalpha-induced optineurin promoter activity was inhibited by expression of inhibitor of NF-kappaB (IkappaBalpha) super-repressor. Blocking of NF-kappaB activation resulted in inhibition of TNFalpha-induced optineurin gene expression. Overexpressed optineurin partly inhibited TNFalpha-induced NF-kappaB activation in Hela cells. Downregulation of optineurin by shRNA resulted in an increase in TNFalpha-induced as well as basal NF-kappaB activity. These results show that optineurin promoter activity and gene expression are regulated by NF-kappaB pathway in response to TNFalpha. In addition these results suggest that there is a negative feedback loop in which TNFalpha-induced NF-kappaB activity mediates expression of optineurin, which itself functions as a negative regulator of NF-kappaB.


25-hydroxycholesterol down-regulates oxysterol binding protein like 2 (OSBPL2) via the p53/SREBF2/NFYA signaling pathway.

  • Quan Wang‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2019‎

Oxysterol Binding Protein Like 2 (OSBPL2) is a lipid-binding protein implicated in various cellular processes. Previous studies have shown that depression of OSBPL2 significantly increases the level of cellular 25-hydroxycholesterol (25-OHC) which regulates the expression of lipid-metabolism-related genes. However, whether 25-OHC can regulate the expression of OSBPL2 remains unanswered. This study aimed to explore the molecular mechanism of 25-OHC regulating the expression of OSBPL2. Using dual-luciferase reporter assay, we found a decrease of nuclear transcription factor Y subunit alpha (NFYA) bound with OSBPL2 promoter when HeLa cells were treated with 25-OHC. Furthermore, transcriptome sequencing and RNA interference results revealed that the p53/sterol regulatory element binding transcription factor 2 (SREBF2) signaling pathway was involved in the NFYA-dependent transcription of OSBPL2 induced by 25-OHC. Based on these results, we concluded that pleomorphic adenoma gene 1 (PLAG1) and NFYA participated in the basal transcription of OSBPL2 and that 25-OHC decreased the transcription of OSBPL2 via the p53/SREBF2/NFYA signaling pathway. 25-OHC will accumulate over time in OSBPL2 knockdown cells. These results may provide a new insight into the deafness caused by OSBPL2 mutation.


Subunit disassembly and inhibition of TNFα by a semi-synthetic bicyclic peptide.

  • Stefan Luzi‎ et al.
  • Protein engineering, design & selection : PEDS‎
  • 2015‎

Macrocyclic peptides are potentially a source of powerful drugs, but their de novo discovery remains challenging. Here we describe the discovery of a high-affinity (Kd = 10 nM) peptide macrocycle (M21) against human tumor necrosis factor-alpha (hTNFα), a key drug target in the treatment of inflammatory disorders, directly from diverse semi-synthetic phage peptide repertoires. The bicyclic peptide M21 (ACPPCLWQVLC) comprises two loops covalently anchored to a 2,4,6-trimethyl-mesitylene core and upon binding induces disassembly of the trimeric TNFα cytokine into dimers and monomers. A 2.9 Å crystal structure of the M21/hTNFα complex reveals the peptide bound to a hTNFα dimer at a normally buried epitope in the trimer interface overlapping the binding site of a previously discovered small molecule ligand (SPD304), which also induces TNF trimer dissociation and synergizes with M21 in the inhibition of TNFα cytotoxicity. The discovery of M21 underlines the potential of semi-synthetic bicyclic peptides as ligands for the discovery of cryptic epitopes, some of which are poorly accessible to antibodies.


Immunoproteasome-specific subunit PSMB9 induction is required to regulate cellular proteostasis upon mitochondrial dysfunction.

  • Minji Kim‎ et al.
  • Nature communications‎
  • 2023‎

Perturbed cellular protein homeostasis (proteostasis) and mitochondrial dysfunction play an important role in neurodegenerative diseases, however, the interplay between these two phenomena remains unclear. Mitochondrial dysfunction leads to a delay in mitochondrial protein import, causing accumulation of non-imported mitochondrial proteins in the cytosol and challenging proteostasis. Cells respond by increasing proteasome activity and molecular chaperones in yeast and C. elegans. Here, we demonstrate that in human cells mitochondrial dysfunction leads to the upregulation of a chaperone HSPB1 and, interestingly, an immunoproteasome-specific subunit PSMB9. Moreover, PSMB9 expression is dependent on the translation elongation factor EEF1A2. These mechanisms constitute a defense response to preserve cellular proteostasis under mitochondrial stress. Our findings define a mode of proteasomal activation through the change in proteasome composition driven by EEF1A2 and its spatial regulation, and are useful to formulate therapies to prevent neurodegenerative diseases.


Delineation of interfaces on human alpha-defensins critical for human adenovirus and human papillomavirus inhibition.

  • Victoria R Tenge‎ et al.
  • PLoS pathogens‎
  • 2014‎

Human α-defensins are potent anti-microbial peptides with the ability to neutralize bacterial and viral targets. Single alanine mutagenesis has been used to identify determinants of anti-bacterial activity and binding to bacterial proteins such as anthrax lethal factor. Similar analyses of α-defensin interactions with non-enveloped viruses are limited. We used a comprehensive set of human α-defensin 5 (HD5) and human neutrophil peptide 1 (HNP1) alanine scan mutants in a combination of binding and neutralization assays with human adenovirus (AdV) and human papillomavirus (HPV). We have identified a core of critical hydrophobic residues that are common determinants for all of the virus-defensin interactions that were analyzed, while specificity in viral recognition is conferred by specific surface-exposed charged residues. The hydrophobic residues serve multiple roles in maintaining the tertiary and quaternary structure of the defensins as well as forming an interface for virus binding. Many of the important solvent-exposed residues of HD5 group together to form a critical surface. However, a single discrete binding face was not identified for HNP1. In lieu of whole AdV, we used a recombinant capsid subunit comprised of penton base and fiber in quantitative binding studies and determined that the anti-viral potency of HD5 was a function of stoichiometry rather than affinity. Our studies support a mechanism in which α-defensins depend on hydrophobic and charge-charge interactions to bind at high copy number to these non-enveloped viruses to neutralize infection and provide insight into properties that guide α-defensin anti-viral activity.


Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S beta5-subunit.

  • Christopher Blackburn‎ et al.
  • The Biochemical journal‎
  • 2010‎

The mammalian 26S proteasome is a 2500 kDa multi-catalytic complex involved in intracellular protein degradation. We describe the synthesis and properties of a novel series of non-covalent di-peptide inhibitors of the proteasome based [corrected] on a capped tri-peptide that was first identified by high-throughput screening of a library of approx. 350000 compounds for inhibitors of the ubiquitin-proteasome system in cells. We show that these compounds are entirely selective for the beta5 (chymotrypsin-like) site over the beta1 (caspase-like) and beta2 (trypsin-like) sites of the 20S core particle of the proteasome, and over a panel of less closely related proteases. Compound optimization, guided by X-ray crystallography of the liganded 20S core particle, confirmed their non-covalent binding mode and provided a structural basis for their enhanced in vitro and cellular potencies. We demonstrate that such compounds show low nanomolar IC50 values for the human 20S beta5 site in vitro, and that pharmacological inhibition of this site in cells is sufficient to potently inhibit the degradation of a tetra-ubiquitin-luciferase reporter, activation of NFkappaB (nuclear factor kappaB) in response to TNF-alpha (tumour necrosis factor-alpha) and the proliferation of cancer cells. Finally, we identified capped di-peptides that show differential selectivity for the beta5 site of the constitutively expressed proteasome and immunoproteasome in vitro and in B-cell lymphomas. Collectively, these studies describe the synthesis, activity and binding mode of a new series of non-covalent proteasome inhibitors with unprecedented potency and selectivity for the beta5 site, and which can discriminate between the constitutive proteasome and immunoproteasome in vitro and in cells.


N- and O-glycosylation patterns and functional testing of CGB7 versus CGB3/5/8 variants of the human chorionic gonadotropin (hCG) beta subunit.

  • Karina Biskup‎ et al.
  • Glycoconjugate journal‎
  • 2020‎

The classical function of human chorionic gonadotropin (hCG) is its role in supporting pregnancy. hCG is a dimer consisting of two highly glycosylated subunits, alpha (CGA) and beta (CGB). The beta-hCG protein is encoded by CGB3, CGB5, CGB7 and CGB8 genes. CGB3, 5 and 8 code for an identical protein, CGB3/5/8, whereas CGB7 differs in three amino acids from CGB3/5/8. We had observed earlier that CGB7 and CGB3/5/8 display very distinct tissue expression patterns and that the tumor suppressor and transcription factor p53 can activate expression of CGB7 but not of CGB3/5/8 genes. Here, we investigate the glycan structures and possible functional differences of the two CGB variants. To this end, we established a system to produce and isolate recombinant CGA, CGB7 and CGB3/5/8 proteins. We found that N- and O-glycosylation patterns of CGB7 and CGB3/5/8 are quite similar. Functional assays were performed by testing activation of the ERK1/2 pathway and demonstrated that CGB7 and CGB5/5/8 appear to be functionally redundant isoforms, although a slight difference in the kinetics of ERK1/2 pathway activation was observed. This is the first time that biological activity of CGB7 is shown. In summary, the results lead to the hypothesis that CGB7 and CGB3/5/8 do not hold significant functional differences but that timing and cell type of their expression is the key for understanding their divergent evolution.


Phosphorylation regulates arginine-rich RNA-binding protein solubility and oligomerization.

  • Sean R Kundinger‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

Posttranslational modifications (PTMs) such as phosphorylation of RNA-binding proteins (RBPs) regulate several critical steps in RNA metabolism, including spliceosome assembly, alternative splicing, and mRNA export. Notably, serine-/arginine- (SR)-rich RBPs are densely phosphorylated compared with the remainder of the proteome. Previously, we showed that dephosphorylation of the splicing factor SRSF2 regulated increased interactions with similar arginine-rich RBPs U1-70K and LUC7L3. However, the large-scale functional and structural impact of these modifications on RBPs remains unclear. In this work, we dephosphorylated nuclear extracts using phosphatase in vitro and analyzed equal amounts of detergent-soluble and -insoluble fractions by mass-spectrometry-based proteomics. Correlation network analysis resolved 27 distinct modules of differentially soluble nucleoplasm proteins. We found classes of arginine-rich RBPs that decrease in solubility following dephosphorylation and enrich the insoluble pelleted fraction, including the SR protein family and the SR-like LUC7L RBP family. Importantly, increased insolubility was not observed across broad classes of RBPs. We determined that phosphorylation regulated SRSF2 structure, as dephosphorylated SRSF2 formed high-molecular-weight oligomeric species in vitro. Reciprocally, phosphorylation of SRSF2 by serine/arginine protein kinase 2 (SRPK2) in vitro decreased high-molecular-weight SRSF2 species formation. Furthermore, upon pharmacological inhibition of SRPKs in mammalian cells, we observed SRSF2 cytoplasmic mislocalization and increased formation of cytoplasmic granules as well as cytoplasmic tubular structures that associated with microtubules by immunocytochemical staining. Collectively, these findings demonstrate that phosphorylation may be a critical modification that prevents arginine-rich RBP insolubility and oligomerization.


Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia.

  • Hélène Jakobczyk‎ et al.
  • Journal of hematology & oncology‎
  • 2021‎

B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) is the most common pediatric cancer. Identifying key players involved in proliferation of BCP-ALL cells is crucial to propose new therapeutic targets. Runt Related Transcription Factor 1 (RUNX1) and Core-Binding Factor Runt Domain Alpha Subunit 2 Translocated To 3 (CBFA2T3, ETO2, MTG16) are master regulators of hematopoiesis and are implicated in leukemia.


Integrative RNA-omics Discovers GNAS Alternative Splicing as a Phenotypic Driver of Splicing Factor-Mutant Neoplasms.

  • Emily C Wheeler‎ et al.
  • Cancer discovery‎
  • 2022‎

Mutations in splicing factors (SF) are the predominant class of mutations in myelodysplastic syndrome (MDS), but convergent downstream disease drivers remain elusive. To identify common direct targets of missplicing by mutant U2AF1 and SRSF2, we performed RNA sequencing and enhanced version of the cross-linking and immunoprecipitation assay in human hematopoietic stem/progenitor cells derived from isogenic induced pluripotent stem cell (iPSC) models. Integrative analyses of alternative splicing and differential binding converged on a long isoform of GNAS (GNAS-L), promoted by both mutant factors. MDS population genetics, functional and biochemical analyses support that GNAS-L is a driver of MDS and encodes a hyperactive long form of the stimulatory G protein alpha subunit, Gαs-L, that activates ERK/MAPK signaling. SF-mutant MDS cells have activated ERK signaling and consequently are sensitive to MEK inhibitors. Our findings highlight an unexpected and unifying mechanism by which SRSF2 and U2AF1 mutations drive oncogenesis with potential therapeutic implications for MDS and other SF-mutant neoplasms.


Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies.

  • Romain Guièze‎ et al.
  • Cancer cell‎
  • 2019‎

Mitochondrial apoptosis can be effectively targeted in lymphoid malignancies with the FDA-approved B cell lymphoma 2 (BCL-2) inhibitor venetoclax, but resistance to this agent is emerging. We show that venetoclax resistance in chronic lymphocytic leukemia is associated with complex clonal shifts. To identify determinants of resistance, we conducted parallel genome-scale screens of the BCL-2-driven OCI-Ly1 lymphoma cell line after venetoclax exposure along with integrated expression profiling and functional characterization of drug-resistant and engineered cell lines. We identified regulators of lymphoid transcription and cellular energy metabolism as drivers of venetoclax resistance in addition to the known involvement by BCL-2 family members, which were confirmed in patient samples. Our data support the implementation of combinatorial therapy with metabolic modulators to address venetoclax resistance.


Cardiovascular Benefits of Empagliflozin Are Associated With Gut Microbiota and Plasma Metabolites in Type 2 Diabetes.

  • Xinru Deng‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2022‎

Cardiovascular benefits of empagliflozin in patients with type 2 diabetes mellitus (T2DM) have been reported; however, the underlying mechanism remains unknown.


CBFA2T2 is required for BMP-2-induced osteogenic differentiation of mesenchymal stem cells.

  • Hong Huang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2018‎

Bone morphogenetic protein (BMP) signaling is one of the essential pathways involved in osteogenic differentiation of mesenchymal stem cells (MSCs) and regulation of bone formation. While BMP-2 has been approved for clinic use, the underlying mechanisms remain not fully understood. In this study, we found co-repressor CBFA2T2 (core-binding factor, runt domain, alpha subunit 2, translocated to, 2) expression was significantly upregulated in response to BMP-2 treatment during osteogenic differentiation of human dental pulp stem cells (hDPSCs) and mouse bone marrow stromal cells (mBMSCs). siRNA-mediated knockdown of CBFA2T2 blunted the BMP-2-induced allkaline phosphatase (ALP) activity, mineralization of extracelluar matrix (ECM), and expression of osteogenic related genes in both hDPSCs and mBMSCs. Mechanistically, knockdown of CBFA2T2 promoted expression of euchromatic histone methyltransferase 1 (EHMT1) in mBMSCs, which further led to upregulation of H3K9me2 levels at promoter of runt related transcription factor 2 (Runx2), the master regulator of osteogenesis. Collectively, our findings indicate that CBFA2T2 is required for BMP-2-induced osteogenic differentiation of MSCs through inhibition of EHMT1-mediated histone methylation at Runx2 promoter.


Upregulation of transcription factor 4 downregulates NaV1.8 expression in DRG neurons and prevents the development of rat inflammatory and neuropathic hypersensitivity.

  • Ningbo Li‎ et al.
  • Experimental neurology‎
  • 2020‎

The voltage sodium channel 1.8 (NaV1.8) in the dorsal root ganglion (DRG) neurons contributes to the initiation and development of chronic inflammatory and neuropathic pain. However, an effective intervention on NaV1.8 remains to be studied in pre-clinical research and clinical trials. In this study, we aimed to investigate whether transcription factor 4 (TCF4) overexpression represses NaV1.8 expression in DRG neurons, thus preventing the development of chronic pain. Using chromatin immunoprecipitation (CHIP), we verified the interaction of TCF4 and sodium voltage-gated channel alpha subunit 10A (SCN10A) enhancer in HEK293 cells and rat DRG neurons. Using a dual luciferase reporter assay, we confirmed the transcriptional inhibition of TCF4 on SCN10A promoter in vitro. To investigate the regulation of TCF4 on Nav1.8, we then upregulated TCF4 expression by intrathecally delivering an overexpression of recombinant adeno-associated virus (rAAV) in the Complete Freund's adjuvant (CFA)-induced inflammatory pain model and spared nerve injury (SNI)-induced neuropathic pain model. By using a quantitative polymerase chain reaction (qPCR), western blot, and immunostaining, we evaluated NaV1.8 expression after a noxious stimulation and the application of the TCF4 overexpression virus. We showed that the intrathecal delivery of TCF4 overexpression virus significantly repressed the increase of NaV1.8 and prevented the development of hyperalgesia in rats. Moreover, we confirmed the efficient role of an overexpressed TCF4 in preventing the CFA- and SNI-induced neuronal hyperexcitability by calcium imaging. Our results suggest that attenuating the dysregulation of NaV1.8 by targeting TCF4 may be a novel therapeutic strategy for chronic inflammatory and neuropathic pain.


Cross neutralization of emerging SARS-CoV-2 variants of concern by antibodies targeting distinct epitopes on spike.

  • Patrick Wilson‎ et al.
  • Research square‎
  • 2021‎

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have arisen that exhibit increased viral transmissibility and partial evasion of immunity induced by natural infection and vaccination. To address the specific antibody targets that were affected by recent viral variants, we generated 43 monoclonal antibodies (mAbs) from 10 convalescent donors that bound three distinct domains of the SARS-CoV-2 spike. Viral variants harboring mutations at K417, E484 and N501 could escape most of the highly potent antibodies against the receptor binding domain (RBD). Despite this, we identified 12 neutralizing mAbs against three distinct regions of the spike protein that neutralize SARS-CoV-2 and the variants of concern, including B.1.1.7 (alpha), P.1 (gamma) and B.1.617.2 (delta). Notably, antibodies targeting distinct epitopes could neutralize discrete variants, suggesting different variants may have evolved to disrupt the binding of particular neutralizing antibody classes. These results underscore that humans exposed to wildtype (WT) SARS-CoV-2 do possess neutralizing antibodies against current variants and that it is critical to induce antibodies targeting multiple distinct epitopes of the spike that can neutralize emerging variants of concern.


Yeast endocytic adaptor AP-2 binds the stress sensor Mid2 and functions in polarized cell responses.

  • Bernardo Chapa-y-Lazo‎ et al.
  • Traffic (Copenhagen, Denmark)‎
  • 2014‎

The AP-2 complex is a heterotetrameric endocytic cargo-binding adaptor that facilitates uptake of membrane proteins during mammalian clathrin-mediated endocytosis. While budding yeast has clear homologues of all four AP-2 subunits which form a complex and localize to endocytic sites in vivo, the function of yeast AP-2 has remained enigmatic. Here, we demonstrate that AP-2 is required for hyphal growth in Candida albicans and polarized cell responses in Saccharomyces cerevisiae. Deletion of APM4, the cargo-binding mu subunit of AP-2, causes defects in pseudohyphal growth, generation of a mating projection and the cell wall damage response. In an apm4 null mutant, the cell wall stress sensor Mid2 is unable to relocalize to the tip of a mating projection following pheromone addition, or to the mother bud neck in response to cell wall damage. A direct binding interaction between Mid2 and the mu homology domain of Apm4 further supports a model in which AP-2 binds Mid2 to facilitate its internalization and relocalization in response to specific signals. Thus, Mid2 is the first cargo for AP-2 identified in yeast. We propose that endocytic recycling of Mid2 and other components is required for polarized cell responses ensuring cell wall deposition and is tightly monitored during cell growth.


The mitochondrial Ca 2+ channel MCU is critical for tumor growth by supporting cell cycle progression and proliferation.

  • Emily Fernández García‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The mitochondrial uniporter (MCU) Ca 2+ ion channel represents the primary means for Ca 2+ uptake into mitochondria. Here we employed in vitro and in vivo models with MCU genetically eliminated to understand how MCU contributes to tumor formation and progression. Transformation of primary fibroblasts in vitro was associated with increased MCU expression, enhanced mitochondrial Ca 2+ uptake, suppression of inactivating-phosphorylation of pyruvate dehydrogenase, a modest increase of basal mitochondrial respiration and a significant increase of acute Ca 2+ -dependent stimulation of mitochondrial respiration. Inhibition of mitochondrial Ca 2+ uptake by genetic deletion of MCU markedly inhibited growth of HEK293T cells and of transformed fibroblasts in mouse xenograft models. Reduced tumor growth was primarily a result of substantially reduced proliferation and fewer mitotic cells in vivo , and slower cell proliferation in vitro associated with delayed progression through S-phase of the cell cycle. MCU deletion inhibited cancer stem cell-like spheroid formation and cell invasion in vitro , both predictors of metastatic potential. Surprisingly, mitochondrial matrix Ca 2+ concentration, membrane potential, global dehydrogenase activity, respiration and ROS production were unchanged by genetic deletion of MCU in transformed cells. In contrast, MCU deletion elevated glycolysis and glutaminolysis, strongly sensitized cell proliferation to glucose and glutamine limitation, and altered agonist-induced cytoplasmic Ca 2+ signals. Our results reveal a dependence of tumorigenesis on MCU, mediated by a reliance on mitochondrial Ca 2+ uptake for cell metabolism and Ca 2+ dynamics necessary for cell-cycle progression and cell proliferation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: