Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 769 papers

Evolution and neural representation of mammalian cooperative behavior.

  • Mengping Jiang‎ et al.
  • Cell reports‎
  • 2021‎

Cooperation is common in nature and is pivotal to the development of human society. However, the details of how and why cooperation evolved remain poorly understood. Cross-species investigation of cooperation may help to elucidate the evolution of cooperative strategies. Thus, we design an automated cooperative behavioral paradigm and quantitatively examine the cooperative abilities and strategies of mice, rats, and tree shrews. We find that social communication plays a key role in the establishment of cooperation and that increased cooperative ability and a more efficient cooperative strategy emerge as a function of the evolutionary hierarchy of the tested species. Moreover, we demonstrate that single-unit activities in the orbitofrontal and prelimbic cortex in rats represent neural signals that may be used to distinguish between the cooperative and non-cooperative tasks, and such signals are distinct from the reward signals. Both signals may represent distinct components of the internal drive for cooperation.


Being Negatively Cued, are People Less Cooperative? The Influence of Watching Eyes on Cooperative Behavior.

  • Xiaoming Wang‎ et al.
  • Evolutionary psychology : an international journal of evolutionary approaches to psychology and behavior‎
  • 2022‎

In the course of human evolution, watching eyes have had an important influence on individual cooperative behavior. However, researchers have not explored how the valence of watching eyes affects cooperative behavior. Therefore, this study includes three studies to investigate the effect of watching eyes with different valences on cooperative behavior. The results showed that positive watching eyes (vs. negative watching eyes) induced positive emotions (PA) in the participants and thus increased their tendency to cooperate (Studies 1-2). The role of the decision maker (making decisions for oneself vs. making decisions on behalf of others) moderates the effect of watching eyes on cooperative behavior through emotion (Study 3). In conclusion, the valence of watching eyes significantly affects cooperation. This study not only further enriches research on environmental stimulation and cooperation but also provides inspiration and a reference for solving problems of cooperation in social dilemmas.


Investigating Cooperative Behavior in Ecological Settings: An EEG Hyperscanning Study.

  • Jlenia Toppi‎ et al.
  • PloS one‎
  • 2016‎

The coordinated interactions between individuals are fundamental for the success of the activities in some professional categories. We reported on brain-to-brain cooperative interactions between civil pilots during a simulated flight. We demonstrated for the first time how the combination of neuroelectrical hyperscanning and intersubject connectivity could provide indicators sensitive to the humans' degree of synchronization under a highly demanding task performed in an ecological environment. Our results showed how intersubject connectivity was able to i) characterize the degree of cooperation between pilots in different phases of the flight, and ii) to highlight the role of specific brain macro areas in cooperative behavior. During the most cooperative flight phases pilots showed, in fact, dense patterns of interbrain connectivity, mainly linking frontal and parietal brain areas. On the contrary, the amount of interbrain connections went close to zero in the non-cooperative phase. The reliability of the interbrain connectivity patterns was verified by means of a baseline condition represented by formal couples, i.e. pilots paired offline for the connectivity analysis but not simultaneously recorded during the flight. Interbrain density was, in fact, significantly higher in real couples with respect to formal couples in the cooperative flight phases. All the achieved results demonstrated how the description of brain networks at the basis of cooperation could effectively benefit from a hyperscanning approach. Interbrain connectivity was, in fact, more informative in the investigation of cooperative behavior with respect to established EEG signal processing methodologies applied at a single subject level.


A Plastic Visual Pathway Regulates Cooperative Behavior in Drosophila Larvae.

  • Mark Dombrovski‎ et al.
  • Current biology : CB‎
  • 2019‎

Cooperative behavior emerges in biological systems through coordinated actions among individuals [1, 2]. Although widely observed across animal species, the cellular and molecular mechanisms underlying the establishment and maintenance of cooperative behaviors remain largely unknown [3]. To characterize the circuit mechanisms serving the needs of independent individuals and social groups, we investigated cooperative digging behavior in Drosophila larvae [4-6]. Although chemical and mechanical sensations are important for larval aggregation at specific sites [7-9], an individual larva's ability to participate in a cooperative burrowing cluster relies on direct visual input as well as visual and social experience during development. In addition, vision modulates cluster dynamics by promoting coordinated movements between pairs of larvae [5]. To determine the specific pathways within the larval visual circuit underlying cooperative social clustering, we examined larval photoreceptors (PRs) and the downstream local interneurons (lOLPs) using anatomical and functional studies [10, 11]. Our results indicate that rhodopsin-6-expressing-PRs (Rh6-PRs) and lOLPs are required for both cooperative clustering and movement detection. Remarkably, visual deprivation and social isolation strongly impact the structural and functional connectivity between Rh6-PRs and lOLPs, while at the same time having no effect on the adjacent rhodopsin-5-expressing PRs (Rh5-PRs). Together, our findings demonstrate that a specific larval visual pathway involved in social interactions undergoes experience-dependent modifications during development, suggesting that plasticity in sensory circuits could act as the cellular substrate for social learning, a possible mechanism allowing an animal to integrate into a malleable social environment and engage in complex social behaviors.


Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating.

  • Hilary Monaco‎ et al.
  • Nature communications‎
  • 2022‎

Much of our understanding of bacterial behavior stems from studies in liquid culture. In nature, however, bacteria frequently live in densely packed spatially-structured communities. How does spatial structure affect bacterial cooperative behaviors? In this work, we examine rhamnolipid production-a cooperative and virulent behavior of Pseudomonas aeruginosa. Here we show that, in striking contrast to well-mixed liquid culture, rhamnolipid gene expression in spatially-structured colonies is strongly associated with colony specific growth rate, and is impacted by perturbation with diffusible quorum signals. To interpret these findings, we construct a data-driven statistical inference model which captures a length-scale of bacterial interaction that develops over time. Finally, we find that perturbation of P. aeruginosa swarms with quorum signals preserves the cooperating genotype in competition, rather than creating opportunities for cheaters. Overall, our data demonstrate that the complex response to spatial localization is key to preserving bacterial cooperative behaviors.


Exploiting Cooperative Pathogen Behavior for Enhanced Antibiotic Potency: A Trojan Horse Approach.

  • Alper Mutlu‎ et al.
  • Research square‎
  • 2023‎

Antimicrobial resistance poses an escalating global threat, rendering traditional drug development approaches increasingly ineffective. Thus, novel alternatives to antibiotic-based therapies are needed. Exploiting pathogen cooperation as a strategy for combating resistant infections has been proposed but lacks experimental validation. Empirical findings demonstrate the successful invasion of cooperating populations by non-cooperating cheats, effectively reducing virulence in vitro and in vivo. The idea of harnessing cooperative behaviors for therapeutic benefit involves exploitation of the invasive capabilities of cheats to drive medically beneficial traits into infecting populations of cells. In this study, we employed Pseudomonas aeruginosa quorum sensing cheats to drive antibiotic sensitivity into both in vitro and in vivo resistant populations. We demonstrated the successful invasion of cheats, followed by increased antibiotic effectiveness against cheat-invaded populations, thereby establishing an experimental proof of principle for the potential application of the Trojan strategy in fighting resistant infections.


Evolution of acoustic signals associated with cooperative parental behavior in a poison frog.

  • Jeanette B Moss‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

The emergence of complex social interactions is predicted to be an important selective force in the diversification of communication systems. Parental care presents a key social context in which to study the evolution of novel signals, as care often requires communication and behavioral coordination between parents and is an evolutionary stepping-stone toward increasingly complex social systems. Anuran amphibians (frogs and toads) are a classic model of acoustic communication and the vocal repertoires of many species have been characterized in the contexts of advertisement, courtship, and aggression, yet quantitative descriptions of calls elicited in the context of parental care are lacking. The biparental poison frog, Ranitomeya imitator, exhibits a remarkable parenting behavior in which females, cued by the calls of their male partners, feed tadpoles unfertilized eggs. Here, we characterized and compared calls across three social contexts, for the first time including a parental care context. We found that egg-feeding calls share some properties with both advertisement and courtship calls but also had unique properties. Multivariate analysis revealed high classification success for advertisement and courtship calls but misclassified nearly half of egg feeding calls as either advertisement or courtship calls. Egg feeding and courtship calls both contained less identity information than advertisement calls, as expected for signals used in close-range communication where uncertainty about identity is low and additional signal modalities may be used. Taken together, egg-feeding calls likely borrowed and recombined elements of both ancestral call types to solicit a novel, context-dependent parenting response.


Cooperative Behavior in the Ultimatum Game and Prisoner's Dilemma Depends on Players' Contributions.

  • Amy R Bland‎ et al.
  • Frontiers in psychology‎
  • 2017‎

Economic games such as the Ultimatum Game (UG) and Prisoner's Dilemma (PD) are widely used paradigms for studying fairness and cooperation. Monetary versions of these games involve two players splitting an arbitrary sum of money. In real life, however, people's propensity to engage in cooperative behavior depends on their effort and contribution; factors that are well known to affect perceptions of fairness. We therefore sought to explore the impact of relative monetary contributions by players in the UG and PD. Adapted computerized UG and PD games, in which relative contributions from each player were manipulated, were administered to 200 participants aged 18-50 years old (50% female). We found that players' contribution had large effects on cooperative behavior. Specifically, cooperation was greater amongst participants when their opponent had contributed more to joint earnings. This was manifested as higher acceptance rates and higher offers in the UG; and fewer defects in the PD compared to when the participant contributed more. Interestingly, equal contributions elicited the greatest sensitivity to fairness in the UG, and least frequent defection in the PD. Acceptance rates correlated positively with anxiety and sex differences were found in defection behavior. This study highlights the feasibility of computerized games to assess cooperative behavior and the importance of considering cooperation within the context of effortful contribution.


Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior.

  • Julie C Kohn‎ et al.
  • Biophysical journal‎
  • 2015‎

Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm(2). Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health.


Moral reasoning and moral competence as predictors of cooperative behavior in a social dilemma.

  • Rubén Andrés Miranda-Rodríguez‎ et al.
  • Scientific reports‎
  • 2023‎

The level of moral development may be crucial to understand behavior when people have to choose between prioritizing individual gains or pursuing general social benefits. This study evaluated whether two different psychological constructs, moral reasoning and moral competence, are associated with cooperative behavior in the context of the prisoner's dilemma game, a two-person social dilemma where individuals choose between cooperation or defection. One hundred and eighty-nine Mexican university students completed the Defining Issues Test (DIT-2; measuring moral reasoning) and the Moral Competence Test (MCT) and played an online version of the prisoner's dilemma game, once against each participant in a group of 6-10 players. Our results indicate that cooperative behavior is strongly affected by the outcomes in previous rounds: Except when both participants cooperated, the probability of cooperation with other participants in subsequent rounds decreased. Both the DIT-2 and MCT independently moderated this effect of previous experiences, particularly in the case of sucker-outcomes. Individuals with high scores on both tests were not affected when in previous rounds the other player defected while they cooperated. Our findings suggest that more sophisticated moral reasoning and moral competence promote the maintenance of cooperative behaviors despite facing adverse situations.


The role of dominance in sibling relationships: differences in interactive cooperative and competitive behavior.

  • Lucia Hernandez-Pena‎ et al.
  • Scientific reports‎
  • 2023‎

Siblings strongly influence each other in their social development and are a major source of support and conflict. Yet, studies are mostly observational, and little is known about how adult sibling relationships influence social behavior. Previous tasks exploring dynamically adjusting social interactions have limitations in the level of interactivity and naturalism of the interaction. To address these limitations, we created a cooperative tetris puzzle-solving task and an interactive version of the chicken game task. We validated these two tasks to study cooperative and competitive behavior in real-time interactions (N = 56). Based on a dominance questionnaire (DoPL), sibling pairs were clustered into pairs that were both low in dominance (n = 7), both high in dominance (n = 8), or one low and one high in dominance (n = 13). Consistent with our hypothesis, there were significantly more mutual defections, less use of turn-taking strategies, and a non-significant trend for reduced success in solving tetris puzzles together among high dominance pairs compared to both other pair types. High dominant pairs also had higher Machiavellian and hypercompetitiveness traits and more apathetic sibling relationships. Both tasks constitute powerful and reliable tools to study personality and relationship influences on real and natural social interactions by demonstrating the different cooperative and competitive dynamics between siblings.


Interpersonal Neural Synchronization During Cooperative Behavior of Basketball Players: A fNIRS-Based Hyperscanning Study.

  • Lin Li‎ et al.
  • Frontiers in human neuroscience‎
  • 2020‎

Accumulating evidence has consistently shown that team-based sports (such as basketball) are beneficial to interpersonal cooperation. However, its neural correlate remains to be discovered, especially in the perspective of two-person neuroscience. In this study, 12 dyads of basketball players and 12 dyads of college students who had no experience of team-based sports training were asked to perform joint-drawing task and control task. During task performance, neural activities were recorded in frontal area by the functional near-infrared spectroscopy (fNIRS)-based hyperscanning approach. The results demonstrated that dyads of basketball players were faster to finish joint-drawing task and showed higher subjective cooperativeness than dyads of college students. Meanwhile, significant interpersonal neural synchronization (INS) was observed in the dorsolateral prefrontal area only when pairs of basketball players performed joint-drawing task, but not control task. Therefore, we provide the first piece of inter-brain evidence for enhanced cooperative behavior in the individuals with team-based sports training, which could make us deeply understand exact neural correlate for experience-dependent changes of cognitions in humans.


Defecting or not defecting: how to "read" human behavior during cooperative games by EEG measurements.

  • Fabrizio De Vico Fallani‎ et al.
  • PloS one‎
  • 2010‎

Understanding the neural mechanisms responsible for human social interactions is difficult, since the brain activities of two or more individuals have to be examined simultaneously and correlated with the observed social patterns. We introduce the concept of hyper-brain network, a connectivity pattern representing at once the information flow among the cortical regions of a single brain as well as the relations among the areas of two distinct brains. Graph analysis of hyper-brain networks constructed from the EEG scanning of 26 couples of individuals playing the Iterated Prisoner's Dilemma reveals the possibility to predict non-cooperative interactions during the decision-making phase. The hyper-brain networks of two-defector couples have significantly less inter-brain links and overall higher modularity--i.e., the tendency to form two separate subgraphs--than couples playing cooperative or tit-for-tat strategies. The decision to defect can be "read" in advance by evaluating the changes of connectivity pattern in the hyper-brain network.


A cooperative function for multisensory stimuli in the induction of approach behavior of a potential mate.

  • Anders Ågmo‎ et al.
  • PloS one‎
  • 2017‎

Intrasexual competition is an important element of natural selection in which the most attractive conspecific has a considerable reproductive advantage over the others. The conspecifics that are approached first often become the preferred mate partners, and could thus from a biological perspective have a reproductive advantage. This underlines the importance of the initial approach and raises the question of what induces this approach, or what makes a conspecific attractive. Identification of the sensory modalities crucial for the activation of approach is necessary for elucidating the central nervous processes involved in the activation of sexual motivation and eventually copulatory behavior. The initial approach to a potential mate depends on distant stimuli in the modalities of audition, olfaction, vision, and other undefined characteristics. This study investigated the role of the different modalities and the combination of these modalities in the sexual incentive value of a female rat. This study provides evidence that the presence of a single-sensory stimulus with one modality (olfaction, vision, or 'others', but not audition) is sufficient to attenuate the preference for a social contact with a male rat. However, a multisensory stimulus of multiple modalities is necessary to induce preference for the stimulus over social contact to a level of an intact receptive female. The initial approach behavior, therefore, seems to be induced by the combination of at least two modalities among which olfaction is crucial. This suggests that there is a cooperative function for the different modalities in the induction of approach behavior of a potential mate.


The collective benefits of feeling good and letting go: positive emotion and (dis)inhibition interact to predict cooperative behavior.

  • David G Rand‎ et al.
  • PloS one‎
  • 2015‎

Cooperation is central to human existence, forming the bedrock of everyday social relationships and larger societal structures. Thus, understanding the psychological underpinnings of cooperation is of both scientific and practical importance. Recent work using a dual-process framework suggests that intuitive processing can promote cooperation while deliberative processing can undermine it. Here we add to this line of research by more specifically identifying deliberative and intuitive processes that affect cooperation. To do so, we applied automated text analysis using the Linguistic Inquiry and Word Count (LIWC) software to investigate the association between behavior in one-shot anonymous economic cooperation games and the presence inhibition (a deliberative process) and positive emotion (an intuitive process) in free-response narratives written after (Study 1, N = 4,218) or during (Study 2, N = 236) the decision-making process. Consistent with previous results, across both studies inhibition predicted reduced cooperation while positive emotion predicted increased cooperation (even when controlling for negative emotion). Importantly, there was a significant interaction between positive emotion and inhibition, such that the most cooperative individuals had high positive emotion and low inhibition. This suggests that inhibition (i.e., reflective or deliberative processing) may undermine cooperative behavior by suppressing the prosocial effects of positive emotion.


Proper direction of male genitalia is prerequisite for copulation in Drosophila, implying cooperative evolution between genitalia rotation and mating behavior.

  • Momoko Inatomi‎ et al.
  • Scientific reports‎
  • 2019‎

Animal morphology and behavior often appear to evolve cooperatively. However, it is difficult to assess how strictly these two traits depend on each other. The genitalia morphologies and courtship behaviors in insects, which vary widely, may be a good model for addressing this issue. In Diptera, phylogenetic analyses of mating positions suggested that the male-above position evolved from an end-to-end one. However, with this change in mating position, the dorsoventral direction of the male genitalia became upside down with respect to that of the female genitalia. It was proposed that to compensate for this incompatibility, the male genitalia rotated an additional 180° during evolution, implying evolutionary cooperativity between the mating position and genitalia direction. According to this scenario, the proper direction of male genitalia is critical for successful mating. Here, we tested this hypothesis using a Drosophila Myosin31DF (Myo31DF) mutant, in which the rotation of the male genitalia terminates prematurely, resulting in various deviations in genitalia direction. We found that the proper dorsoventral direction of the male genitalia was a prerequisite for successful copulation, but it did not affect the other courtship behaviors. Therefore, our results suggested that the male genitalia rotation and mating position evolved cooperatively in Drosophila.


Cooperative Behavior Evokes Interbrain Synchrony in the Prefrontal and Temporoparietal Cortex: A Systematic Review and Meta-Analysis of fNIRS Hyperscanning Studies.

  • Artur Czeszumski‎ et al.
  • eNeuro‎
  • 2022‎

Single-brain neuroimaging studies have shown that human cooperation is associated with neural activity in frontal and temporoparietal regions. However, it remains unclear whether single-brain studies are informative about cooperation in real life, where people interact dynamically. Such dynamic interactions have become the focus of interbrain studies. An advantageous technique in this regard is functional near-infrared spectroscopy (fNIRS) because it is less susceptible to movement artifacts than more conventional techniques like electroencephalography (EEG) or functional magnetic resonance imaging (fMRI). We conducted a systematic review and the first quantitative meta-analysis of fNIRS hyperscanning of cooperation, based on thirteen studies with 890 human participants. Overall, the meta-analysis revealed evidence of statistically significant interbrain synchrony while people were cooperating, with large overall effect sizes in both frontal and temporoparietal areas. All thirteen studies observed significant interbrain synchrony in the prefrontal cortex (PFC), suggesting that this region is particularly relevant for cooperative behavior. The consistency in these findings is unlikely to be because of task-related activations, given that the relevant studies used diverse cooperation tasks. Together, the present findings support the importance of interbrain synchronization of frontal and temporoparietal regions in interpersonal cooperation. Moreover, the present article highlights the usefulness of meta-analyses as a tool for discerning patterns in interbrain dynamics.


A cooperative jack model of random coil-to-elongation transition of the FH1 domain by profilin binding explains formin motor behavior in actin polymerization.

  • Chen Zhao‎ et al.
  • FEBS letters‎
  • 2014‎

Filopodia are essential for the development of neuronal growth cones, cell polarity and cell migration. Their protrusions are powered by the polymerization of actin filaments linked to the plasma membrane, catalyzed by formin proteins. The acceleration of polymerization depends on the number of profilin-actins binding with the formin-FH1 domain. Biophysical characterization of the disordered formin-FH1 domain remains a challenge. We analyzed the conformational distribution of the diaphanous-related formin mDia1-FH1 bound with one to six profilins. We found a coil-to-elongation transition in the FH1 domain. We propose a cooperative "jack" model for the Formin-Homology-1 (FH1) domain of formins stacked by profilin-actins.


Cooperative Assembly of Hsp70 Subdomain Clusters.

  • Maya A Wright‎ et al.
  • Biochemistry‎
  • 2018‎

Many molecular chaperones exist as oligomeric complexes in their functional states, yet the physical determinants underlying such self-assembly behavior, as well as the role of oligomerization in the activity of molecular chaperones in inhibiting protein aggregation, have proven to be difficult to define. Here, we demonstrate direct measurements under native conditions of the changes in the average oligomer populations of a chaperone system as a function of concentration and time and thus determine the thermodynamic and kinetic parameters governing the self-assembly process. We access this self-assembly behavior in real time under native-like conditions by monitoring the changes in the micrometer-scale diffusion of the different complexes in time and space using a microfluidic platform. Using this approach, we find that the oligomerization mechanism of the Hsp70 subdomain occurs in a cooperative manner and involves structural constraints that limit the size of the species formed beyond the limits imposed by mass balance. These results illustrate the ability of microfluidic methods to probe polydisperse protein self-assembly in real time in solution and to shed light on the nature and dynamics of oligomerization processes.


Within vs. between-subject effects of intranasal oxytocin on the neural response to cooperative and non-cooperative social interactions.

  • Xu Chen‎ et al.
  • Psychoneuroendocrinology‎
  • 2017‎

The neuropeptide oxytocin (OT) plays a critical role in modulating social behavior across a wide range of vertebrate species. In humans, intranasal oxytocin (INOT) has been shown to modulate various aspects of social behavior, such as empathy, trust, in-group preference, and memory of socially relevant cues. Most INOT studies employ cross-sectional designs despite the enhanced statistical power and reduction in error variance associated with individual differences characteristic of within-subject designs. Using the Prisoner Dilemma task, which models a real-life dyadic social interaction, our group has systematically explored the effect of INOT on social cooperation and non-cooperation using a cross-sectional design. In the current study, we investigated if the main findings from our cross-sectional study could be replicated in a within-subject design using the same paradigm and whether new findings would emerge. We found OT to attenuate the ventral tegmental area response to reciprocated cooperation in women, an effect that is also present in our cross-sectional sample. However, other cross-sectional findings, especially those found in men, were not observed in this within-subject study. We hypothesize that the discrepancy can be explained by differing OT effects based on the degree of stimulus novelty/familiarity. Our within-subject study also revealed new effects not found previously in our cross-sectional study. Most importantly, OT treatment on scan 2 blocked amygdala habituation to unreciprocated cooperation found in a group that received placebo on both scans among men. Our results suggest that exogenous OT reduces the salience of positive social interactions among women and prevents habituation to negative social interactions among men. These findings may have implications for the potential clinical utility of OT as a treatment for psychiatric disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: