Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 232 papers

Genomic runs of homozygosity record population history and consanguinity.

  • Mirna Kirin‎ et al.
  • PloS one‎
  • 2010‎

The human genome is characterised by many runs of homozygous genotypes, where identical haplotypes were inherited from each parent. The length of each run is determined partly by the number of generations since the common ancestor: offspring of cousin marriages have long runs of homozygosity (ROH), while the numerous shorter tracts relate to shared ancestry tens and hundreds of generations ago. Human populations have experienced a wide range of demographic histories and hold diverse cultural attitudes to consanguinity. In a global population dataset, genome-wide analysis of long and shorter ROH allows categorisation of the mainly indigenous populations sampled here into four major groups in which the majority of the population are inferred to have: (a) recent parental relatedness (south and west Asians); (b) shared parental ancestry arising hundreds to thousands of years ago through long term isolation and restricted effective population size (N(e)), but little recent inbreeding (Oceanians); (c) both ancient and recent parental relatedness (Native Americans); and (d) only the background level of shared ancestry relating to continental N(e) (predominantly urban Europeans and East Asians; lowest of all in sub-Saharan African agriculturalists), and the occasional cryptically inbred individual. Moreover, individuals can be positioned along axes representing this demographic historic space. Long runs of homozygosity are therefore a globally widespread and under-appreciated characteristic of our genomes, which record past consanguinity and population isolation and provide a distinctive record of the demographic history of an individual's ancestors. Individual ROH measures will also allow quantification of the disease risk arising from polygenic recessive effects.


Hemoglobinopathies in the North of Morocco: Consanguinity Pilot Study.

  • Achraf Laghmich‎ et al.
  • BioMed research international‎
  • 2019‎

Consanguinity is a social behavior characterized by the arrangement of marriages between relatives. It coincides generally with the geographic distribution of recessive genetic diseases as it increases the likelihood of homozygosis and, consequently, the incidence of their pathologies in the population. In this pilot study, we assess the effect of inbreeding on the burden of hemoglobinopathies in Northern Morocco. From January 2016 to December 2018, 197 children born in the studied region to three ancestral generations and diagnosed with hemoglobinopathies were subject to investigation. The rate of consanguinity in the parents' generation of children with hemoglobinopathies was 50.25%, with first cousin marriages accounting for 68.69% of consanguineous unions (FI = 0.02). The corresponding rates in the general population, based on a sample of N = 900, were 29.67% and 82.02%, respectively. The marriages between first cousins are the most common among the other types of consanguineous unions. Our study propounds that consanguinity substantially contributes to the hemoglobinopathy burden in the studied region and has changed little over time. Refraining from consanguineous marriages and detecting couples at risk could contribute to the reduction of the incidence of genetic diseases in our country.


Assessing the influence of consanguinity on congenital heart disease.

  • Alan H Bittles‎
  • Annals of pediatric cardiology‎
  • 2011‎

Numerous articles have been published linking consanguineous marriage to an elevated prevalence of congenital heart disease, with ventricular septal defects and atrial septal defects the most commonly cited disorders. While initially persuasive, on closer examination many of these studies have fundamental shortcomings in their design and in the recruitment of study subjects and controls. Improved matching of cases and controls, to include recognition of the long-established community boundaries within which most marriages are contracted, and the assessment of consanguinity within specific levels and types of marital union would improve and help to focus the study outcomes. At the same time, major discrepancies between studies in their reported prevalence and types of congenital heart disease suggest an urgent need for greater standardization in the classification and reporting of these disorders.


Consanguinity mapping of congenital heart disease in a South Indian population.

  • Tracy L McGregor‎ et al.
  • PloS one‎
  • 2010‎

Parental consanguinity is a risk factor for congenital heart disease (CHD) worldwide, suggesting that a recessive inheritance model may contribute substantially to CHD. In Bangalore, India, uncle-niece and first cousin marriages are common, presenting the opportunity for an international study involving consanguinity mapping of structural CHD. We sought to explore the recessive model of CHD by conducting a genome-wide linkage analysis utilizing high-density oligonucleotide microarrays and enrolling 83 CHD probands born to unaffected consanguineous parents.


BRCA1/BRCA2 Mutations Shaped by Ancient Consanguinity Practice in Southern Mediterranean Populations.

  • Fadoua Belaiba‎ et al.
  • Asian Pacific journal of cancer prevention : APJCP‎
  • 2018‎

The aim of this study is to investigate the involvement of consanguinity on BRCA1/2 mutation incidence in Southern Mediterranean populations and to confirm their low penetrance by comparison of their recurrence in sporadic and familial breast cancer in a context of ancient consanguinity practice. Our study comprises of two parts: First, a comparison of the consanguinity rates of the South Mediterranean countries in a relationship with the frequency of BRCA1 deleterious mutations in breast cancer families and the recurrence of these mutations. Second, we investigated 23patients with a family history of breast cancer, 51 patients without a family history of breast cancer using next-generation sequencing of BRCA2 and then confirmed by Sanger sequencing for the novel mutation. As results, we clearly show a strong relationship between the frequency of BRCA1 deleterious mutations in breast cancer families and rate of consanguinity, since they are significantly inversely correlated. Four deleterious mutations were found in BRCA2 gene including a novel frame-shift mutationc.9382_9383dup in a patient with familial breast cancer and three other frame-shift mutations c.6591_6592del, c.1310_1313del and c.7654dup in patients with sporadic breast cancer.These results are discussed in a context of selective pressure of ancient consanguinity practice. In conclusion, the study of BRCA1/2 gene in Southern Mediterranean countries revealed low penetrance recurrent mutations in sporadic and familial breast cancer. These mutations have been selected in a context of ancient consanguinity practice along with protective genetic and environmental factors.


Consanguinity and rare mutations outside of MCCC genes underlie nonspecific phenotypes of MCCD.

  • Peter J Shepard‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2015‎

3-Methylcrotonyl-CoA carboxylase deficiency (MCCD) is an autosomal recessive disorder of leucine catabolism that has a highly variable clinical phenotype, ranging from acute metabolic acidosis to nonspecific symptoms such as developmental delay, failure to thrive, hemiparesis, muscular hypotonia, and multiple sclerosis. Implementation of newborn screening for MCCD has resulted in broadening the range of phenotypic expression to include asymptomatic adults. The purpose of this study was to identify factors underlying the varying phenotypes of MCCD.


Effects of consanguinity in a cohort of subjects with certain genetic disorders in Qatar.

  • Tawfeg Ben-Omran‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2020‎

Consanguineous marriages are common in the Middle East including the Gulf countries. The rate of consanguinity in Qatar is approximately 54%, which are mainly first cousins' marriages. Previous studies showed that consanguinity increases the prevalence of birth defects and other genetic disorders. Thus, we studied the effects of consanguinity in a cohort of subjects with certain genetic disorders in Qatar.


Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity.

  • Danish Saleheen‎ et al.
  • Nature‎
  • 2017‎

A major goal of biomedicine is to understand the function of every gene in the human genome. Loss-of-function mutations can disrupt both copies of a given gene in humans and phenotypic analysis of such 'human knockouts' can provide insight into gene function. Consanguineous unions are more likely to result in offspring carrying homozygous loss-of-function mutations. In Pakistan, consanguinity rates are notably high. Here we sequence the protein-coding regions of 10,503 adult participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS), designed to understand the determinants of cardiometabolic diseases in individuals from South Asia. We identified individuals carrying homozygous predicted loss-of-function (pLoF) mutations, and performed phenotypic analysis involving more than 200 biochemical and disease traits. We enumerated 49,138 rare (<1% minor allele frequency) pLoF mutations. These pLoF mutations are estimated to knock out 1,317 genes, each in at least one participant. Homozygosity for pLoF mutations at PLA2G7 was associated with absent enzymatic activity of soluble lipoprotein-associated phospholipase A2; at CYP2F1, with higher plasma interleukin-8 concentrations; at TREH, with lower concentrations of apoB-containing lipoprotein subfractions; at either A3GALT2 or NRG4, with markedly reduced plasma insulin C-peptide concentrations; and at SLC9A3R1, with mediators of calcium and phosphate signalling. Heterozygous deficiency of APOC3 has been shown to protect against coronary heart disease; we identified APOC3 homozygous pLoF carriers in our cohort. We recruited these human knockouts and challenged them with an oral fat load. Compared with family members lacking the mutation, individuals with APOC3 knocked out displayed marked blunting of the usual post-prandial rise in plasma triglycerides. Overall, these observations provide a roadmap for a 'human knockout project', a systematic effort to understand the phenotypic consequences of complete disruption of genes in humans.


Transcriptomic Analysis of the Spider Venom Gland Reveals Venom Diversity and Species Consanguinity.

  • Zhaotun Hu‎ et al.
  • Toxins‎
  • 2019‎

Selenocosmia jiafu (S. jiafu) has been recently identified as a new species of spider in China. It lives in the same habitat as various other venomous spiders, including Chilobrachys jingzhao (C. jingzhao), Selenocosmia huwena (S. huwena), and Macrothele raveni (M. raveni). The venom from these different species of spiders exhibits some similarities and some differences in terms of their biochemical and electrophysiological properties. With the objective to illustrate the diversity in venom peptide toxins and to establish the evolutionary relationship between different spider species, we first performed transcriptomic analysis on a cDNA library from the venom gland of S. jiafu. We identified 146 novel toxin-like sequences, which were classified into eighteen different superfamilies. This transcriptome was then compared with that of C. jingzhao, which revealed that the putative toxins from both spider venoms may have originated from the same ancestor, although novel toxins evolved independently in the two species. A BLAST search and pharmacological analysis revealed that the two venoms have similar sodium channel modulation activity. This study provides insights into the venom of two closely related species of spider, which will prove useful towards understanding the structure and function of their toxins.


Recent Consanguinity and Outbred Autozygosity Are Associated With Increased Risk of Late-Onset Alzheimer's Disease.

  • Valerio Napolioni‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Prior work in late-onset Alzheimer's disease (LOAD) has resulted in discrepant findings as to whether recent consanguinity and outbred autozygosity are associated with LOAD risk. In the current study, we tested the association between consanguinity and outbred autozygosity with LOAD in the largest such analysis to date, in which 20 LOAD GWAS datasets were retrieved through public databases. Our analyses were restricted to eight distinct ethnic groups: African-Caribbean, Ashkenazi-Jewish European, European-Caribbean, French-Canadian, Finnish European, North-Western European, South-Eastern European, and Yoruba African for a total of 21,492 unrelated subjects (11,196 LOAD and 10,296 controls). Recent consanguinity determination was performed using FSuite v1.0.3, according to subjects' ancestral background. The level of autozygosity in the outbred population was assessed by calculating inbreeding estimates based on the proportion (FROH) and the number (NROH) of runs of homozygosity (ROHs). We analyzed all eight ethnic groups using a fixed-effect meta-analysis, which showed a significant association of recent consanguinity with LOAD (N = 21,481; OR = 1.262, P = 3.6 × 10-4), independently of APOE ∗4 (N = 21,468, OR = 1.237, P = 0.002), and years of education (N = 9,257; OR = 1.274, P = 0.020). Autozygosity in the outbred population was also associated with an increased risk of LOAD, both for F ROH (N = 20,237; OR = 1.204, P = 0.030) and N ROH metrics (N = 20,237; OR = 1.019, P = 0.006), independently of APOE ∗4 [(F ROH, N = 20,225; OR = 1.222, P = 0.029) (N ROH, N = 20,225; OR = 1.019, P = 0.007)]. By leveraging the Alzheimer's Disease Sequencing Project (ADSP) whole-exome sequencing (WES) data, we determined that LOAD subjects do not show an enrichment of rare, risk-enhancing minor homozygote variants compared to the control population. A two-stage recessive GWAS using ADSP data from 201 consanguineous subjects in the discovery phase followed by validation in 10,469 subjects led to the identification of RPH3AL p.A303V (rs117190076) as a rare minor homozygote variant increasing the risk of LOAD [discovery: Genotype Relative Risk (GRR) = 46, P = 2.16 × 10-6; validation: GRR = 1.9, P = 8.0 × 10-4]. These results confirm that recent consanguinity and autozygosity in the outbred population increase risk for LOAD. Subsequent work, with increased samples sizes of consanguineous subjects, should accelerate the discovery of non-additive genetic effects in LOAD.


Consanguinity-based analysis of exome sequencing yields likely genetic causes in patients with inherited retinal dystrophy.

  • Ren-Juan Shen‎ et al.
  • Orphanet journal of rare diseases‎
  • 2021‎

Consanguineous families have a relatively high prevalence of genetic disorders caused by bi-allelic mutations in recessive genes. This study aims to evaluate the effectiveness and efficiency of a consanguinity-based exome sequencing approach to capturing genetic mutations in inherited retinal dystrophy families with consanguineous marriages.


Whole-Exome Sequencing Reveals a Rare Variant of OTOF Gene Causing Congenital Non-syndromic Hearing Loss Among Large Muslim Families Favoring Consanguinity.

  • Mohd Fareed‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Non-syndromic hearing loss (NSHL) is one of the most frequent auditory deficits in humans characterized by high clinical and genetic heterogeneity. Very few studies have reported the relationship between OTOF (Locus: DFNB9) and hereditary hearing loss in India. We aimed to decipher the genetic cause of prelingual NSHL in a large affected Muslim consanguineous families using whole-exome sequencing (WES). The study was performed following the guidelines and regulations of the Indian Council of Medical Research (ICMR), New Delhi. The population was identified from Jammu and Kashmir, the Northernmost part of India. Near about 100 individuals were born deaf-mute in the village of 3,000 inhabitants. A total of 103 individuals (with 52 cases and 51 controls) agreed to participate in this study. Our study revealed a rare non-sense homozygous mutation NC_000002.11:g.2:26702224G>A; NM_001287489.2:c.2122C>T; NP_001274418.1:p.(Arg708∗) in the 18th exon of the OTOF gene. Our study provides the first insight into this homozygous condition, which has not been previously reported in ExAC, 1,000 Genome and genomAD databases. Furthermore, the variant was confirmed in the population cohort (n = 103) using Sanger sequencing. In addition to the pathogenic OTOF variant, the WES data also revealed novel and recurrent mutations in CDH23, GJB2, MYO15A, OTOG, and SLC26A4 genes. The rare pathogenic and the novel variants observed in this study have been submitted to the ClinVar database and are publicly available online with the accessions SCV001448680.1, SCV001448682.1 and SCV001448681.1. We conclude that OTOF-related NSHL hearing loss is prevalent in the region due to successive inbreeding in its generations. We recommend premarital genetic testing and genetic counseling strategies to minimize and control the disease risk in future generations.


Genetic heterogeneity and consanguinity lead to a "double hit": homozygous mutations of MYO7A and PDE6B in a patient with retinitis pigmentosa.

  • Nitza Goldenberg-Cohen‎ et al.
  • Molecular vision‎
  • 2013‎

Retinitis pigmentosa (RP), the most genetically heterogeneous disorder in humans, actually represents a group of pigmentary retinopathies characterized by night blindness followed by visual-field loss. RP can appear as either syndromic or nonsyndromic. One of the most common forms of syndromic RP is Usher syndrome, characterized by the combination of RP, hearing loss, and vestibular dysfunction.


Features of chromosomal abnormalities in relation to consanguinity: analysis of 10,556 blastocysts from IVF/ICSI cycles with PGT-A from consanguineous and non-consanguineous couples.

  • Laura Melado‎ et al.
  • Scientific reports‎
  • 2023‎

Consanguineous marriage is defined as marriage between first or second-degree cousins, with high prevalence in many cultures and societies. Descendants from consanguineous unions have an increased risk for genetic diseases. Additionally, in consanguineous couples, chromosomal disjunction during embryogenesis could also be affected, increasing the risk of chromosomal errors. Nowadays, genomic testing allows to identify new genetic syndromes and variants related to copy-number variations (CNV), including whole chromosome, segmental and micro-segmental errors. This is the first study evaluating chromosomal ploidy status on blastocysts formed from consanguineous couples during IVF/ICSI treatments with Preimplantation Genetic Testing for Aneuploidies (PGT-A), compared to non-consanguineous couples. Although consanguine couples were significantly younger, no differences were observed between groups for fertilisation rate, blastulation rate and euploidy rate, once adjusted by age. Nevertheless, the number of blastocysts biopsied on day 5 was lower for consanguine couples. Segmental errors, and aneuploidies of chromosomes 13 and 14 were the most prominent abnormalities in relation to consanguinity, together with errors in chromosome 16 and sex chromosomes when the female partner was younger than 35. Once euploid blastocysts were considered for subsequent frozen embryo transfer, pregnancy outcomes were similar in both groups. The current findings point toward the fact that in consanguine unions, not only the risk of having a child with genetic disorders is increased, but also the risk of specific chromosomal abnormalities seems to be increased. Premarital counselling and tailored reproductive treatments should be offered to these couples.


The role of AGG interruptions in the FMR1 gene stability: A survey in ethnic groups with low and high rate of consanguinity.

  • Esther Manor‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2019‎

The prevalence and the role of AGG interruptions within the FMR1 gene in the normal population is unknown. In this study, we investigated the frequent of AGG loss, in one or two alleles within the normal population. The role of AGG in the FMR1 stability has been assessed by correlating AGG loss to the prevalence of premutation/full mutation in two ethnic groups differing in their consanguinity rate: high versus low consanguinity rate (HCR vs. LCR).


Large-scale pedigree analysis highlights rapidly mutating Y-chromosomal short tandem repeats for differentiating patrilineal relatives and predicting their degrees of consanguinity.

  • Arwin Ralf‎ et al.
  • Human genetics‎
  • 2023‎

Rapidly mutating Y-chromosomal short tandem repeats (RM Y-STRs) were suggested for differentiating patrilineally related men as relevant in forensic genetics, anthropological genetics, and genetic genealogy. Empirical data are available for closely related males, while differentiation rates for more distant relatives are scarce. Available RM Y-STR mutation rate estimates are typically based on father-son pair data, while pedigree-based studies for efficient analysis requiring less samples are rare. Here, we present a large-scale pedigree analysis in 9379 pairs of men separated by 1-34 meioses on 30 Y-STRs with increased mutation rates including all known RM Y-STRs (RMplex). For comparison, part of the samples were genotyped at 25 standard Y-STRs mostly with moderate mutation rates (Yfiler Plus). For 43 of the 49 Y-STRs analyzed, pedigree-based mutation rates were similar to previous father-son based estimates, while for six markers significant differences were observed. Male relative differentiation rates from the 30 RMplex Y-STRs were 43%, 84%, 96%, 99%, and 100% for relatives separated by one, four, six, nine, and twelve meioses, respectively, which largely exceeded rates obtained by 25 standard Y-STRs. Machine learning based models for predicting the degree of patrilineal consanguinity yielded accurate and reasonably precise predictions when using RM Y-STRs. Fully matching haplotypes resulted in a 95% confidence interval of 1-6 meioses with RMplex compared to 1-25 with Yfiler Plus. Our comprehensive pedigree study demonstrates the value of RM Y-STRs for differentiating male relatives of various types, in many cases achieving individual identification, thereby overcoming the largest limitation of forensic Y-chromosome analysis.


The genetic background of Southern Iranian couples before marriage.

  • A Nariman‎ et al.
  • Balkan journal of medical genetics : BJMG‎
  • 2016‎

Genetic service for couples plays an increasingly important role in diagnosis and risk management. This study investigated the status of consanguinity and the medical genetic history (effectiveness and coverage of medical genetic services) in couples residing in a city in southern Iran. We questioned couples who were referred to Behbahan Marital Counseling Center, Behbahan, Iran, during the period from January to November 2014, to obtain information on consanguinity, disease history, and previous referral to a medical genetics center. For the collected data was obtained descriptive statistics with STATA 11.0 software. A total of 500 couples were questioned. Mean age was 24.8 ± 5.2 years. Almost one quarter (23.4%) of the couples were consanguineous. Consanguinity was almost twice as common in rural areas as in urban areas (33.9 vs. 19.2%, p = 0.001). Only a few couples (~3.0%) had ever been referred for genetic counseling. The main reason for previous genetic counseling was consanguinity (85.7%). The majority of the participants (96.3%) had never been tested for any genetic conditions. Our findings suggest that only a small proportion of couples in Khuzestan Province, Iran (Behbahan City) were receiving adequate genetics care. This may reflect the limited accessibility of such services, and inadequate awareness and education among the care providers.


Improved Diagnosis of Rare Disease Patients through Systematic Detection of Runs of Homozygosity.

  • Leslie Matalonga‎ et al.
  • The Journal of molecular diagnostics : JMD‎
  • 2020‎

Autozygosity is associated with an increased risk of genetic rare disease, thus being a relevant factor for clinical genetic studies. More than 2400 exome sequencing data sets were analyzed and screened for autozygosity on the basis of detection of >1 Mbp runs of homozygosity (ROHs). A model was built to predict if an individual is likely to be a consanguineous offspring (accuracy, 98%), and probability of consanguinity ranges were established according to the total ROH size. Application of the model resulted in the reclassification of the consanguinity status of 12% of the patients. The analysis of a subset of 79 consanguineous cases with the Rare Disease (RD)-Connect Genome-Phenome Analysis Platform, combining variant filtering and homozygosity mapping, enabled a 50% reduction in the number of candidate variants and the identification of homozygous pathogenic variants in 41 patients, with an overall diagnostic yield of 52%. The newly defined consanguinity ranges provide, for the first time, specific ROH thresholds to estimate inbreeding within a pedigree on disparate exome sequencing data, enabling confirmation or (re)classification of consanguineous status, hence increasing the efficiency of molecular diagnosis and reporting on secondary consanguinity findings, as recommended by American College of Medical Genetics and Genomics guidelines.


Paediatric diabetes subtypes in a consanguineous population: a single-centre cohort study from Kurdistan, Iraq.

  • Shenali A Amaratunga‎ et al.
  • Diabetologia‎
  • 2024‎

Monogenic diabetes is estimated to account for 1-6% of paediatric diabetes cases in primarily non-consanguineous populations, while the incidence and genetic spectrum in consanguineous regions are insufficiently defined. In this single-centre study we aimed to evaluate diabetes subtypes, obtain the consanguinity rate and study the genetic background of individuals with syndromic and neonatal diabetes in a population with a high rate of consanguinity.


Genetics of low spinal muscular atrophy carrier frequency in sub-Saharan Africa.

  • Modibo Sangaré‎ et al.
  • Annals of neurology‎
  • 2014‎

Spinal muscular atrophy (SMA) is one of the most common severe hereditary diseases of infancy and early childhood in North America, Europe, and Asia. SMA is usually caused by deletions of the survival motor neuron 1 (SMN1) gene. A closely related gene, SMN2, modifies the disease severity. SMA carriers have only 1 copy of SMN1 and are relatively common (1 in 30-50) in populations of European and Asian descent. SMN copy numbers and SMA carrier frequencies have not been reliably estimated in Malians and other sub-Saharan Africans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: