Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 259 papers

BACE1 activity regulates cell surface contactin-2 levels.

  • Vivek Gautam‎ et al.
  • Molecular neurodegeneration‎
  • 2014‎

Although BACE1 is a major therapeutic target for Alzheimer's disease (AD), potential side effects of BACE1 inhibition are not well characterized. BACE1 cleaves over 60 putative substrates, however the majority of these cleavages have not been characterized. Here we investigated BACE1-mediated cleavage of human contactin-2, a GPI-anchored cell adhesion molecule.


Contactin-1 and contactin-2 in cerebrospinal fluid as potential biomarkers for axonal domain dysfunction in multiple sclerosis.

  • Madhurima Chatterjee‎ et al.
  • Multiple sclerosis journal - experimental, translational and clinical‎
  • 2018‎

Contactin-1 and contactin-2 are important for the maintenance of axonal integrity.


Contactin-associated protein-2 antibodies in non-paraneoplastic cerebellar ataxia.

  • Esther B E Becker‎ et al.
  • Journal of neurology, neurosurgery, and psychiatry‎
  • 2012‎

Relatively few studies have searched for potentially pathogenic antibodies in non-paraneoplastic patients with cerebellar ataxia.


Genotype-phenotype correlation in contactin-associated protein-like 2 (CNTNAP-2) developmental disorder.

  • Gianluca D'Onofrio‎ et al.
  • Human genetics‎
  • 2023‎

Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, involved in cell-cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with "Pitt-Hopkins-like syndrome-1" (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to characterize the genotype-phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidities were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal signal abnormalities in the temporal lobes were noted in three subjects. Genotype-phenotype correlation was performed by also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy (p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment (p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.


Nanomechanics of Ig-like domains of human contactin (BIG-2).

  • Karolina Mikulska‎ et al.
  • Journal of molecular modeling‎
  • 2011‎

Contactins are modular extracellular cell matrix proteins that are present in the brain, and they are responsible for the proper development and functioning of neurons. They contain six immunoglobulin-like IgC2 domains and four fibronectin type III repeats. The interactions of contactin with other proteins are poorly understood. The mechanical properties of all IgC2 domains of human contactin 4 were studied using a steered molecular dynamics approach and CHARMM force field with an explicit TIP3P water environment on a 10-ns timescale. Force spectra of all domains were determined computationally and the nanomechanical unfolding process is described. The domains show different mechanical stabilities. The calculated maxima of the unfolding force are in the range of 900-1700 pN at a loading rate of 7 N/s. Our data indicate that critical regions of IgC2 domains 2 and 3, which are responsible for interactions with tyrosine phosphatases and are important in nervous system development, are affected by even weak mechanical stretching. Thus, tensions present in the cell may modulate cellular activities related to contactin function. The present data should facilitate the interpretation of atomic force microscope single-molecule spectra of numerous proteins with similar IgC2 motives.


Contactin-2/TAG-1, active on the front line for three decades.

  • Tomoyuki Masuda‎
  • Cell adhesion & migration‎
  • 2017‎

Contactin-2/transiently expressed axonal surface glycoprotein-1 (TAG-1) is a cell adhesion molecule belonging to the immunoglobulin superfamily (IgSF). It has six immunoglobulin-like extracellular domains and four fibronectin III-like ones, with anchoring to the cell membrane through glycosylphosphatidyl inositol. Contactin-2/TAG-1 is expressed in specific neurons transiently on the axonal surface during the fetal period. In postnatal stages, Contactin-2/TAG-1 is expressed in cerebellar granule cells, hippocampal pyramidal cells, and the juxtaparanodal regions of myelinated nerve fibers. In the embryonic nervous system, Contactin-2/TAG-1 plays important roles in axonal elongation, axonal guidance, and cellular migration. In the postnatal nervous system, it also plays an essential role in the formation of myelinated nerve fibers. Moreover, Contactin-2/TAG-1 has been linked to autoimmune diseases of the human nervous system. Taken together, Contactin-2/TAG-1 plays a central role in a variety of functions from development to disease.


Early-Stage Contactin-Associated Protein-like 2 Limbic Encephalitis: Clues for Diagnosis.

  • Jeanne Benoit‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2023‎

Previous studies suggested that autoimmune limbic encephalitis with antibodies against contactin-associated protein-like 2 (CASPR2-encephalitis) is clinically heterogeneous and progresses slowly, preventing its early recognition. We aimed to describe the onset and progression of CASPR2-encephalitis and to assess long-term outcomes.


No evidence for association of autism with rare heterozygous point mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in Other Contactin-Associated Proteins or Contactins.

  • John D Murdoch‎ et al.
  • PLoS genetics‎
  • 2015‎

Contactins and Contactin-Associated Proteins, and Contactin-Associated Protein-Like 2 (CNTNAP2) in particular, have been widely cited as autism risk genes based on findings from homozygosity mapping, molecular cytogenetics, copy number variation analyses, and both common and rare single nucleotide association studies. However, data specifically with regard to the contribution of heterozygous single nucleotide variants (SNVs) have been inconsistent. In an effort to clarify the role of rare point mutations in CNTNAP2 and related gene families, we have conducted targeted next-generation sequencing and evaluated existing sequence data in cohorts totaling 2704 cases and 2747 controls. We find no evidence for statistically significant association of rare heterozygous mutations in any of the CNTN or CNTNAP genes, including CNTNAP2, placing marked limits on the scale of their plausible contribution to risk.


Potential Autoepitope within the Extracellular Region of Contactin-Associated Protein-like 2 in Mice.

  • Demian F Obregon‎ et al.
  • British journal of medicine and medical research‎
  • 2014‎

Implicated in autoimmune encephalitis, neuromyotonia and genetic forms of autism, here we report that contactin-associated protein-like 2 (CNTNAP2) contains a potential autoepitope within the extracellular region.


Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders.

  • Betul Bakkaloglu‎ et al.
  • American journal of human genetics‎
  • 2008‎

Autism spectrum disorders (ASD) are a group of related neurodevelopmental syndromes with complex genetic etiology. We identified a de novo chromosome 7q inversion disrupting Autism susceptibility candidate 2 (AUTS2) and Contactin Associated Protein-Like 2 (CNTNAP2) in a child with cognitive and social delay. We focused our initial analysis on CNTNAP2 based on our demonstration of disruption of Contactin 4 (CNTN4) in a patient with ASD; the recent finding of rare homozygous mutations in CNTNAP2 leading to intractable seizures and autism; and in situ and biochemical analyses reported herein that confirm expression in relevant brain regions and demonstrate the presence of CNTNAP2 in the synaptic plasma membrane fraction of rat forebrain lysates. We comprehensively resequenced CNTNAP2 in 635 patients and 942 controls. Among patients, we identified a total of 27 nonsynonymous changes; 13 were rare and unique to patients and 8 of these were predicted to be deleterious by bioinformatic approaches and/or altered residues conserved across all species. One variant at a highly conserved position, I869T, was inherited by four affected children in three unrelated families, but was not found in 4010 control chromosomes (p = 0.014). Overall, this resequencing data demonstrated a modest nonsignificant increase in the burden of rare variants in cases versus controls. Nonetheless, when viewed in light of two independent studies published in this issue of AJHG showing a relationship between ASD and common CNTNAP2 alleles, the cytogenetic and mutation screening data suggest that rare variants may also contribute to the pathophysiology of ASD, but place limits on the magnitude of this contribution.


The glycosylphosphatidyl inositol-anchored adhesion molecule F3/contactin is required for surface transport of paranodin/contactin-associated protein (caspr).

  • C Faivre-Sarrailh‎ et al.
  • The Journal of cell biology‎
  • 2000‎

Paranodin/contactin-associated protein (caspr) is a transmembrane glycoprotein of the neurexin superfamily that is highly enriched in the paranodal regions of myelinated axons. We have investigated the role of its association with F3/contactin, a glycosylphosphatidyl inositol (GPI)-anchored neuronal adhesion molecule of the Ig superfamily. Paranodin was not expressed at the cell surface when transfected alone in CHO or neuroblastoma cells. Cotransfection with F3 resulted in plasma membrane delivery of paranodin, as analyzed by confocal microscopy and cell surface biotinylation. The region that mediates association with paranodin was mapped to the Ig domains of F3 by coimmunoprecipitation experiments. The association of paranodin with F3 allowed its recruitment to Triton X-100-insoluble microdomains. The GPI anchor of F3 was necessary, but not sufficient for surface expression of paranodin. F3-Ig, a form of F3 deleted of the fibronectin type III (FNIII) repeats, although GPI-linked and expressed at the cell surface, was not recovered in the microdomain fraction and was unable to promote cell surface targeting of paranodin. Thus, a cooperative effect between the GPI anchor, the FNIII repeats, and the Ig regions of F3 is required for recruitment of paranodin into lipid rafts and its sorting to the plasma membrane.


Leucine-Rich Glioma-Inactivated 1 versus Contactin-Associated Protein-like 2 Antibody Neuropathic Pain: Clinical and Biological Comparisons.

  • Sudarshini Ramanathan‎ et al.
  • Annals of neurology‎
  • 2021‎

Pain is a under-recognized association of leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies. Of 147 patients with these autoantibodies, pain was experienced by 17 of 33 (52%) with CASPR2- versus 20 of 108 (19%) with LGI1 antibodies (p = 0.0005), and identified as neuropathic in 89% versus 58% of these, respectively. Typically, in both cohorts, normal nerve conduction studies and reduced intraepidermal nerve fiber densities were observed in the sampled patient subsets. In LGI1 antibody patients, pain responded to immunotherapy (p = 0.008), often rapidly, with greater residual patient-rated impairment observed in CASPR2 antibody patients (p = 0.019). Serum CASPR2 antibodies, but not LGI1 antibodies, bound in vitro to unmyelinated human sensory neurons and rodent dorsal root ganglia, suggesting pathophysiological differences that may underlie our clinical observations. ANN NEUROL 2021;90:683-690.


RNAi for contactin 2 inhibits proliferation of U87-glioma stem cells by downregulating AICD, EGFR, and HES1.

  • Yang Guo‎ et al.
  • OncoTargets and therapy‎
  • 2017‎

Glioblastoma is the most common form of malignant brain tumors and has a poor prognosis. Glioma stem cells (GSCs) are thought to be responsible for the aberrant proliferation and invasion. Targeting the signaling pathways that promote proliferation in GSCs is one of the strategies for glioma treatment. In this study, we found increased expression of contactin 2 (CNTN2) and amyloid β precursor protein (APP) in U87-derived GSCs (U87-GSCs). RNA interference (RNAi) for CNTN2 downregulated the expression of APP intracellular domain (AICD), which is the proteolytic product of APP. Treatment with CNTN2 RNAi inhibited the proliferation of U87-GSCs. CNTN2 RNAi decreased the expression of epidermal growth factor receptor and HES1, which are potential targets of AICD. In summary, inhibition of the CNTN2/APP signaling pathway may repress the proliferation in U87-GSCs via downregulating the expression of HES1 and epidermal growth factor receptor. CNTN2/APP/AICD signaling pathway plays an important role in U87 glial tumorigenesis. Further studies are warranted to elucidate the role of these signaling pathways in other sources of GSCs. Depending on their role in proliferation in other sources of GSCs, members of the CNTN2/APP/AICD signaling pathway may provide novel targets for the development of therapy for glioblastomas.


Contactin-associated protein-like 2 antibody-associated autoimmune encephalitis in children: case reports and systematic review of literature.

  • Yong-Kang Cheng‎ et al.
  • Acta neurologica Belgica‎
  • 2023‎

To ascertain the clinical characteristics of pediatric patients with contactin-associated protein-like 2 (CASPR2) antibody-associated autoimmune encephalitis (AEs).


Sleep Disorders in Leucine-Rich Glioma-Inactivated Protein 1 and Contactin Protein-Like 2 Antibody-Associated Diseases.

  • Nan Lin‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Objective: Sleep disorders are common in voltage-gated potassium channel complex antibody (VGKC-Ab) diseases. The aim was to investigate the sleep disturbances and polysomnography (PSG) characteristics in patients with VGKC-Ab-associated diseases. Methods: Twenty-seven patients with leucine-rich glioma-inactivated protein 1 antibody (LGI1-Ab) encephalitis, seven patients with contactin protein-like 2 antibody (Caspr2-Ab)-associated diseases, and 14 healthy controls with at least one PSG or actigraphy recording were recruited at Peking Union Medical College Hospital from January 2014 to July 2019. Results: Sleep disorders including insomnia, hypersomnia, rapid eye movement (REM) sleep behavior disorder (RBD), periodic limb movements in sleep (PLMS), agrypnia excitata, and obstructive sleep apnea syndrome were observed. Twenty-one PSG recordings from patients with LGI1-Ab encephalitis demonstrated a decrease in total sleep time (TST) (median 365.5, range 184.5-495.5 min), sleep efficiency (70.0%, 47-92%), N3 sleep (9.7%, 0-32.9%), and REM sleep (9.9%, 0.4-27.9%). Of five patients with Caspr2-Ab-associated diseases, TST was found to be 329.5 (167.0-377.5 min), and sleep efficiency was found to be 61.7% (34.6-71.7%). The percentage for N3 and REM sleep was found to be 15.0% (0-34.6%) and 12.7% (0-22.2%), respectively. Both RBD and PLMS were observed more frequently in patients with LGI1-Ab encephalitis. We identified status dissociatus (SD) in five (23.8%) patients with LGI1-Ab encephalitis and two (40%) patients with Caspr2-Ab diseases. The former is more likely to have simple limb movements rather than complex movements, which mimic the contents of their dreams. Continuous insomnia was more common in patients with Caspr2-Ab diseases than patients with LGI1-Ab encephalitis. Patients reported clinical and PSG improvements following immunotherapy. Conclusion: Sleep disorders in patients with VGKC-Ab-associated diseases include decreased TST and poor sleep efficiency. Our studies provide evidence of SD in patients with LGI1-Ab encephalitis.


Structural insights into the contactin 1 - neurofascin 155 adhesion complex.

  • Lucas M P Chataigner‎ et al.
  • Nature communications‎
  • 2022‎

Cell-surface expressed contactin 1 and neurofascin 155 control wiring of the nervous system and interact across cells to form and maintain paranodal myelin-axon junctions. The molecular mechanism of contactin 1 - neurofascin 155 adhesion complex formation is unresolved. Crystallographic structures of complexed and individual contactin 1 and neurofascin 155 binding regions presented here, provide a rich picture of how competing and complementary interfaces, post-translational glycosylation, splice differences and structural plasticity enable formation of diverse adhesion sites. Structural, biophysical, and cell-clustering analysis reveal how conserved Ig1-2 interfaces form competing heterophilic contactin 1 - neurofascin 155 and homophilic neurofascin 155 complexes whereas contactin 1 forms low-affinity clusters through interfaces on Ig3-6. The structures explain how the heterophilic Ig1-Ig4 horseshoe's in the contactin 1 - neurofascin 155 complex define the 7.4 nm paranodal spacing and how the remaining six domains enable bridging of distinct intercellular distances.


The Autism Related Protein Contactin-Associated Protein-Like 2 (CNTNAP2) Stabilizes New Spines: An In Vivo Mouse Study.

  • Amos Gdalyahu‎ et al.
  • PloS one‎
  • 2015‎

The establishment and maintenance of neuronal circuits depends on tight regulation of synaptic contacts. We hypothesized that CNTNAP2, a protein associated with autism, would play a key role in this process. Indeed, we found that new dendritic spines in mice lacking CNTNAP2 were formed at normal rates, but failed to stabilize. Notably, rates of spine elimination were unaltered, suggesting a specific role for CNTNAP2 in stabilizing new synaptic circuitry.


A spontaneous mutation in contactin 1 in the mouse.

  • Muriel T Davisson‎ et al.
  • PloS one‎
  • 2011‎

Mutations in the gene encoding the immunoglobulin-superfamily member cell adhesion molecule contactin1 (CNTN1) cause lethal congenital myopathy in human patients and neurodevelopmental phenotypes in knockout mice. Whether the mutant mice provide an accurate model of the human disease is unclear; resolving this will require additional functional tests of the neuromuscular system and examination of Cntn1 mutations on different genetic backgrounds that may influence the phenotype. Toward these ends, we have analyzed a new, spontaneous mutation in the mouse Cntn1 gene that arose in a BALB/c genetic background. The overt phenotype is very similar to the knockout of Cntn1, with affected animals having reduced body weight, a failure to thrive, locomotor abnormalities, and a lifespan of 2-3 weeks. Mice homozygous for the new allele have CNTN1 protein undetectable by western blotting, suggesting that it is a null or very severe hypomorph. In an analysis of neuromuscular function, neuromuscular junctions had normal morphology, consistent with previous studies in knockout mice, and the muscles were able to generate appropriate force when normalized for their reduced size in late stage animals. Therefore, the Cntn1 mutant mice do not show evidence for a myopathy, but instead the phenotype is likely to be caused by dysfunction in the nervous system. Given the similarity of CNTN1 to other Ig-superfamily proteins such as DSCAMs, we also characterized the expression and localization of Cntn1 in the retinas of mutant mice for developmental defects. Despite widespread expression, no anomalies in retinal anatomy were detected histologically or using a battery of cell-type specific antibodies. We therefore conclude that the phenotype of the Cntn1 mice arises from dysfunction in the brain, spinal cord or peripheral nervous system, and is similar in either a BALB/c or B6;129;Black Swiss background, raising a possible discordance between the mouse and human phenotypes resulting from Cntn1 mutations.


Contactin-associated protein-like 2 (CNTNAP2) mutations impair the essential α-secretase cleavages, leading to autism-like phenotypes.

  • Qing Zhang‎ et al.
  • Signal transduction and targeted therapy‎
  • 2024‎

Mutations in the Contactin-associated protein-like 2 (CNTNAP2) gene are associated with autism spectrum disorder (ASD), and ectodomain shedding of the CNTNAP2 protein plays a role in its function. However, key enzymes involved in the C-terminal cleavage of CNTNAP2 remain largely unknown, and the effect of ASD-associated mutations on this process and its role in ASD pathogenesis remain elusive. In this report we showed that CNTNAP2 undergoes sequential cleavages by furin, ADAM10/17-dependent α-secretase and presenilin-dependent γ-secretase. We identified that the cleavage sites of ADAM10 and ADAM17 in CNTNAP2 locate at its C-terminal residue I79 and L96, and the main α-cleavage product C79 by ADAM10 is required for the subsequent γ-secretase cleavage to generate CNTNAP2 intracellular domain (CICD). ASD-associated CNTNAP2 mutations impair the α-cleavage to generate C79, and the inhibition leads to ASD-like repetitive and social behavior abnormalities in the Cntnap2-I1254T knock-in mice. Finally, exogenous expression of C79 improves autism-like phenotypes in the Cntnap2-I1254T knock-in and Cntnap2-/- knockout mice. This data demonstrates that the α-secretase is essential for CNTNAP2 processing and its function. Our study indicates that inhibition of the cleavage by pathogenic mutations underlies ASD pathogenesis, and upregulation of its C-terminal fragments could have therapeutical potentials for ASD treatment.


Effect of monovalency on anti-contactin-1 IgG4.

  • Guillaume Taieb‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Autoimmune nodopathies (AN) have been diagnosed in a subset of patients fulfilling criteria for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) who display no or poor response to intravenous immunoglobulins. Biomarkers of AN are autoantibodies, mainly IgG4, directed against the ternary paranodal complex composed by neurofascin-155, contactin-1 (CNTN1), and Contactin-associated-protein-1 (CASPR1) or against the nodal isoforms of neurofascin. IgG4 can undergo a Fab-arm exchange (FAE) which results in functionally monovalent antibody. This phenomenon differentially affects the pathogenicity of IgG4 depending on the target of autoantibodies. Here, we have evaluated this issue by examining the impact of valency on anti-CNTN1 IgG4 which induces paranodal destruction through a function blocking activity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: